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Preface

This book and its companion volume, comprising LNCS volumes 12689 and 12690,
constitute the proceedings of The Twelfth International International Conference on
Swarm Intelligence (ICSI 2021) held during July 17-21, 2021, in Qingdao, China, both
on-site and online.

The theme of ICSI 2021 was “Serving Life with Swarm Intelligence.” The con-
ference provided an excellent opportunity for academics and practitioners to present
and discuss the latest scientific results and methods, innovative ideas, and advantages
in theories, technologies, and applications in swarm intelligence. The technical pro-
gram covered a number of aspects of swarm intelligence and its related areas. ICSI
2021 was the twelfth international gathering for academics and researchers working on
most aspects of swarm intelligence, following successful events in Serbia (ICSI 2020,
virtually), Chiang Mai (ICSI 2019), Shanghai (ICSI 2018), Fukuoka (ICSI 2017), Bali
(ICSI 2016), Beijing (ICSI-CCI 2015), Hefei (ICSI 2014), Harbin (ICSI 2013),
Shenzhen (ICSI 2012), Chongqing (ICSI 2011), and Beijing (ICSI 2010), which
provided a high-level academic forum for participants to disseminate their new research
findings and discuss emerging areas of research. ICSI 2021 also created a stimulating
environment for participants to interact and exchange information on future challenges
and opportunities in the field of swarm intelligence research.

Due to the ongoing COVID-19 pandemic, ICSI 2021 provided opportunities for
both online and offline presentations. On the one hand, ICSI 2021 was held normally in
Qingdao, China, but on the other hand, the ICSI 2021 technical team provided the
ability for authors who were subject to restrictions on overseas travel to present their
work through an interactive online platform or video replay. The presentations by
accepted authors were made available to all registered attendees on-site and online.

The host city of ICSI 2021, Qingdao (also spelled Tsingtao), is a major
sub-provincial city in the eastern Shandong province, China. Located on the western
shore of the Yellow Sea, Qingdao is a major nodal city on the 21st Century Maritime
Silk Road arm of the Belt and Road Initiative that connects East Asia with Europe, and
has the highest GDP of any city in the province. It had jurisdiction over seven districts
and three county-level cities till 2019, and as of 2014 had a population of 9,046,200
with an urban population of 6,188,100. Lying across the Shandong Peninsula and
looking out to the Yellow Sea to its south, Qingdao borders the prefectural cities of
Yantai to the northeast, Weifang to the west, and Rizhao to the southwest.

ICSI 2021 received 177 submissions and invited submissions from about 392
authors in 32 countries and regions (Algeria, Australia, Bangladesh, Belgium, Brazil,
Bulgaria, Canada, China, Colombia, India, Italy, Japan, Jordan, Mexico, Nigeria, Peru,
Portugal, Romania, Russia, Saudi Arabia, Serbia, Slovakia, South Africa, Spain,
Sweden, Taiwan (China), Thailand, Turkey, United Arab Emirates, UK, USA, and
Vietnam) across 6 continents (Asia, Europe, North America, South America, Africa,
and Oceania). Each submission was reviewed by at least 2 reviewers, and had on
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average 2.5 reviewers. Based on rigorous reviews by the Program Committee members
and additional reviewers, 104 high-quality papers were selected for publication in this
proceedings, an acceptance rate of 58.76%. The papers are organized into 16 cohesive
sections covering major topics of swarm intelligence research and its development and
applications.

On behalf of the Organizing Committee of ICSI 2021, we would like to express our
sincere thanks to the International Association of Swarm and Evolutionary Intelligence
(IASEI), which is the premier international scholarly society devoted to advancing the
theories, algorithms, real-world applications, and developments of swarm intelligence
and evolutionary intelligence. We would also like to thank Peking University, Southern
University of Science and Technology, and Ocean University of China for their
co-sponsorships, and the Computational Intelligence Laboratory of Peking University
and IEEE Beijing Chapter for their technical co-sponsorships, as well as our supporters
including the International Neural Network Society, World Federation on Soft Com-
puting, International Journal of Intelligence Systems, MDPI’s journals Electronics and
Mathematics, Beijing Xinghui Hi-Tech Co., and Springer Nature.

We would also like to thank the members of the Advisory Committee for their
guidance, the members of the Program Committee and additional reviewers for
reviewing the papers, and the members of the Publication Committee for checking the
accepted papers in a short period of time. We are particularly grateful to Springer for
publishing the proceedings in the prestigious series of Lecture Notes in Computer
Science. Moreover, we wish to express our heartfelt appreciation to the plenary
speakers, session chairs, and student helpers. In addition, there are still many more
colleagues, associates, friends, and supporters who helped us in immeasurable ways;
we express our sincere gratitude to them all. Last but not the least, we would like to
thank all the speakers, authors, and participants for their great contributions that made
ICST 2021 successful and all the hard work worthwhile.

May 2021 Ying Tan
Yuhui Shi
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Swarm Unit Digital Control System Simulation

Eugene Larkin! ®_ Aleksandr Privalov?, and Tatiana Akimenko!
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Abstract. Physical swarm unit, as an object under digital control is analyzed.
It is shown, that Von Neumann digital controller, as a physical device, has new
properties in comparison with analogue controllers, namely due to sequentially
interpretation of control algorithm there are time delays between quests to sen-
sors and actuators, that cause influence on a swarm unit performance as a whole.
Flowchart of digital control system is worked out and closed loops transfer func-
tion, which takes into account real properties of Von Neumann digital controller, is
obtained. The method of time lags estimation, based on notion the interpretation
of arbitrary complexity cyclic algorithm as semi-Markov process, is proposed.
Theoretical postulates are confirmed by simulation of two-loop digital control
system functioning. Results of simulation emphatically show how data skew and
feedback lag affect on swarm unit control dynamics.

Keywords: Physical swarm unit - Object under control - Von Neumann
controller - Semi-Markov process - Transfer function - Time delay - Data skew -
Feedback lag

1 Introduction

Basic concept of modern swarm development is complication of tasks, which decide
every unit, when solving common swarm aim problem [1-3]. When physical swarm
units operate at the environment space, the problem is to minimize a time of units
mutual control, that increase demands to units digital control systems [4]. As a rule,
for control the unit onboard equipment Von Neumann computers are used. This device,
in comparison with analogue controllers, possesses with new properties, which follows
from sequential, operator-by-operator, interpretation of algorithm [5-7], embedded into
controller. So it is necessary to spend any time to calculate action, transmitted to actuator
after receiving data from sensors [8]. Time intervals emerging between input/output data
vectors (data skew), and between input data from sensors and output data to actuators
(pure lag) affect on quality characteristics of swarm unit control system as a whole [9,
10], so they should be taken into account when design the system.

There are no any difficulties in estimation of time intervals in simple case, when
cyclic control algorithm include input-output-calculation-return operators only, but when
structure of soft, involving transactions operators, is rather complicated, there is the
problem to estimate time intervals between transactions at the stage of algorithm design.
To solve the problem one should to take into account those facts, that data, forming on
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swarm unit sensors outputs, are random one; data may be processed by quite different
algorithm branches, possessing quite different time complexities; algorithm includes
decision operators at branching points. So to facilitate the problem solution semi-Markov
processes theory [11-14] should be accepted as basic concept for control algorithm
simulation. Methods of swarm unit digital control system simulation at the stage of its
design in order to determine unit performance are not widespread, that confirms necessity
and relevancy of investigation in the area.

2 Features of Von Neumann Computer Control

Multi, K-loop, digital control system (DCS) structure is shown on the Fig. 1. It is rather
classic one, and includes two subsystems: linear Object Under Control (OUC) and Dig-
ital Controller (DC). OUC consists of K units, every of which is described with transfer
function vector Wy (s) = [Wi1(s), ..., Wr(s), ..., Wik (s)] and feedback scalar trans-
fer function Wy x(s), 1 < k < K. Vectors Wy (s), and scalars Wy 4 (s), describe the
dynamics of OUC k-th unit itself and feedback sensor, respectively. DC is real time
Von Neumann type computer, which interprets control program, and in cycle generates
quests both to actuators, and to sensors for organizing the managing procedure.

| |
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R IO e |
: | @) | |
I - : Woi(s) I
| . ! |
I : : eee |
| U, > |
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I —» i LT !
| | Xoi2) 1 !
! - I Wouls) !
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I ! : | I
| . |
: DUk | o Wi | ) :
| Fk(s) : : > |
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Fig. 1. Flowchart of swarm unit digital control system

System operates as follows. The control aim vector
F(s) = [F1(s), ..., Fi(s), ..., Fx(s)]is generated element-by-element by controller,
or inputted element-by-element into DC from outside. On outputs of controller action
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vector U(s) = [U1(s), ..., Ur(s), ..., Uk(s)]is generated by software, and is physi-
cally transformed into the swarm unit state X(s) = [Xi(s), ..., Xk(s), ..., Xk (s)] as
follows:
Wi(s)
X(s) =U(s) - W(s) =U(s) - | We(s) |, (D
Wk (s)

where s is the Laplace operator [15].

OUC state is measured by K sensors, and vector signal Xg(s) =
[X0.1(8), ... X0,k(s), ..., Xo,x(s)] is inputted into DC back, sequentially, element-
by-element. Due to time intervals between transactions are essential values for DC
description, below is considered, that they are counted from moment of input of the first.
All other data are input/output respectively element F(s) € F(s) with lags, nominated
as follows:

Fy (s) are inputted respectively F(s) with lags 77,2 <k < K;
Xo, « (s) are inputted respectively F(s) with lags 1o x, 1 <k < K;
Uy (s) are outputted respectively F(s) with lags 1, x, 1 <k <K.

In accordance with the theorem about shifting in the time domain [15, 16]
Llp(t — 1)] = exp(—1s5)P(s), T > 0, 2)

where T is the shifting value; ¢ is the time; ¢(f) is a function; L[...] - direct Laplace
transform: ®(s) is the Laplace transform of ¢(z).
From (2) it follows, that

Fg,(s) = F(s) - Qs (s); 3)
X (s) = Xo(s) - Qo(s); 4
Ug(s) = U(s) - Qu(s), )

where Fg, (s), X, (5), Ugn(s) are vectors F(s), Xo (s), U(s), elements of which are delayed
on time; Qf (s) = | Qr,1(s) |, Qo(s) = [ Qo.xi(s) |, Qu(s) = | Qu,u(s) | are diagonal lag

matrices, in which

0, when k # [;
Or k() =141, whenk=1=1; (6)
exp(—rf,ks), when2 <k =1[<K;
0, when k #[;
= 7
Qo.u(s) {exp(—ro’ks), when k = [; ™
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0, when k # [;
exp(—Tu,ks5), whenk = 1[.

Ou ki (s) = { (8)

Data, processed in DC, are discrete one, so in strict sense, ordinary transfer function
apparatus is not fit for description of U(s) vector elements calculation. But, when sam-
pling period is approached to zero, then data processing in frequency domain may be
described as ordinary transfer function matrix W,(s). So, in the case, when, processing
feedback signal, DC realizes a linear control law, on its outputs U(s) the following vector
signal is generated [5, 6]:

U(s) = | F(s) - Qs (s) — X(s) - Wo(s) - Qo(s) | - We(s) - Quls), 9)

where W, (s) = I_WC, Kl (s)J is the K x K matrix of linear transfer functions, which are
embedded into DC as a software; Wy (s) = LWO, Xl (s)J is the K x K diagonal matrix,
whose elements are as follows:

0, when k # [;

10
Wo.k(s), whenk = 1. (10)

Wo, ki (s) = {

Simultaneous solution of (9) and (11) relatively to X(s) gives the following
expression

X(s) = [E — Wo(s) - Qo(s) - We(s) - Qu(s)]™!

11
x F(s) - We(s) - Qr(s) - W(s) - Qu(s), (b

where E is the K x K unit diagonal matrix;

Matrices Qf(s) = | O, u(s) ], Qo(s) = | Qo,u(s) ], Qu(s) = | Qu,1a(s) |, character-
izing lags, are situated both in the numerator, and in denominator of (12). Matrices sit-
uated at numerator, defines so called data skew and common lag of external commands
execution. Matrices situated at denominator, defines common feedback lag, therefore
changes qualitatively characteristics of transition process.

3 Semi-Markov Model of DC Operation

For estimation of time intervals the model of Von Neumann computer operation in time
domain should be worked out. For simplicity it may be represented as including trans-
action operators only. Control process in such model is reduced to elements of vectors
F(s), Xo(s) reading from interface and elements of vector U(s) writing to interface.
The algorithm, generated quests, is the cyclic one, but in it absent a looping effect. The
algorithm may generate transactions in an arbitrary sequence, with one exception; the
same transaction can not be generated twice at a time. Also, due to the fact, that for
control action U(s) calculation all element of vectors F(s) and X¢(s) should be used,
the strong connectivity condition should be imposed [17, 18] on the graph, which, rep-
resents the structure of control algorithm. In common case such properties has the full
oriented graph without loops, shown on the Fig. 2 a. In simplest case vectors F(s) and
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Xy (s) elements are quested in turn, after that control action is calculated, and after that
elements of U(s) are quested in turn (Fig. 2 b).

With taking into account randomness of time interval between transactions and
stochastic transactions sequence for external observer, the adequate approach to algo-
rithm simulation is semi-Markov process [11-14], which states are abstract analogues
of algorithm operators. Semi-Markov process is represented by the semi-Markov matrix

h(t) = [hu®] = [gu @] ® [pu®)]. (12)

where py; () is probability of the direct switching from the k-th state to the I-th state;
gk (1) is the time density of residence the process (17) in the k-th state before switching
into the I-th state; ® is the direct multiplication sign; ¢ is the physical time.

Fig. 2. Common structure of semi-Markov process (a), simplest case (b) and the model for time
interval estimation (c)

Semi-Markov process (13) is ergodic one and does not include both absorbing, and
partially absorbing states. Due to semi-Markov process ergodicity on densities gi /()
and probabilities py ;(t) following restrictions are imposed:

0 < T < arglg ()] < T <00, 1<k [ <3K; 13
3K
Zpkl = 1; (14)
=1

where 3K is common quantity of transaction operators; T,?l“in and T;;™* are upper and
lower bounds of density g (#) domain.

When estimation of time intervals between transactions it is no matter how semi-
Markov process (13) gets [-th state from the first one. Determining in the case is that
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switch is the first, but not second, third, etc. For time interval estimation initial semi-
Markov process should be transformed into the process with the structure, shown on the
Fig. 2 c, in which first state is the starting one, and /-th state is the absorbing one. For
getting such structure:

First column and /-th row of h(z) are reset to zeros;
Probabilities py;(¢) in all rows excluding the /-th, and in all columns, excluding the first,
are recalculated as follows:

Pi=—LE 1<k i<3K, k#l i#l (15)
1 — pri
In such a way
h(r) — W @) = [gu(® - piy]- (16)

After recalculation probabilities according (15), partially absorbing states are anni-
hilated, and events of getting the /-th state from the first state begin to make up a full
group of incompatible events. In such a way, time density of wandering from the first
state to the /-th state may be estimated as follows [19]

gt =1-L7 Y (LW o]) | -1, (17)

j=1

where L™![...] is the inverse Laplace transform; I} is the row-vector, first element of
which is equal to one, and other elements are equal to zeros; I;‘ is the column-vector,
I-th element of which is equal to one, and other elements are equal to zeros.

For time density (19) the expectation and the dispersion may be calculated, as usual
[20]:

o0

Ty = [t-glzl(t)dt; (18)
0
o0
2
Dﬁ:/(r—TIE,) - g (dt (19)
0

In simplest case density, expectation and dispersion of reaching time the /-th state
from the first, are as follows:

-1

g =_L" []‘[ L[gk,kﬂ(t)]}, (20)
k=1
l

T =) Terri: @1)

k=1



Swarm Unit Digital Control System Simulation 9

l
DY () = Diiris (22)
k=1

where g k+1(t), Tk k+1, Dk k+1(t) are density, expectation and dispersion of time of
residence the process, shown on the Fig. 2 c, in the k-th state before switching into the
(k 4 1)-th state.

Expectations TlEl () = 7q; give middle estimations of time delays. Also time intervals
may be estimated with using “three sigma rule” [21], as follows:

T =T} +3,/DE. (23)

Estimations (17)—(23) define lags of input/output vectors F(s), Xo(s), U(s) elements
with respect to input the element F{(s). All other delays may be obtained from these
parameters. For example, delay between input of k-th element, 1 </ < 2K and output
of /-th element 2K + 1 < m < 3K may be defined as

T = T — Tik- (24)

When obtaining swarm unit control system closed loop transfer function according
(11) estimations (18), (21), or (23) may be used.

4 Example of Control System Analysis

As an example, swarm unit two-loop digital control system is considered (Fig. 3).
Structure of algorithm, realized in DC, is shown on the Fig. 2 b.

—_—_————————

: |

|
I - v | I :
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' U ' > '
A | Ui(s) | 1| Xis)
| o ¢
| : I > Wi(s) p :

|

| DC | | ouc |
| I |
I I o (s |
| e Y 1 xe
I | | E I
| Fas) | Uxs) | i
: > D>l ! | 22(s) .
| A I | |
| - I L _____ I
i >

Fig. 3. Swarm unit two-loop digital control system
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Transfer functions, which define OUC dynamics are as follows:

5
Wii(s) = Wa(s) = ———; Wia(s) = Wai(s) =

; 25
0,2s+1 (25)

0,2s+1°

In the system proportional feedback is realized. Sensors, which measure state vector
[X1(s), X1(s)]of OUC, are characterized by transfer functions Wy 1(s) = Wp,2(s) = 1.
Inputs Fi(s) and Fy(s) are Laplace transform of Heaviside functions L™'[F(s)] =
1-m(t), L~ [F2(s)] = 0.5-1(¢). Values of Heaviside functions are established differently
to divide plots on ordinate axis. Transition processes are shown on the Fig. 4. Plots on
all charts, shown on the Fig. 4 have the same nominations, namely x; (f) = L~x, (]
x2(t) = L™ [X2(s)], when data skew of vector [Fi(s), F»(s)]is absent; x1,(t), x2,-(2)
denote signals x (), x2(¢), when under experimental conditions signal x,(¢) lag behind
signal x(¢) at 0,5 s.

3 f 2
0.8 / a /\ xl(t) /XIjr(t ‘b )
// xl(t) é\\ /‘:\‘\\ I
0.6 J/ | ’ x}jr(t | \t)’f 3 0.8
041 N0 [ 5
0.2 // X0,(1) &/ U xz(()
0 0,4 0,8 1,2 1,6 ¢t O

A xl(t) | C: xlrt(t Xl(l)ﬂ

| [t "
BN AWAYANGONEATE
A &k
/

0.4 f ! V :‘v '/ T \\
\ | \7 b 'J'xz(t)
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i
=
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e
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=
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Fig. 4. Plots of transtion processes

Figure 4 a shows transition processes, when controller in the system is an analogue
one. As one can see at the plots, the system is absolutely stable and have good perfor-
mance, both when a data skew in the signals F(s), F2(s) is absent, and when the skew
take place. Figure 4 b, ¢, d show transition processes, when data lags at interfaces are:

Figure4b-1y,1 =0,02s,ty,2=0,025s,19,1 =0, 015, 79,2=0,015s;
Figure 4 c-ty,1 =0, 025s,1y,2=0,035,10,1 =0, 0155, 19,2 =0, 0255
Figure 4d-ty,1 =0,03s,ty,2 =0, 035s, 19,1 =0,025s, 10,2 =0, 025 s.
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At all named plots processes start with delays, which are defined by output lags
of signals U;(s), Ua(s). Figure 4 b demonstrates in general a stable system, but with
increased overshooting and time of reaching the mode. Figure 4 ¢ demonstrate the
performance of system, close to stability border, and Fig. 4 ¢ shows fully unstable
system.

5 Conclusion

As a result, the mathematical model of physical swarm unit digital control system,
which takes into account real characteristics of Von Neumann type controllers, is worked
out. Method of estimation of time intervals between transactions, generated by digital
controller algorithm of arbitrary complexity, to unit actuators and sensors, is proposed. It
is shown, that time delays between input/output elements of the same vector (data skew),
and between input of data from sensors and output data to actuators (feedback lag) causes
deterioration of swarm unit performance characteristics, such as overshooting and time
of reaching the mode. The results of investigation may be recommended for utilization
in ingineering practice of swam unit soft design.

Further investigations in the domain may be directed to working out methods of
practical swarm control algorithms synthesis, optimal to complexity-quality ratio.

The research was supported by the Foundation for Basic Research under the project
19-47-710004 r_a.
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Abstract. Multi agent strategies in mixed cooperative-competitive
environments can be hard to craft by hand because each agent needs
to coordinate with its teammates while competing with its opponents.
Learning based algorithms are appealing but they require a compet-
itive opponent to train against, which is often not available. Many
scenarios require heterogeneous agent behavior for the team’s success
and this increases the complexity of the learning algorithm. In this
work, we develop a mixed cooperative-competitive multi agent envi-
ronment called FortAttack in which two teams compete against each
other for success. We show that modeling agents with Graph Neu-
ral Networks (GNNs) and training them with Reinforcement Learning
(RL) from scratch, leads to the co-evolution of increasingly complex
strategies for each team. Through competition in Multi-Agent Rein-
forcement Learning (MARL), we observe a natural emergence of hetero-
geneous behavior among homogeneous agents when such behavior can
lead to the team’s success. Such heterogeneous behavior from homo-
geneous agents is appealing because any agent can replace the role
of another agent at test time. Finally, we propose ensemble training,
in which we utilize the evolved opponent strategies to train a single
policy for friendly agents. We were able to train a large number of
agents on a commodity laptop, which shows the scalability and effi-
ciency of our approach. The code and a video presentation are available
online (Code: https://github.com/Ankur-Deka/Emergent-Multiagent-
Strategies, Video: https://youtu.be/ltHgKYcOF-E).

Keywords: Multi-Agent Reinforcement Learning (MARL) + Graph
Neural Networks (GNNs) - Co-evolution

1 Introduction

Multi agent systems can play an important role in scenarios such as disaster
relief, defense against enemies and games. There have been studies on various
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Fort

W,
o9 @@8 Guards

Attackers

Fig. 1. The FortAttack environment in which guards (green) need to protect the fort
(cyan semicircle at the top) from the attackers (red). The attackers win when any one
of them reaches the fort. Each agent can shoot a laser which can kill an opponent.

aspects of it including task assignment [16], resilience to failure [12], scalability [1]
and opponent modeling [23]. Multi agent systems become increasingly complex
in mixed cooperative-competitive scenarios where an agent has to cooperate with
other agents of the same team to jointly compete against the opposing team. It
becomes difficult to model behavior of an agent or a team by hand and learning
based methods are of particular appeal.

Our goal is to develop a learning based algorithm for decentralized control of
multi agent systems in mixed cooperative-competitive scenarios with the abil-
ity to handle a variable number of agents, as some robots may get damaged in
a real world scenario or some agents may get killed in a game. To be able to
handle a variable number of agents and to scale to many agents, we propose to
use a Graph Neural Networks (GNNs) based architecture to model inter-agent
interactions, similar to [1] and [3]. This approach relies on shared parameters
amongst all agents in a team which renders all of them homogeneous. We aim
to study if heterogeneous behavior can emerge out of such homogeneous agents.

Our contributions in this work are:

— We have developed a mixed cooperative-competitive multi agent environment
called FortAttack with simple rules yet room for complex multi agent behav-
ior.

— We show that using GNNs with a standard off the shelf reinforcement learning
algorithm can effectively model inter agent interactions in a competitive multi
agent setting.

— To train strong agents we need competitive opponents. Using an approach
inspired by self play, we are able to create an auto curriculum that generates
strong agents from scratch without using any expert knowledge. Strategies
naturally evolved as a winning strategy from one team created pressure for the
other team to be more competitive. We were able to achieve this by training
on a commodity laptop.

— We show that highly competitive heterogeneous behavior can naturally
emerge amongst homogeneous agents with symmetric reward structure
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(within the same team) when such behavior can lead to the team’s success.
Such behavior implicitly includes heterogeneous task allocation and complex
coordination within a team, none of which had to be explicitly crafted but
can be extremely beneficial for multi agent systems.

2 Related Work

2.1 Multi-agent Reinforcement Learning

The recent successes of reinforcement learning in games, [11,17] and robotics, [6,
15] have encouraged researchers to extend reinforcement learning to multi agent
settings.

There are three broad categories of approaches used, centralized, decentral-
ized and a mix of the two. Centralized approaches have a single reinforcement
learning agent for the entire team, which has global state information and selects
joint actions for the team. However, the joint state and action spaces grows expo-
nentially with the number of agents rendering centralized approaches difficult to
scale [5].

Independent Q-learning, [19,20] is a decentralized approach where each agent
learns separately with Q-learning, [22] and treats all other agents as parts of the
environment. Inter agent interactions are not explicitly modeled and performance
is generally sub-par.

Centralized learning with decentralized execution has gained attention
because it is reasonable to remove communication restrictions at training time.
Some approaches use a decentralized actor with a centralized critic, which is
accessible only at training time. MADDPG, [10] learns a centralized critic for
each agent and trains policies using DDPG, [9]. QMIX, [13] proposes a mono-
tonic decomposition of action value function. However, the use of centralized
critic requires that the number of agents be fixed in the environment.

GridNet, [7] addresses the issue of multiple and variable number of agents
without exponentially growing the policy representation by representing a pol-
icy with an encoder-decoder architecture with convolution layers. However, the
centralized execution realm renders it infeasible in many scenarios.

Graphs can naturally model multi agent systems with each node representing
an agent. [18] modeled inter agent interactions in multi agent teams using GNNs
which can be learnt through back propagation. [8] proposed to use attention
and [1] proposed to use an entity graph for augmenting environment information.
However, these settings don’t involve two opposing multi agent teams that both
evolve by learning.

[3] explored multi agent reinforcement learning for the game of hide and
seek. They find that increasingly complex behavior emerge out of simple rules of
the game over many episodes of interactions. However, they relied on extremely
heavy computations spanning over many millions of episodes of environment
exploration.

We draw inspiration from [1] and [3]. For each team we propose to have two
components within the graph, one to model the observations of the opponents
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and one to model the interactions with fellow team mates. Our work falls in the
paradigm of centralized training with decentralized execution. We were able to
train our agents in the FortAttack environment using the proposed approach on
a commodity laptop. We believe that the reasonable computational requirement
would encourage further research in the field of mixed cooperative-competitive
MARL.

2.2 Multi-agent Environments

Although there are many existing multi-agent environments, they suffer from
the following deficiencies:

— Multi-Agent Particle Environment (MAPE) [10] doesn’t consider competitive
scenarios (2 competiting teams).

— StarCraft II Learning Environment (SC2LE) [21] assumes a centralized con-
troller for all agents in a team which is impractical for real world scenarios.

— Starcraft Multi-Agent Challenge (SMAC) [14] doesn’t incorporate learning

based opponents.
— RoboSumo [2] Doesn’t scale to many agents (only contains 1 vs 1 scenarios).

Moreoever, SC2LE [21], SMAC [14] and SoboSumo [2] are computationally heavy
environments.

To overcome these deficiencies, we design a new light-weight (can run on
commodity laptop) mixed cooperative-competitive environment called FortAt-
tack (Fig.1) which can handle (1) Large number of agents, (2) Decentralized
controllers, (3) Learning based opponents, (4) Variable number of agents within
a single episode and (5) Complex multi-agent strategies as is evident from our
results (Sect. 5.1).

3 Method

The agents in a multi-agent team can be treated as nodes of a graph to lever-
age the power of Graph Neural Networks (GNNs). GNNs form a deep-learning
architecture where the computations at the nodes and edges of the graph are
performed by neural networks (parameterized non-linear functions), [1]. Due to
the presence of graph structure and multiple neural networks, they are called
GNNGs.

We describe our use of GNNs from the perspective of one team and use X;
to denote the state of i!* friendly agent in the team, which in our case is its
position, orientation and velocity. We use X Opp; to denote the state of the gth
opponent in the opposing team. Let S = {1,2,..., N1} denote the set of friendly
agents and Sopp = {N1 + 1, N1 + 2,..., N7 + N2} denote the set of opponents.
Note that a symmetric view can be presented from the perspective of the other
team.

In the following, we describe how agent 1 processes the observations of its
opponents and how it interacts with its teammates. Figure 2 shows this pictori-
ally for a 3 agents vs 3 agents scenario. All the other agents have a symmetric
representation of interactions.
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Fig. 2. Modeling of inter agent interactions with Graph Neural Networks (GNNs) from
the perspective of agent 1, in a 3 friendly agents vs 3 opponents scenario. Left: agent
1’s embedding, HY is formed by taking into consideration the states of all opponents
through an attention layer. Right: agent 1’s embedding gets updated, (Hf — HFT!)
by taking into consideration its team mates through an attention layer.

3.1 Modeling Observation of Opponents

Friendly agent 1 takes its state, X; and passes it through a non-linear function,
fo, to generate an embedding, h;. Similarly, it forms an embedding, hOpp; from
each of its opponents with the function fy,.

hi = fo,(X1) (1)
hOpp; = fo,(XOpp;) Vj € Sopp (2)

Note that the opponents don’t share their information with the friendly agent
1. Friendly agent 1 merely makes its own observation of the opponents. It then
computes a dot product attention, 1;; which describes how much attention it
pays to each of its opponents. The dimension of h; and hOpp; are d; each. This
attention allows agent 1 to compute a joint embedding, e; of all of its opponents.

. 1 .
Y1 = o < h1,hOpp; > Vj € Sopp (3)
ex by
s = p(¥1j) (4)
ZmES()pp exp(¢1m)
er=Y_ 41;h0pp; )
J€Sopp

In Eq. 3, <, > denotes vector dot product. Note that Zjesopp 11 = 1 which
ensures that the net attention paid by agent 1 to its opponents is fixed. Finally,
e1 is concatenated with h; to form an agent embedding, HY:

H?Y = concatenate(hy, e;) (6)
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3.2 Modeling Interactions with Teammates

Agent 1 forms an embedding for each of its team mates with the non-linear
function, fy,.

HY = fo,(Xi) VieSi#l (7)

Dimension of HF Vi € S is da. Agent 1 computes a dot product attention, ¢
with all of its team mates and updates it’s embedding with a non-linear function,

fo..

A 1
¢>h—:d—<Hf7H{“> VieS,i#1 (8)
2
ex 5 i
bri = p(¢11) _ 9)
EmES,m#l eXp(¢IM)
Hi = " ouHf (10)
i€S,i#l
H{ ™ = fo (HT) (11)
Equations, 8 to 11 can be run over multiple iterations for & = {0,1,..., K} to

allow information propagation to other agents if agents can perceive only its
local neighborhood similar to [1].

3.3 Policy

The final embedding of friendly agent 1, H{ is passed through a policy head. In
our experiments, we use a stochastic policy in discrete action space and hence
the policy head has a sigmoid activation which outputs a categorical distribution
specifying the probability of each action, ay,.

(m|01) = 7' (i | H{') = sigmoid(fo, (H{)) (12)
where, O; = {X; :i€ S} U{XOpp; : j € Sopp}

Here, O; is the observation of agent 1, which consists of its own state and the
states of all other agents that it observes. This corresponds to a fully connected
graph. We do this for simplicity. In practice, we could limit the observation space
of an agent within a fixed neighborhood around the agent similar to [1] and [3].

3.4 Scalability and Real World Applicability

Due to the use of GNNs, the learn-able parameters for a team are the shared
parameters, 0,,0p, 0. and 0,4 of the functions, fy,, fo,, fo. and fy,, respectively
which we model with fully connected neural networks. Note that the number
of learn-able parameters is independent of the number of agents and hence can
scale to a large number of agents. This also allows us to handle a varying number
of agents as agents might get killed during an episode and makes our approach
applicable to real world scenarios where a robot may get damaged during a
mission.
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Table 1. Reward structure

Sl. No. | Event Reward
1 Guard i leaves the fort Guard ¢ gets -1 reward.
2 Guard ¢ returns to the fort Guard i gets +1 reward.
3 Attacker 7 moves closer to the | Attacker j gets small +ve
fort reward = 2[D;(t — 1) — D;(t)].

Where, D;(t) = distance
between attacker and fort at

time t.

4 Attacker 7 moves away from the | Attacker j gets small -ve reward
fort = —=2[D;(t — 1) — D;(t)].

5 Guard ¢ shoots attacker j with | Guard 7 gets 43 reward and
laser attacker j gets -3 reward.

6 Attacker j shoots guard ¢ with | Guard 4 gets -3 reward and
laser attacker j gets 4+3 reward.

7 Agent i shoots laser but doesn’t | Agent ¢ gets low -ve reward
hit any opponent (-0.1 if guard, -1 if attacker).

8 All attackers are killed All alive guards get high +ve

reward (410). Attacker(s) that
just got killed gets high -ve
(-10) reward.

9 Attacker j reaches the fort All alive guards high -ve reward.
Attacker j gets high +ve reward

3.5 Training

Our approach follows the paradigm of centralized training with decentralized
execution. During training, a single set of parameters are shared amongst team-
mates. We train our multi agent teams with Proximal Policy Optimization
(PPO), [15]. At every training step, a fixed number of interactions are collected
from the environment using the current policy for each agent and then each team
is trained separately using PPO.

The shared parameters naturally share experiences amongst teammates and
allow for training with fewer number of episodes. At test time, each agent main-
tains a copy of the parameters and can operate in decentralized fashion. We
trained our agents on a commodity laptop with i7 processor and GTX 1060
graphics card. Training took about 1-2 days without parallelizing the environ-
ment.

4 Environment

We design a mixed cooperative-competitive environment called Fortattack with
OpenAl Gym, [4] like interface. Figure 1 shows a rendering of our environment.
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(a) Random behavior (c) Sneak (e) Deceive

(b) Flash laser (d) Spread and flash (f) Spread smartly

Fig. 3. Average reward per agent per episode for the teams of attackers and guards as
training progresses. The reward plots have distinct extrema and corresponding snap-
shots of the environment are shown. The x-axis shows the number of steps of environ-
ment interaction. The reward is plotted after Gaussian smoothing.

The environment consists of a team of guards, shown in green and a team of
attackers, shown in red, that compete against each other. The attackers need to
reach the fort which is shown as a cyan semi-circle at the top. Each agent can
shoot a laser beam which can kill an opponent if it is within the beam window.

At the beginning of an episode, the guards are located randomly near the
fort and the attackers are spawned at random locations near the bottom of the
environment. The guards win if they manage to kill all attackers or manage to
keep them away for a fixed time interval which is the episode length. The guards
lose if even one attacker manages to reach the fort. The environment is built off
of Multi-Agent Particle Environment [10].

4.1 Observation Space

Each agent can observe all the other agents in the environment. Hence, the
observation space consists of states (positions, orientations and velocities) of
team mates and opponents. We assume full observability as the environment
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(f) Smartly spreading strategy of guards

Fig. 4. Sample sequences for different strategies that evolved during training. Each
row represents one sequence and time moves from left to right.



22 A. Deka and K. Sycara

10

o 1 2 a H

3
Frvironment steps 1e6

Fig.5. Average reward per agent per episode for guards as ensemble training pro-
gresses. The reward is shown after Gaussian smoothing.

is small in size. This can possibly be extended to observability in the local
neighborhood such as in [1] and [3].

4.2 Action Space

At each time step, an agent can choose one of 7 actions, accelerate in +x direc-
tion, accelerate in £y direction, rotate clockwise/anti-clockwise by a fixed angle
or do nothing.

4.3 Reward Structure

Each agent gets a reward which has components of its individual and the team’s
performance as described in Table 1. The last two rows show the major reward
signals corresponding to winning and losing. The negative reward for wasting a
laser shot is higher in magnitude for attackers than for guards. Otherwise, we
observed that the attackers always managed to win. This reward structure can
also be attributed to the fact that attackers in a real world scenario would like
to sneak in and wouldn’t want to shoot too often and reveal themselves to the
guards.

5 Results

We show the results for the 5 guards vs 5 attackers scenario in the FortAttack
environment.

5.1 Evolution of Strategies

Figure 3 shows the reward plot for attackers and guards and snapshots of specific
checkpoints as training progresses. The reward for guards is roughly a mirror
image of the reward for attackers as victory for one team means defeat for the
other. The rewards oscillate with multiple local extrema, i.e. maxima for one
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team and a corresponding minima for the other. These extrema correspond to
increasingly complex strategies that evolve naturally - as one team gets better
at its task, it creates pressure for the other team, which in turn comes up with
a stronger and more complex strategic behavior.

1. Random behavior: At the beginning of training, agents randomly move around
and shoot in the wild. They explore trying to make sense of the FortAttack
environment and their goals in this world.

2. Flash laser: Attackers eventually learn to approach the fort and the guards
adopt a simple strategy to win. They all continuously flash their lasers cre-
ating a protection zone in front of the fort which kills any attacker that tries
to enter.

3. Sneak: As guards block entry from the front, attackers play smart. They
approach from all the directions, some of them get killed but one of them
manages to sneak in from the side.

4. Spread and flash: In response to the sneaking behavior, the guards learn to
spread out and kill all attackers before they can sneak in.

5. Deceive: To tackle the strong guards, the attackers come up with the strategy
of deception. Most of them move forward from the right while one holds back
on the left. The guards start shooting at the attackers on the right which
diverts their attention from the single attacker on the left. This attacker qui-
etly waits for the right moment to sneak in, bringing victory for the whole
team. Note that this strategy requires heterogeneous behavior amongst the
homogeneous agents, which naturally evolved without explicitly being encour-
aged to do so.

6. Spread smartly: In response to this, the guards learn to spread smartly, cov-
ering a wider region and killing attackers before they can sneak in.

5.2 Being Attentive

In each of the environment snapshots in Fig. 3 and Fig. 4, we visualize the atten-
tion paid by one alive guard to all the other agents. This guard has a dark green
dot at it’s center. All the other agents have yellow rings around them, with the
sizes of the rings being proportional to the attention values. Eg. in Fig.4(e),
agent 1 initially paid roughly uniform and low attention to all attackers when
they were far away. Then, it started paying more attention to agent 8, which
was attacking aggressively from the right. Little did it know that it was being
deceived by the clever attackers. When agent 9 reached near the fort, agent 1
finally started paying more attention to the sneaky agent 9 but it was too late
and the attackers had successfully deceived it.

5.3 Ensemble Strategies

To train and generate strong agents, we first need strong opponents to train
against. The learnt strategies in Sect.5.1 give us a natural way to generate
strategies from simple rules of the game. If we wish to get strong guards, we can
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train a single guard policy against all of the attacker strategies, by randomly
sampling one attacker strategy for each environment episode. Figure5 shows
the reward for guards as training progresses. This time, the reward for guards
continually increases and doesn’t show an oscillating behavior.

6 Conclusions

In this work we were able to scale to multiple agents by modeling inter agent
interactions with a graph containing two attention layers. We studied the evo-
lution of complex multi agent strategies in a mixed cooperative-competitive
environment. In particular, we saw the natural emergence of deception strategy
which required heterogeneous behavior amongst homogeneous agents. If instead
we wanted to explicitly encode heterogeneous strategies, a simple extension of
our work would be to have different sets of policy parameters (fp,) within the
same team, e.g. one set for aggressive guards and one set of defensive guards.
We believe that our study would inspire further work towards scaling multi
agent reinforcement learning to large number of agents in more complex mixed
cooperative-competitive scenarios.
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Abstract. Today, the creation of intelligent sensors became possible due to the
development of the hardware base, the use of small boards, where the processor,
memory, and network interfaces can be placed. Examples of such cards can be
Raspberry Pi, Arduino, and others. These devices can be used to connect various
sensors to them depending on the tasks. Today, there are many protocols for the
exchange of messages between such sender devices, which ultimately leads to the
creation of distributed networks with distributed functionality. Such systems can
be decision-making and are like swarm intelligence, where each device performs
its functions, but together they are a single system. This study will examine the
information security issues of such systems. An analysis of threats and vulnera-
bilities for intelligent sensor systems was carried out. Demonstrated an attack on
the secure ZigBee protocol, which is often used to create a network between smart
sensors. The use of lightweight cryptography to minimize risks is proposed.

Keywords: Internet of Things (IoT) - Cipher - Cryptography - LWC - SPECK -
Tiny encryption algorithm

1 Introduction

Today, the range of devices and technologies that can be attributed to the systems of
the “Internet of Things” is actively expanding, first, these are systems such as: “Smart
Home”, “Smart City”, “Smart Greenhouses”, “Smart Farm”, “Smart Plant” Etc., that
is, such systems that can consist of sensors, cameras, actuators, in combination with
information and telecommunication technologies and control systems. The use of such
systems in various spheres of human life gives a positive economic effect and allows you
to receive additional benefits from various points of view. Such devices usually work in
a group and can use swarm intelligence to solve various problems. To solve problems
with the Internet of things devices, it is necessary to exchange information. The IoT is a
network of connected objects, each of which has a unique identity that can collect and
exchange data via the Internet with or without human participation [1]. The market now
includes many IoT devices and this means that there is a huge exchange of data between
them.
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Experts predicted that by 2020 about 28 billion devices will be connected to the
Internet, with only a third of them being computers, smartphones and tables [1, 2].

The expansion of the Internet of Things is facilitated by the proliferation of wire-
less networks, the active transition to IPv6, the growing popularity of clouds and the
emergence of a group of technologies of machine-to-machine interaction (Machine to
Machine, M2M) [3]. The NIC (National Intelligence Council) report lists IoT as one
of six disruptive technologies. It is also noted that the ubiquitous and imperceptible
transformation of such common things as commercial furniture and paper documents
into Internet nodes for consumers, can significantly increase the risks in the field of
national information security [4]. The vision of the IoT is to build a smart environment
with interconnected elements that provide an autonomous service to users [5—7]. In other
words, the IoT is valuable for providing intelligent environments with a distinct power of
ambient intelligence and pervasive communication (this can also be called the pervasive
power of omnipresent computing) [8].

Confidentiality, integrity, and availability are three important concepts for securing
applications and services in intelligent [oT environments; thus, to solve these problems,
information security in the systems of the Internet of Things requires closer attention of
researchers [9]. For example, IoT smart homes face security and privacy issues that span
all levels of the IoT architecture [10] especially from an industrial point of view [11].
IoT devices are easily accessible and susceptible to many security attacks directly [12]
because they use sensitive data or manipulate variables in the physical environment,
making them a desirable target for attackers [13]. Based on this, it can be concluded
that Cybersecurity is a significant problem for IoT devices with requirements for con-
fidentiality, data integrity, authentication and authorization, availability, confidentiality,
and regulatory standards, as well as regular system updates. As with all areas of net-
work computing, security and privacy are fundamental requirements for a reliable IoT
system. Many of the principles that apply to critical enterprise security and safety sys-
tems are equally applicable to the security of the Internet of Things [14]. IoT security
encompasses many areas, such as creating access control policies, protecting keys using
hardware and software security mechanisms, installing key material during device pro-
duction, and preparing a new addition at a later stage [15]. In this scheme, it is possible
that cryptography will become one of the effective measures to ensure confidentiality,
integrity and authentication and authorization of data transmission through IoT devices
[16]. Cryptography can also be a solution to protect data stored or transmitted over a
network. However, established cryptographic solutions based on a typical information
system are not suitable for various IoT devices due to limited resources. A lighter ver-
sion of these solutions might solve this problem. Lightweight versions of computational
cryptography are known as lightweight cryptography (LWC).

2 Analysis of Information Security Problems of the Internet
of Things as a Group with Swarm Intelligence

The first problem can be formulated as follows. Due to the growing popularity of infor-
mation systems of the “Internet of Things” and the simultaneous increase in the number
of threats, vulnerabilities and security requirements, as well as the constantly increasing
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level of knowledge about such systems, it becomes necessary to create natural language
processing tools to create a knowledge base about threats and requirements for security
for the “Internet of Things”, as well as the use of intelligent technologies, expert systems
to improve the accuracy and speed of identification and minimize information security
risks of the “Internet of Things”.

The second problem is formulated as follows. Due to the wide variety of software
and hardware platforms, telecommunication equipment and communication standards
for creating the information system of the “Internet of Things”, and at the same time,
significant computing and power resources spent on scanning the information system
using standard tools, there is a problem of obtaining timely and reliable information
about the structural and functional characteristics of the “Internet of Things”.

Finally, the third problem that this project is aimed at is related to the need to improve
the reliability of wireless communication networks of the Internet of Things by ensuring
an adequate level of security by developing effective recommendations and information
security requirements for the current information system.

Many researchers in this area, argue that the implementation of the Internet of Things
without ensuring information security is unacceptable and will lead to significant neg-
ative consequences, as well as reduce the reliability and resiliency of the information
system. For the information system of the “Internet of Things” to function stably and
reliably, the user or the owner of the system must not only assess the possible damage
and information security risks, but also take actions to minimize the risks. At the same
time, users or owners usually want to avoid the additional costs and economic costs of
purchasing equipment and paying for the work of an information security expert and
often neglect the security system. It is important to note that in addition to the existing
problem of the growing popularity of the “Internet of Things” and the increase in the
number of threats to information security, there is another problem. The information
system of the “Internet of Things” has a fundamental difference from a typical infor-
mation system. This is expressed, first, in the fact that only information that is stored,
processed, etc. is considered as objects of protection of a typical information system.
in the information system, and a software and hardware complex, including technical
means (including workstations, industrial servers, telecommunications equipment, com-
munication channels, etc.). In the case of the “Internet of Things” information system, it
is also necessary to consider the entity controlled by the information system as an object
of protection. At the same time, violation of one of the properties of information security
in relation to the object (entity) controlled by the information system can lead to signif-
icant negative consequences (economic). The point is that if an attacker, for example,
attacks an intelligent sensor that regulates the pressure when the gas is supplied, then
this can lead to an explosion and human casualties, that is, the impact will be exerted on
the object and related entities (objects).

In addition, the information system of the “Internet of Things” is heterogeneous,
consists of many sensors that perform different functions. Sensors can be stationary and
mobile, and can be intelligent, some “Internet of Things” can have direct access to the
Internet thanks to mobile communication modules, “Internet of Things” can include
several different segments or be included in a segment of a typical information system.
All this imposes certain conditions on the protection system and on a set of measures
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to assess and minimize risks. This is also due to the presence of significant differences
between the structural and functional characteristics of a typical information system and
the information system “Internet of Things”.

The authors of the article [17] try to identify most of the known threats at different
levels of the Internet of Things (IoT) architecture with an emphasis on the possibil-
ity of carrying out attacks using malicious programs. The authors present a detailed
methodology for implementing attacks on the IoT, as well as a detailed scenario of a
distributed denial-of-service attack through an IoT botnet, followed by the necessary
measures to improve information security. The authors provide guidance on developing
an IoT security methodology based on best foreign industry practices. The methodology
includes a risk assessment, security measures that increase the confidentiality, integrity
and availability of information, and a method for calculating the impact of identified
risks. The authors also write that risk assessment and threat modeling is the first step
in developing a security policy for any organization. It is also important to assess the
risks for all processes, equipment - both hardware and software - at every level of the
IoT, from the stage of production, transportation, installation and commissioning to the
operation and management of the IoT system. The main purpose of this assessment is to
identify all security incidents that can occur in the organization and subsequently initiate
a risk treatment process to minimize the damage from such events. In addition, the risk
assessment does not consider the risks associated with an object that is “managed” by
the Internet of Things.

The authors of the article [18] offer a test bench that simulates the operation of the
“Internet of Things” system for conducting security analysis. The authors analyzed the
principles, basic architectures and material and technical base for building IoT systems
and developed a universal stand that simulates various technologies, presented a method
of security testing. At the same time, as part of the security analysis, the authors use
standard port scanning and vulnerability scan tools and offer scenarios for implementing
attacks. The authors argue that IoT devices can pose serious security and privacy risks
due to their range of functionality and the variety of processes involved in their operation,
including collecting, processing, storing, and transmitting data. In addition, these smart
devices are integrated into corporate networks, deployed in public places, located in
public, and can work continuously to collect information from the environment. The
authors of [19] propose a threat model obtained by analyzing IoT use cases from a
security point of view. This article recommends measures to help you keep your IoT
secure. The authors propose a method that enables case-based security analysis and
formulation of security and privacy properties for multi-user IoT systems. The threat
model presented by the authors is described in general terms and does not consider
the peculiarities of such systems. The authors provide attack analysis and security and
privacy issues for each device with case studies. However, the range of attacks that are
applicable to various components of the IoT architecture is not widely represented; there
is no methodology for conducting attacks or a description of the toolkit.

The Industrial Internet Consortium, currently implementing the OpenFog program
of the Object Management Group, Inc. (“OMG”) have developed a document describ-
ing a security model for the Internet of Things [20]. In April 2018, the Industry Internet
Consortium (IIC) published the first of two papers dealing with the IoT security maturity
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model. The first document, The IoT Security Maturity Model, contains the description
and intended use of the IoT, intended for stakeholders to understand the need and pur-
pose of the model. The second document, the practitioner’s guide, provides details of the
model and describes how it should be used. The IoT Security Maturity Model (SMM)
enables Internet of Things (IoT) providers to set security goals and invest in security
mechanisms that meet their requirements, without over-investing in unnecessary secu-
rity mechanisms. Security maturity is a measure of understanding the current level of
security, its need, benefits, and cost of support. SMM provides a conceptual frame-
work to help organizations select and implement appropriate security controls from a
variety of options. This helps an organization determine what their target security matu-
rity state should be and assess their current state. The National Institute of Standards
and Technology (NIST) presented the “Framework for Improving Critical Infrastructure
Cybersecurity” standard - a standard for improving the Cybersecurity of critical infor-
mation systems [21]. The document is divided into three parts: the core of the standard,
the implementation levels and the profiles of the standard. The underlying core of the
platform is a collection of Cybersecurity activities, outcomes and information guides
that are shared across sectors and critical infrastructure. Thus, cryptographic protection
methods can be applied to ensure security and minimize risks. In this case, the choice
of an acceptable algorithm becomes a separate problem. In this work, the analysis of
existing algorithms and their application to the Internet of Things will be carried out.

3 Exploitation Vulnerabilities

One of the popular solutions for creating a fully connected topology of the Internet of
Things, mobile roots or UAVs is the ZigBee network. ZigBee networks, unlike other
wireless data transmission networks, fully meet the following requirements:

1. Thanks to the mesh (mesh) network topology and the use of special routing algo-
rithms, the ZigBee network provides self-healing and guaranteed packet delivery in
cases of disconnection between individual nodes (obstacles), overload or failure of
an element;

2. The ZigBee specification provides cryptographic protection for transmitted data over
wireless channels and a flexible security policy;

3. ZigBee devices are characterized by low power consumption, especially end devices
for which a “sleep” mode is provided, which allows these devices to work for up to
three years on a single AA or even AAA battery;

4. ZigBee network is self-organizing, its structure is set by the parameters of the con-

figurator stack profile and is formed automatically by attaching (re-attaching) to the

network of its constituent devices, which ensures ease of deployment and ease of
scaling by simply attaching additional devices;

ZigBee devices are low power consumption.

6. Communication in the ZigBee network is carried out by sequential packet retrans-
mission from the source node to the destination node. The ZigBee network provides
several alternative routing algorithms, which are automatically selected.

e
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In order to monitor the ZigBee network, we applied the Wi-Fi network analysis
method. To do this, you need to use a network card that switches to the ‘“Monitor”
mode and receives all traffic that passes through this network. For ZigBee, a CC2531
“stick” can be used as a network card, which is stitched to intercept protocols. Thus,
the equipment required for sniffing and traffic analysis is presented in the following
list: “sticks” ZigBee cc2531; CC-Debugger for firmware; firmware “stick” as a packet
interceptor; Wireshark packet analyzer; Utility for working with ZigBee interceptor and
packet translation in Wireshark “TiWsPc”; Encrypted data decoder built in Wireshark.

Therefore, the enemy intercepted the radio message and proceeded to analyze it, he
can assume that known types of communication with their protocols, for example, Wi-Fi,
MAVLink or ZigBee, were used to simplify control. Then, for each protocol, he uses a
typical traffic analyzer and sees the next packet dump. Thus, the adversary realized that
ZigBee communication was being used, but the intercepted information did not make
any sense for him, since he needed two network encryption keys and an optional one.
Accordingly, the adversary can find the network key by brute-force, knowing about the
structure of the ZigBee protocol and its vulnerabilities. The vulnerability of the protocol
is that the network key does not encrypt the entire packet, but only some of its bytes,
for example, the name of the transmitted data: telemetry or an optional key (Transport
key). Explanations in Fig. 1.

133 APS: Command

Fig. 1. Example of ZigBee vulnerability in open and closed text

After decryption, the “Command” network key will become “Transport Key”.

In stage 3, we defined the actions and the search for which data will give us complete
information about the network traffic. So, in order to read what kind of data is transmitted
over the network, you need a network key, if the enemy tries to pick it up, then we had
it. Wireshark has a built-in packet decoder, so you only need to specify the algorithm
and encryption keys in the parameters. Now, all that remains for us and the enemy is to
find the value of the optional key. One of the values of the packet fields, which is called
“Command Frame”, contains the key value (Fig. 2).

By adding, it by analogy with the network key in the Wireshark parameters, we and
the adversary will be able to read the decrypted bytes of the payload.
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v ZigBee Security Header
Security Control Field: 0x30, Key Id: Key-Transport Key, Extended Nonce
Frame Counter: @
Extended Source: Jennic_00:04:4b:b0:04 (00:15:8d:00:04:4b:b0:04)
Message Integrity Code: 5efb56c9
[Key: 5a6967426565416c6c69616e63653039]
[Key Label: Trust]
v Command Frame: Transport Key
Command Identifier: Transport Key (0x@5)
Key Type: Standard Network Key (0x01)
Key: 9cf1029f587d1e@bd4c9fa3710d59623
Sequence Number: 1
Extended Destination: Jennic_00:03:f4:7f:66 (00:15:8d:00:03:f4:71:66)

Fig. 2. Found optional encryption key

4 Internet of Things and Lightweight Cryptography

Thus, the most common vulnerability due to which such systems are hacked is unreliable
keys and passwords. In addition, a common problem is the use of default passwords
and keys. Therefore, it is necessary to apply additional device protection schemes. It
should be borne in mind that encryption can be resource intensive. Therefore, this paper
proposes to evaluate several lightweight encryption algorithms. The main problems of
implementing classical cryptography in groups of intelligent sensors are as follows:
types of memory (registers, RAM, ROM); reduced computing power; small physical
area for implementation; low battery level (or no battery); real-time feedback [22]. Also,
IoT systems deal with a real-time application, where fast and accurate response with
significant security using available resources is a challenge [23]. In an environment where
conventional cryptography standards are applied to IOT devices, their performance may
be unacceptable [24]. Three main characteristics of lightweight cryptographic algorithms
and their proposals are listed in Table 1 [25].

Table 1. Characteristics of lightweight cryptographic algorithms

Characteristics What LWS can offer

Physical (Cost) Physical area Smaller block size
Smaller key size
Simple round logic

Memory

Battery power

Simple key scheduling
Performance Computing power
Security Minimum security Strong structure
strength
Attack model

Side channel attack

The amount of memory is another important characteristic that characterizes the
size of the executable program. Power consumption - characterizes the required energy
required for the device to function.
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5 The Tiny Encryption Algorithm Cipher Description

Further The Tiny Encryption Algorithm (TEA) was presented in 1994 at the Fast Encryp-
tion Algorithms Conference in Leuven, Belgium. The authors of the algorithm are Roger
Needham and David Wheeler [26]. The advantage of the TEA cipher is its excellent
resistance to linear cryptanalysis. In addition, TEA is simple to implement in a forehead
programming language and can be optimized for 32-bit microcontrollers, since it is based
on xor, shift and sum operations modulo 232. Since the algorithm does not use lookup
tables and the round function is quite simple, the algorithm requires at least 16 cycles (32
rounds) to achieve effective diffusion, although complete diffusion is achieved already
in 6 cycles (12 rounds) [26].

First, a key of length 128 is divided into 4 equal parts - K [0], K [1], K [2] and K [3].
Thus, the round keys are generated. In odd rounds the keyss K [1] and K [2] are used,
and in even ones - K [2] and K [3]. The two rounds of the TEA cipher are depicted.
Actions used in the algorithm:

A — addition operation modulo 232,

@ — XOR operation,

>> and << - shifts to the right t and left,
8 — constant derived from the golden ratio:

§ = (JE - 1) 231 — 963779696 = 26544357690,

In each round, a constant is multiplied by the number of cycles i to protect the
algorithm from round symmetry. A distinctive feature of the TEA crypto algorithm is its
size. The disadvantage of the algorithm is some slowness caused by the need to repeat
the Feistel cycle 32 times (this is necessary for careful “mixing of data” due to the lack
of table substitutions).

6 Speck Cipher Description

Speck is a family of simple block ciphers that were published by the US NSA in June
2013 [27]. The Speck cipher is of the ARX (add, rotate, xor) cipher type. This cipher is
optimized for software implementation for low-resource material base, for example, for
microcontrollers. The round function of the Speck cipher is shown in Fig. 3. To obtain
round keys, a similar scheme is used, only the round number is given in it as a key. This
approach allows you to reuse the code of the round function and gives you additional
flexibility—if you need to optimize the execution speed, you can count the round keys
in advance, and if you want to save memory, you can count them on the go.
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Entry point 1 Entry point 0
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Fig. 3. Round Speck cipher function

Table 2 shows a comparison of the TEA and Speck ciphers.

Table 2. Comparison of tea and speck ciphers

Code | Block size | Key size | Number of rounds
TEA | 64 128 64
Speck |2 x 32 4x16 |22
2 x 24 3x24 |22
2 x 24 4x24 |23
2 x 32 3x32 26
2 x 32 4x32 |27
2 x 48 2x48 |28
2 x 48 3x48 |29
2 x 64 2x 64 |32
2 x 64 3x 64 |33
2 x 64 4x64 |34

This table shows that the TEA cipher has a fixed block size, key and number of
blocks, while a Speck is a family of ciphers and can have a different block size, key and
number of blocks.
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7 Experimental Research of Encryption Algorithms

The Arduino Uno controller and the STM32F401CC microcontroller were chosen for
testing. Debugging of software implementations was performed in the AVR Studio 7
program and debugging of the STM32 microcontroller in the KEIL program uVision 5.

Arduino uno is based on the ATmega328P eight-bit controller [29]. STM32A401CC
- This is a 32-bit microcontroller based on the Arm core. The clock frequency of the
Arduino uno is 16 MHz, and that of the STM32 is 84 MHz. The Arduino’s RAM
and Flash memory are 2 and 32 KB, respectively. For STM32, these indicators are
64 and 256 KB, respectively. To test the TEA cipher, an implementation was taken
from an article by David Wheeler and Roger Needham. The encryption time for 64
blocks with a 128-bit key was 9.213 ms. The SRAM was occupied by 70 bytes. On the
STM32F401CC microcontroller, encryption took 6.738 ps. To test the Speck cipher,
a reference implementation was taken [30, 31]. It shows an example of encrypting a
128-bit message with a 128-bit key:

#define ROR(x, r) ((x >> r) | (x << (64 - r)))

#define ROL(x, r) ((x << r) | (x >> (64 - r)))

#define R(x, y, k) (x = ROR(x, 8), x +=y, x *= k, y = ROL(y, 3), y
N= X)

#define ROUNDS 32

void encrypt(uinte4 t pt[],
uinté4_t ct[],
uinte4_t K[1)
{
uinté4_t 'y
uinté4_t b

pt[e], x = pt[1];
K[e], a = K[1];

R(x, y, b);
for (int i = @; i < ROUNDS - 1; i++) {
R(a, b, i);
R(x, ¥, b);
}
ct[o]
ct[1]
}
int setup(void)

{

Y5
X35

uinte4 t pt[2] = { 11,22 };
uint64_t ct[2];
uint64_t K[2] = {33, 44};
encrypt(pt, ct, K);

}

The encryption time for a 128 block with a 128-bit key was 18.447 ms. From SRAM
memory was allocated 98 bytes. On the STM32F401CC microcontroller, encryption
took 12.44 pis.
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8 Conclusion

Research has shown that smart sensor systems are vulnerable to attacks that involve wire-
less networks. One of the considered attacks is related to the interception and analysis of
key information in one of the standards, which is considered the most secure. Securing
swarm intelligence systems should ensure not only confidentiality, integrity, and avail-
ability, but also low resource utilization. The TEA and Speck encryption algorithms were
implemented on the Arduino Uno controller and the STM32F401CC microcontroller.
Their implementation has shown that these ciphers are suitable for their use in differ-
ent smart sensor devices based on the efficiency and performance of these reference
algorithms. Further research may include implementing other ciphers across different
IoT device platforms, test different implementations on messages of different sizes, load
voltage testing for an IoT device.
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Abstract. The purpose of this paper is to synthesize a high-lift mechanism (HLM)
of a transportation aircraft. In the past still lack in studying to synthesize of the
HLM using a very recent technique. The device is an important mechanism to
generate an addition lift to the wing of aircraft in take-off and landing condition.
The crucial designing problem is to minimize the error between actual flap motion
and target points. The optimum target points are positions and angles of flap at
the take-off and landing condition. Designing constraints include the possibility
of four-bar mechanism to work well, limiting position and includes workplace
of mechanism. The optimizers are selected to tackle the problem is in a group
of metaheuristics (MHs). The results show the propose method and MHs can
synthesize the flap mechanism meet with the design targets.

Keywords: High-lift mechanism - Four-bar mechanism - Optimization
technique - Motion generation - Metaheuristics

1 Introduction

The modern transportation aircraft can carry high payload that depends on plane form
area and camber to develop lifting force. The high lift system (HLS) is one key of increas-
ing lift in the modern large transportation aircraft, which is included high lift devices
(HLD), support truss, drive mechanism or high lift mechanism (HLM), control system,
and so on. The HLD can produce the addition lift to the wing, it focuses on increasing
payload and increasing the performance of HLD and HLM. The system is very impor-
tant for aircraft performance in takeoff and landing [1]. In many decades, the researcher
tries to improve the performance of HLS, which expects to increase lift, reduce drag
and noise, and to reduce the error of HLM. The improvements dramatically increase
weight and operating cost [2]. The operating cost depends on complexity of mecha-
nism that effect on manufacturing cost, maintenance cost and reliability of mechanism.
Transportation flap normal can separate into plan flap, split flap, slotted flap, single-slot
and double-slotted Fowler flap [3], while the HLM are separated into dropped-hinge,
four-bar, link-track, and hooked-track [4]. Design the methodology of HLM aims to
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develop the designing process of mechanism synthesis. Traditional design process of
HLM separately aerodynamics shape of flap from the mechanism synthesis by the way
of finding optimum aerodynamic first and fit the mechanism for controlling is in the last
step [4]. The aerodynamic step is based on data collecting from tabular or experimental
and the mechanism synthesis is based on position parameters rather than the dimension
of mechanism. Later this technique has been improved in process of design by combine
both process to couple technique, which is performed the aerodynamic analysis of flap
and mechanism synthesis at the same time by technique of iteration design simulation
[2].The previous study still lacks in mechanism synthesis, which needs to improve HLM
error. In our present study expects to increase the performance of HLM synthesizing and
reducing HLM error.

From previous researches, there are any researches has been studied to synthesize the
four-bar HLM [5], which was studied with the motion generation synthesis of HLM and
penalty techniques. The study will be basic information for future research to study in
designing this kind of mechanism. Due to the robustness, derivative-free and simplicity
of meta-heuristics, this makes them to be more popular selection in the present for solving
four-bar linkage motion generation problem [6, 7]. The work collects the metaheuristics
(MHs) included the most popular and recently algorithm for solving the motion genera-
tion problem [7]. In their work presented the competition of MHs performance in solving
the motion generation problem and also showed the TLBO outperformed the other MHs
[7]. The result can extend to the present work and combine with [5] for solving HLM
problem. The present work is different from previous research that solved the problem
with only the best used MHs. Some of the best algorithms are the differential evolution
(DE) [7], and teaching-learning based optimization (TLBO) [6]. As mention earlier, the
present study expects to synthesize of four-bar HLM in viewing of motion generation
synthesis using a penalty technique and MHs are optimizers.

The remaining of this paper is divided in four sections by starting from Sect. 2, the
details of high lift mechanism, while the high-lift mechanism motion generation problem
is performed in Sect. 3. The design results are detailed in Sect. 4 and the conclusions
and discussion of the study are summarized in Sect. 5, respectively.

2 High-Lift Mechanism

High-lift mechanism attaches at trailing edge normally known as flap mechanism. A flap
is a movable piece, which control a mechanism, that composes of actuator and support
structure to produce addition lift to wing of aircraft. At the present, using mechanism
type for HLM is that the four-bar linkage type, which is designed for Boeing B767, B777,
and C-17. Due to advance of four-bar mechanism synthesis at present [5—7] causes our
study focuses on this kind of mechanism and the model is shown in Fig. 1. Four-bar
HLM is composed of four links, which has one frame, one crank, one rocker motion,
and one is coupler link. The motion of the last link is combined between translation and
rotation, causes this link usually attached with flap. The position of crank is installed at
the rear spar to ensure that it can sustain the addition load lift and it simply supplies the
input. All input motion drive with rotary actuators, and the driving actuator is mounted
to the rear spar of the wing.
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(a) (b)

Fig. 1. Kinematic diagram of four-bar linkage for HLD and global coordinate system [5].

The occurred linkage needs only one input applying at link 1. The trigonometric
is used to analyze the position analysis of four-bar linkage. The relation is in form of
linkage lengths ry, 2, 3, and r4 and other parameters, which is proved in the previous
work [5-7].The coupler point (P) in the global coordinate in Fig. 2 is expressed as

xp = x02 + racos(0r + 61) + Lycos(¢o + 63+ 601) (L.1)

yp = Yo2 + r2sin(62 + 601) + Lisin(¢g + 63+ 61)

where xgo> and yg» are the global coordinate positions of O; [6]. The angle ¢ can
be obtained by considering the couple link BCP using law of cosine, which is expressed

as
L3+ —13
-1 1 3 2
= S S 1.2
%o = cos |: 2L1r3 (1.2

At input crank angle (6>) the values of angles 63, 64, and I" for link lengths 1, 2, 73,
and r4are determined as follows [7]:

2= r% + r% — 2rirycos b, 2= r% + rf — 2r3r4 COS Y

_1 r% + rZ — r% + 2r1ry cos br
y = COoS
2r3ry

2,2 2 22,2

rs+r;—z zo—ri+r

y=cos | 2—4 = | a=cos!|T—32—4 (1.3)
2r3ry 2714
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2 2 2

4|+ ry—=r

B = cos 1|:—1 2:|, Os=m—(a+B+7y)
2zr1

=7 —(a+B)

3 Optimization Problem and Constraint Handling

The conventional motion generation problem is different from the path generation prob-
lem as the desired angles of coupler link included in the objective function. The objective
function has two parts, the first part is the position error between the target points Pq(xq,
ya) and the actual points P(x;, yp) and the second part is the angular error between target
angles (93q4) and actual angles (63p,). The design variables in this problem are included 7,
r2, 13, r4, L1, Ly, the coordinates of O» (x02, yo2), and the angle of link 1(a frame) (61).
The motion generation problem in this research is called motion generation synthesis
without prescribed timing. The input set of 6,/ values also set as the design variables.
A highlight in this study is weighting factor w that is scaled the position and the angle
error in the objective function that is combined as one of design variables, which expects
to improve the previous cumbersome in finding the proper weighting factor by varying
the values [7]. Then, the optimization problem without prescribed timing is written as

Minf (x) = WZ?; [(xd,i *xp,i)z + (va,i *)’p,i)z} +(1-w) Zivzl [(93d,i - 93p,i)2] )

subject to
min(ry, rp, 13, r4) = crank(rp) 3)
2min(ry, rp, 13, ra4) + 2max(ry, ra, 13, ra) < (r1, ra, r3, rq) “4)
01 <03... <6 (5)
X1 <x=<2Xxy (6)

where x = {rl, ry, r3, ra, L1, Lo, 60, X02, Y02, 95, W}T,N is the number of points
on the prescribed or target curve, and x; and x, are lower and upper bounds of design
vector x, respectively. Furthermore, this synthesis problem can represent the behavior of
HLM by applying proper constraints.

The external penalty can handle the design constraints by adding the term of con-
straints to the objective function (2). The difficulty occurs due to the additional two
parts of penalty function value. The first part is assigned to control link lengths to meet
Grashof’s criterion (3—4), while the second part is assigned to ensure that input crank can
rotate with a part or complete revolution in either a clockwise or counterclockwise direc-
tion (5). The working process of penalty function is to add enough high value to modify
the objective function when some of constraints are violated. It promotes that adding
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value to the non-candidate solution and kicks it out of the design space; otherwise, the
constant is zero. The constraints can be induced and approached a feasible solution. The
proper adding value is rather than abstract causes this technique is inefficient for solving
above design problem. The unknowns 65’ in (5) are removed and solved by another
technique that is proved to increase the performance [6, 7].The constraint (4) and (5)
are achieved, when the mechanism is a crank-rocker. The new idea has been tackled
both constraints in new way [6], which instead of the traditional penalty technique. The
process applies for solving a motion generation problem. At the present, the constraints
(5) can write in a common form as gj(x) < goi.Then, a set of N input angle values (67)
is generated that are equally spaced from 0 to m radian. The higher intervals indicate
higher efficiency, however, it needs more time consuming. Then the positions of point
P corresponding to all targets are calculated, the objective function is

N
fo=%" min(wdl-jz- . w)eg) )
i=1

where d; = (xa,i — )CPJ)2 + (va.i —yp,j)2 and 01-]2- = (034 — 03p,i)2 forj=1,...,N.
The details of this technique can be seen in [6, 7].

From the motion generation problem formulation is applied to HLM, when position
and angle of flap are known at each condition. The landing and take-off position of HLM
is shown in Table 1. In design HLM at least two positions should define. In this research,
the desired position and angular of HLM at both conditions are assigned following with
the previous study by Liu [2] as shown in Table 1.

Table 1. Desired position and angular of HLM at take-off and landing conditions.

Case Position (xj, yj)* 1.1173 Angle, Bi(o)
1. Take-off | (0.059, 0.0032), (0.0642, —0.0455) | 0, 24.90
2. Landing | (0.059, 0.0032), (0.0703, —0.0454) | 0, 43.52

From Table 1, the design optimization problems can summarize as follow:
Design variables for x are

x=[r1, ro, 13, r4, L,, Lo, x02, o2, 61]

Target points are showed in Table 1.
Limits of the variables:

001 <r <03
001 <mr, r3, 14 <05

—0.1 <L;, L, <02
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X02 = O

—0.05 < yo2 < 0.05

—60 <6; < —45

In order to solve the design problems, some of MHs are selected due to high per-
formance in solving the motion generation problem [5-7]. The used MHs are the dif-
ferential evolutionary (DE), the teaching-learning based optimization (TLBO) and the
self-adaptive population size teaching-learning based optimization (SAP-TLBO) [8].
All algorithms are coded in MATLAB commercial software. The population size is set
np = 100 and the number of iterations is set at 500. To study statistical performance of
present technique, the number of running times of simulation is set at 30 times.

4 The Design Results

Table 2. The best design results of HLM

Parameter | Case-1 Case-2

DE TLBO SAP-TLBO |DE TLBO SAP-TLBO
r 0.3000 0.3000 0.3000 0.2877 0.3000 0.2998
1Y) 0.0292 0.0100 0.0100 0.0100 0.0100 0.0100
3 0.2634 0.0233 0.0233 0.0196 0.0231 0.0230
r4 0.4055 0.2944 0.2944 0.2856 0.2994 0.2991
L —0.0642 —0.0786 —0.0786 —0.0806 —0.0854 —0.0849
Ly 0.1999 —0.0560 —0.0560 —0.0633 | 0.0636 —0.0627
XQ 0 0 0 0 0 0
y0 —0.0500 —0.0424 —0.0423 —0.0408 —0.0500 | —0.0489
01 —60.0000 | —45.0551 | —45.0053 —45.0000 | —49.3926 | —53.9316
w 0.5000 0.5000 0.5000 0.4999 0.5000 0.5000
Mean 0.023194 |0.023221 | 0.023194 0.138108 | 0.138061 | 0.138115
Min 0.023188 | 0.02297 0.02297 0.137685 | 0.137642 | 0.137643
Max 0.023245 | 0.023425 | 0.023425 0.138634 | 0.138456 |0.138438
Std 1.49E—05 |7.21E—05 |9.3E—05 0.000132 | 0.000243 | 0.00014

The design results of four-bar linkage synthesis for take-off and landing condition
are showed in Fig. 2 and Fig. 3. The optimum path of each case is showed in the same
figures. The descriptive statistics are mean, worst result (max), best result (min), and
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the standard deviation (std) of objective function values from 30 optimization runs that
are in Table 2. In Case-1 (Take-off condition), there are two target points and angles.
The result shows that SAP-TLBO and TLBO give the best min (error = 0.02297) while
the worst in this case is DE (error = 0.023188). The most consistent methods are SAP-
TLBO and DE based on mean and std. The result of Case-2 (Landing condition), there
are two target points, but different position and angle as compare with the Case-1. The
result shows that the recent case promotes SAP-TLBO and TLBO gives the best min
(error = 0.13764), while the worst case is DE. The most consistent method is TLBO
and DE based on mean and std.
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Fig. 3. (a) Optimum HLM for landing condition (b) Optimum path HLM for landing condition.

Moreover, the results show that the propose techniques also promote the moderate
results in all cases due to its error are highly when compare with the previous study
with the traditional testing problems [5—7]. The optimum design variable of weighting
factor in both cases and all algorithms is w = 0.5, which is similar with our previous
work [6, 7] that the designer recommended. Additionally, if another objective is more
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important than other one, the value can recommend by the designer rather than using
the best compromise value from the simulation.

5 Conclusion and Discussion

This paper proposed the motion generation synthesis problems of high-lift mechanism.
It is an extension of the motion generation technique in our previous study to design the
high lift mechanism. The comparative results reveal that the employed meta-heuristics
can be used to design HLM problems successfully. Overall, TLBO and the improvement
of TLBO give the best solutions as well as the search consistency in both design cases.
DE gives moderate efficient for this kind of optimization design. However, it still needs
to improve the result with an efficient technique, which has been proved in performance
for the motion generation problem. Nevertheless, this is a basic study of traditional
technique for solving HLM motion generation problem without prescribed timing. The
future works would use other techniques to increase the performance of design problem.
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Abstract. The application of swarm aesthetic in music composition is not new.
Artistic swarm application has resulted in complex soundscapes and musical com-
positions. However, sound composition using physical swarm agents has not been
extensively studied. Using an experimental approach, we create a series of sound
textures know as Liminal Tones (B/Rain Dream) based on swarming behaviours.
We study the influence of different materials and emergent patterns and evaluate
the acoustic properties of different materials such as wood, ceramic or granite,
and effect of imperfections of the physical agents on the overall aesthetic quality.
Finally, we consider the historical and theoretical foundation of swarm music, the
role of materiality and actions in sound, and challenge the traditional perception
of sound as an immaterial art form.

Keywords: Swarm aesthetic - Swarm intelligence - Sound objects - Random
Walk - Brownian Motion - Emergence - Chaos - Bristlebots

1 Introduction

Swarm systems inspired by swarm intelligence and natural ecosystems (e.g., social
insects) are a unique frontier for art. Many artists utilize swarm principles such as
indirect communication, self-organization and emergent behaviours to create musical
compositions, soundscapes and sonic environments. SWARMUSIC [3] is a system that
uses swarm behaviour to create music. It is an interactive music improvisation tool
with multiple swarms of particles as musical events that move in a virtual 3D space by
utilizing Boids flocking algorithm [24]. Bisig et al. [2] created a series of experimental
projects known as Interactive Swarm Orchestra (ISO) and Interactive Swarm Space
(ISS). The ISO system explores flocking algorithms to control sound synthesis and
sound spatialization. The ISS is a MIDI-based virtual orchestra involving meaningful
interactions between artificial swarms and composers to generate artistic expression.
Bisig et al. also have explored multi-modal feedback and audio-visual spatialization or
creative engagement using swarm techniques.
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Expanding on previous work, Davis and Karamanlis [9] added a controllable leader
to typical Boids simulations for musical swarms. The leader agent lets the user directly
control the behaviour of the other agents and the overall movement of the flock. In a
different approach, Jones [18] introduced AtomSwarm. This is a framework for sound-
based performance that uses swarm dynamics with genetically-encoded behaviours,
artificial pheromones and imitations. The result is a complex sonic ecosystem capable
of sonic spatialization and self-organizing regulation. Flock to Music [6] is a real-time
improvisation tool that simulates the behaviour of the Boids as compositions with musical
parameters.

Despite the broad interest in swarm music, most experiments to date utilize artificial
swarms and software simulations. To our knowledge, there has been little exploration
of physical swarming agents. Blackwell [4] provides a comprehensive review of swarm
music.

Self-organization is a unique and complex collective behaviour common in swarms.
It results from simple and local interactions between agents (members of the group)
and emerges at the colony level. Self-organization of social insects usually happens via
stigmergy, an indirect communication strategy through the environment [16]. Stigmergy
results in a complex emerging intelligence at the colony level without the need for plan-
ning, control or direct communication between agents. However, with no prior knowl-
edge about the sources, systematic searches become less effective and social insects often
use other searching mechanisms known as random walk. There are several random walk
variants, including Stigmergic Random Walk (SRW), Correlated Random Walk (CRW)
and Lévy Walk. Random Walks are commonly used for artistic experiments and in swarm
robotics particularly if the robots have limited individual abilities (e.g., local sensing,
memory or processing power). Considering the limitation of our BBots, we have lever-
aged stigmergic foraging behaviours and variations of random walks to create sound
compositions.

Non-Human Sounds — Sound as Action. Using mechanical devices and computer-
controlled sound objects is not new in sound art. However, there is a new series of
work involving mechanical and glitch sounds. Such works have focused on exploring
repetitive sonic processes and events with mechatronic mediation. Mechanical/rhythmic
actions, sound experiences and the ontological properties of non-human sounds are more
important than traditional interventions. The investigation of space as a compositional
element, modulated by movement, offers new idiosyncrasies and aesthetic potentials for
musical creation [7, 12].

Over the past two decades, robotic and mechatronic interventions have become
prominent aesthetic elements in the work of composers and sound artists. These impli-
cations include electro-acoustic experimentation, sonic environments, sound sculptures
and the use of drumming apparatuses. However, mechatronic systems used for musical
creations can have many different aesthetic roles. Some artists use motion, direction
and distance of sound as compositional means and sound spatialization. Composer and
sound artist Trimpin employs the visual, spatial and kinetic properties of sound in his
works (e.g., Conloninpurple, 1997; Sheng High, 2004). Other artists use them to evoke
memories and imaginary environments and to stimulate different emotions [11].



48 M. Salimi and P. Pasquier

Sound artists Peter Bosch and Simone Simons [5] explore the spatial characteristics
of sound in their kinetic sound project Cantan un Huevo (2000). They use glass bottles,
containers and metal springs as sound objects. The distribution of the sound sources in
the space is an integral part of their work and results in different acoustic experiences in
different parts of the space.

Other artists use similar sound objects distributed evenly across space in their work.
Pe Lang and Zimoun [22, 32] create sound sculptures and installations with rhythms
and flow, using basic mechanical components (as sound objects) in large numbers. In
their practice, together and individually, they create analog rhythms, textures and flow
to study the creation and degeneration of sonic spaces. Inspired by generative systems
and swarm behaviours, their works display simplicity and complexity. The emergent and
intricate behaviours of these sound objects (in sound and motion) appear to be organic
or alive and sound like “the acoustic hum of natural phenomena” [27].

Building on our previous work [25] on swarming techniques and robotic interventions
in sound art, and inspired by Pe Lang and Zimoun’s artworks [22, 32] and Blackwell’s
SWARMUSIC [4], we introduce Liminal Tones (B/Rain Dream) as an experimental
sound art project/tool. Our goal is to demonstrate the importance of actions, materials
and acoustic media in sound texture, using multi-bodies (a swarm of physical agents)
and challenging the traditional perception of music as an immaterial art form.

Previously we used digital mediation and PSO-PID controller to derive the movement
of DC motors and generate sound, but here we use an analogue approach and swarming
BBots to generate sound textures and further investigate the influence of materiality
and robotic intervention to generate novel sound textures (acoustic aesthetics). So, we
present Liminal Tones (B/Rain Dream) and show the results and analyze the influence of
different materials on the aesthetic quality of sound textures in Sect. 2. Then, we follow
up with a discussion of the relationship between order, chaos and emergent behaviours
of Liminal Tones (B/Rain Dream) in Sect. 3. Finally, we explain the underlying concepts
of swarm aesthetics for musical creation and discuss our future plans in Sect. 4.

2 Methods

2.1 Concept

Liminal Tones (B/Rain Dream) is a series of sound textures made by a group (5-10) of
BBots (as sound objects) that move, twist and turn on the ground to generate sounds
(BBotis amodified version of vibration-driven Bristlebot [ 1, 15] with no brush). Inspired
by Pe Lang and Zimoun’s sound sculptures [22, 32], we used DC vibrator motors, wires
and electrical circuits to create the BBots and control their motion and sound. Liminal
Tones (B/Rain Dream) demonstrate collective behaviours while embracing randomness
and imperfections (due to battery degradation and DC perturbation). The resulting sound
textures are both organized and chaotic. Liminal Tones (B/Rain Dream) can be viewed
as an experimental tool for emergent behaviours and materiality in sound art [13] rather
than an artwork. Using different materials (as surface) and tuning the initial conditions
(placement, speed, direction), we were able to create different sound textures despite
the identical shape and properties of BBots. Listening to the textures, one can recognize
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rhythms such as the clicking of a drum or natural sounds (e.g., raindrops on the metal
roof). Audio samples can be found on our website [21].

2.2 Model

BBots (sound objects) exhibit complex movements similar to the stigmergic foraging
behaviour of ants, in two phases. First, sound objects demonstrate Lévy Walk with high
power and speed. Over time, the sound objects cycle to Brownian Motion as the battery
degrades (with lower speed).

Phase 1 — Lévy Walk. At the start each BBot move quickly with large step-size similar
to Lévy Walk motion — a modification of the standard random walk in which the step
size has a heavy-tailed distribution [31]:

P(s) = s, (D

where s is the step size with 1 < u < 3. With increasing values of u the move-
ment becomes less super-diffusive (due to jumps with heavy-tail distribution) and more
Brownian. Individual objects with super-diffusive movement paths will appear to move
faster than those with normally diffusive (Brownian) or sub-diffusive movements [31].
Therefore, Lévy walks represent a spectrum of random walks, with ballistic motion at
one extreme (. > 1) and Brownian Motion (¢ 2~ 1) at the other.

Formal Asymptotics. We used 5 BBots as sound objects with DC perturbation ranging
between 1.5-3V. BBots move with a random heading and a step length selected from a
power-law distribution with parameter w. The periodic vibration of DC motors paired
with a friction mechanism lead to a propulsion interaction between the sound objects
and the environment, alternating between high friction in some parts and low friction
in others. BBots have a body with a rotational spring of stiffness k and are in frictional
contact with the surface without any legs.

The force (fo) resulted from the body mass oscillation and frequency €2 drives the
internal movement of the sound objects. The modulation of friction of BBots results
from the oscillations of the normal forces and leads to a stick-slip motion. DeSimone
and Tatone [10] modelled the tangential frictional force by:

F = —uNx. 2)

where N is the normal reaction force, x is the velocity (denoted with a dot with
respect to time), and w is a constant. For simplicity, we assume that rotations of the
BBots are not allowed and they are always in contact with the ground with two degree of
freedoms: horizontal movement and deviation ¢ from the rest angle « = 0. Therefore,
the motion equation is as follows [8]:

M3 = —pN(b)i. 3)

My =N (1) — Mg + fo(1). 4)
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ky = N(t)Lsin(a + @) — u N (t)x Lcos(a + ¢). %)

where N is the normal reaction force (N = Y ;" | N;), and M, is the body mass. We
consider the following ansatz for the normal force:

N (1) = N* 4 Nsint. (6)
N* = M,. 7
NT/N"s =n <« 1. 8)

where 7 is the ratio between the amplitude of a harmonic (V) and the average normal
force (N*) and usually smaller than 1. To normalize the dynamic variables, we consider
the following constants:

o = sin(a). 9)
X = cos(a). (10)
fa(t) = N*f(Qn). (11)
Q= (k/M)o/Lx. (12)

where f and w are the normalized force and frequency. Applying all the definitions
above we can rewrite Eqs. (3) and (5) as the equivalent system in respect to dynamical
variables (0, w).

PR L Ch R Y L CRull SNy (13)
o
w = —Anr(w + (6' (cos(a + 9))/)()'). (14)

_ _ WN*L2cosaQ _ WN*
where T = Qt,g =% and A = ok
Phase 2 — Brownian Motion. After a few minutes, BBots move slowly with smaller
step sizes as the batteries degrade. In this phase each BBot acts as a particle with a
normalized step-size distribution similar to Brownian motion and constantly moves in
random directions.



Liminal Tones: Swarm Aesthetics and Materiality in Sound Art 51

The Brownian motion is a complex random process with noise. There are different
methods to formulate the Brownian motion in terms of the evolution of a nonstationary
probability and here we use Langevin and Fokker-Plank equation [19, 23] to study
the evolution of the velocity distribution and interactions between the environment and
Brownian agents. The dynamics and speed fluctuation of the Brownian particle are
defined as:

X =v. (15)

v=—yx, v+ F@) +E(@). (16)

where F (¢) represents a random external force, m and v the mass and the velocity of
the particle, £ (¢) is a Gaussian noise, « is the friction constant and y = 7.

For simplicity, we assume there is no external forces, and therefore F () = 0. The
Brownian particle with the state space (x, v) has a distribution probability p(x, v, f) as
follows [23]:

a/dtp(x, v, t) = —V(p(x,v,t)(x',v'). 17

a/ot p(x,v,t) = —0d/0x (px') — 8/8v(pv'). (18)

To simplify the equation, operators A and B are defined as:

A=va/ox—03/dv(y(x,v)v) —y(x,v)vd/ov. (19)
0
B= E(t)a—. (20)
v
Hence:
a/dt p(x,v,t) = —Ap — Bp. (21)
3 Results

In this section we present the initial results of Liminal Tones (B/Rain Dream) and step-
length distributions for each phase of the model scheme. We analyze samples taken
from different intervals and compare the sound quality of different motion (Lévy Walk
or Brownian) and the surface material in Fig. 1 and Fig. 2. First, we show examples
of movement trajectories of BBots of different surfaces (wood, ceramic, granite) and
the dependence of those trajectories on control parameters ¢ — § (x,y) and DC motor
speeds. When > 1 and BBots have high turning angle and speed (interacting with
the environment), the motion is ballistic with long, straight movements and many short
steps as shown in Fig. 1. In contrast, when p =~ 1 the motion is Brownian as shown in
Fig. 2.



52 M. Salimi and P. Pasquier

The movement trajectories (different ;) depends on the distribution of step lengths.
With smaller and fixed ., the step-length distribution is more stable (Cauchy distribu-
tion). With random or higher p values, the step-length distribution becomes Gaussian.
Moreover, the motions result from turning angles A6, over time (¢). When the value of
Ab; is close to zero for a long time, BBots move in a straight line. In contrast, when A6,
fluctuates dynamically, BBots twist and turn many times.

To evaluate the quality of the generated sound textures, we compare them to natural
ambient sounds with similar audio profiles. Usually, BBots generate rhythmic patterns
with high jumps between different frequencies. This would be similar to the rhythmic
pattern of heavy hail and the noisy profile and calming pattern of sleet, as illustrated in
Fig. 3. To qualitatively assess the role of materiality in sound, we compare the spectrum
of acoustic sound objects in relation to different materials, and their pitch and timbral
aesthetic for 12 sound textures [21] as shown in Fig. 4. Here, vertical lines represent
the rhythmic structures and horizontal lines represent the harmonic structures. For some
sound categories, the audio samples are noisy, meaning most frequencies are present.
Other categories have fewer frequencies and show step intervals and rhythmic cycles
which resulted from vibrating patterns, turn and twist of motors, or errors (on-off inter-
ruptions). The speeding patterns can also be identified where the sound amplitudes vary
due to power fluctuations of the batteries. Notably, each material shows different music
signatures. For example, wood resonates at higher frequencies while ceramics absorb
sounds and do not resonate as much (low, mid frequencies).
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Fig. 1. Model scheme and examples of trajectories for 5 BBots and 10,000 steps with fixed step
distribution and high-speed during Phase 1 which follows a ballistic Lévy Walk. Different colours
correspond to each BBot and its initial conditions (placement, speed, direction). When the value of
Ab; is close to zero for a long time, the BBots move in a straight line with short steps in between.
(Color figure online)
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Amplitude

Time

Wood Wood Granite

Fig. 2. Model scheme and examples of trajectories for 5 BBots and 10,000 steps. There is random
step distribution and low-speed movement during Phase 2, similar to Brownian Motion. The
internal dynamics x and y produce agent movements in 2D space. Movement is produced by turning
angles Af; over time (¢). The trajectory of each BBot in a 2D space is represented by different
colours corresponding to each BBot and its initial conditions (placement, speed, direction). (Color
figure online)
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Fig. 3. Comparison of audio samples (left) with natural sounds (hail, rain, sleet). Examples were
selected to be roughly similar in sound textures. The top row shows the waveforms. Note that our
sample is more extremely periodic with high jumps compared to the other three. The bottom row
shows the spectrograms. Here, the vertical lines represent step intervals. Note the constant tones
around mid-levels in rain and the noisy profile of sleet sound.
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Fig. 4. Spectrograms of 12 sound samples (each ranging from 15-30 s). Note the constant noisy
profile of wood and the mid-level frequencies and orders of ceramics, and resonance of granite.
Some samples have different characteristics such as rhythmic patterns and high-low passes. Others
are noisy with a wide range of pitch and timbral qualities, which creates unique sound textures

[21].
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4 Discussion and Future Works

Swarm intelligence is one of the most beautiful and unusual phenomena in nature.
It is the product of the interaction between a group of decentralized agents and their
environment. Widely recognized examples of swarms include but are not limited to
bird flocking, bacterial growth, fish schooling, and the societal superorganisms of ant
colonies (i.e., foraging). Due to their aesthetic qualities, swarm systems inspired by
swarm intelligence and natural ecosystems present unique frontiers for art domains such
as visual art [17, 28] and sound composition [2, 3, 6].

Swarm aesthetics are mostly concerned with form, the collective patterns of artificial
swarm agents, and intuitive visual and sonic representations in digital forms. There is a
gap in the research and practice of using swarm techniques to create sounds mediated
by robotic actions and spatio-temporal processes resulting from: multiple interactions,
amplification of fluctuations, or randomness between physical agents (sound objects).
We propose Liminal Tones (B/Rain Dream) as a tool to create sounds from actions (of
multiple sound objects) and explore swarm aesthetics in sound.

4.1 Order and Chaos — Sound as Emergence

Chaos theory and the study of complex systems (nonlinear dynamics), provide a frame-
work for thinking about constant tensions and emergence from chaos and order. Deter-
ministic and dynamic systems regardless of their subject matter have universal charac-
teristics, including repetition, self-organization, emergence, feedback loop and unpre-
dictability. Chaos theory focuses on simple systems with unpredictable and emergent
behaviours. Complexity theory focuses on complex systems that have numerous inter-
acting parts which are often self-organized and unexpected. In such systems, emergent
patterns arise from simple rules, local interactions between the individual elements (or
agents) and adaptive behaviours.

Not surprisingly, many artists use multi-agent systems and emergence in music
improvisation, compositions and sound art. Despite the emergent behaviours of dynamic
systems, artists can control the musical outputs subject to the complexity of the rule set
and important variables. Manual control of interconnected systems such as music gener-
ative systems is almost impossible because each agents’ every movement is affected by
other agents. For more control, artists use simple computational models such as Cellular
Automaton [5, 14], swarming techniques [3, 17, 18, 28, 30] or abstract constraints [2, 4,
20, 22, 32].

Throughout the past decades of sound art, there have been a few artists who applied
emergence and chaos principles in their work without any digital mediation. Joe Jones,
and more recently Zimoun and Pe Lang [29], use simple elements such as motors, wires
and solenoids to create sound sculptures and installations. The rhythm and flow in these
sonic environments result from repetition, randomness and imperfections or glitches.
Zimoun and Pe Lang, together and individually, study the creation and degeneration
of patterns. Inspired by generative systems and swarm behaviours, their works display
both simplicity and complexity. Here complexity grows from simple rules with some
randomness and emphasizes their oppositional position of order and chaos [26].
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Inspired by current artistic applications and the rich aesthetic qualities of swarms,
we explore robotic interventions and the role of materiality in sound art to create novel
sound textures with different pitch and timbral qualities.

4.2 Future Works

While While experimenting with different setups for Liminal Tones (B/Rain Dream), we
tested the use of physical swarming bodies to create sound. To achieve different aesthetic
qualities, we explored chaotic and random behaviours, and embraced imperfections and
error (due to battery degradation and DC perturbation). Liminal Tones (B/Rain Dream)
that resulted are a critical reflection of a still-emergent field of work.

With respect to our future work, our plan is to investigate multi- swarms (with
different sound qualities) and large numbers of BBots (50 or more) to explore collective
behaviours, and swarm aesthetics with wide timbral and frequency range, and mechanical
tones.
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Abstract. The firefly algorithm (FA) is a swarm intelligence algorithm
that mimics the swarm behaviour of the firefly in nature. The idea is
simple, and FA is easy to realize. To improve its performance, a new
method to control the random factor in FA is proposed in this paper,
based on the design idea and mathematical model of FA and a sim-
ple experiment. Under the new method, the value of the random factor
decreases according to a geometric progression sequence. Twenty com-
mon ratios of geometric progression sequences are used to optimize nine
standard benchmark functions. The experimental results are analysed
by the ANOVA and step-up methods. The analysis shows that the per-
formance of FA improves under the new method to control the random
factor.

Keywords: Firefly algorithm - Random factor + Swarm intelligence

1 Introduction

Swarm intelligence algorithm is an optimization algorithm constructed by sim-
ulating the swarm behavior of animals, which is mainly reflected by the char-
acteristics of individuals in a group learning from each other and competing
to evolve. Typical examples are the ant colony algorithm and particle swarm
optimization (PSO), which have both been extensively researched in terms of
algorithm theory, improvement, and application, and greatly reflect the ability
of swarm intelligence to optimize solutions. Fireflies also have swarm behavior,
mainly to locate, attract, and warn each other, and to feed by fluorescence, and
the intensity of fluorescence and the distance between fireflies have a great influ-
ence on these characteristics. Yang proposed the firefly algorithm (FA) in 2009
after studying the swarm behavior of fireflies, whose luminescence intensity and
distance from each other determine their direction [1,2]. Yang showed through
numerical experiments that FA has better search performance than a genetic
or particle swarm optimization algorithm, and can better solve complex opti-
mization problems [1,3]. FA also has the characteristics of simplicity and ease of
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implementation. Researchers have gradually improved FA and its applications
[4-10,17-31]. This paper points out the role of the random search term of the
algorithm in optimization by analyzing the design of FA and its mathematical
model and verifies the influence of the random factor in the random search term
on the convergence performance of the algorithm through a simple numerical
experiment. We propose a method to control the values of the random factor
based on a geometric sequence in order to improve the algorithm’s performance.
We optimize and solve nine standard benchmark functions for different com-
mon ratios of the geometric sequence, and statistically analyze the optimization
results, which show that the optimization performance of FA is improved with
the new control method for the random factor. A common ratio is derived to
optimize the overall performance of the algorithm. For comparison with the geo-
metric decreasing control method, we investigate methods to control the random
factor of FA by linearly and exponentially decreasing it. We also compare the
performance of the improved FA, PSO, and improved PSO.

2 Review of FA

2.1 Algorithm Idea

There are more than 2000 known species of fireflies, and many reflect swarm
behaviors through their own fluorescence. The two most basic behaviors are
attracting fireflies of the opposite sex in the same species group and attracting
and feeding on food; that is, the most basic swarm behaviors of fireflies are
closely related to their own fluorescence, and this understanding is important to
the construction of FA. The intensity of fluorescence decreases with the distance
between the light source and object. At the same time, when fluorescence is
transmitted in the air, its intensity is attenuated because it is absorbed by the air,
and the degree of attenuation is necessarily related to the absorption coefficient
of the air and the distance of transmission.

To design the group behavior of fireflies as a swarm intelligence algorithm
for the solution of optimization problems, the location of a firefly is considered
a feasible solution to the problem, and the fluorescence intensity of the fireflies
is considered as the value of the objective function. For convenience of the algo-
rithm design, the fireflies are considered homogeneous. Under this assumption,
the attraction relationship between them does not need to consider their gender.
The attraction between two fireflies is considered proportional to their fluores-
cence intensity. A firefly with lower fluorescence intensity will fly toward one with
higher intensity, which means the firefly with higher intensity is more attractive
to the firefly with lower intensity. The attraction behavior among fireflies cor-
responds to the convergence behavior of the algorithm, i.e., fireflies search for a
region with a better value of the objective function.

2.2 Model Analysis of FA

Based on the above analysis, to implement FA | it is first necessary to determine
a mathematical model between fluorescence intensity and distance. In the real
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world, the intensity of light decays with distance, so objects far from a light
source become darker. The intensity of light is inversely proportional to the
square of the distance between the object and the light source, so we can obtain
the following model:

I(r) = I,/r? (1)

where r is the distance from the flashing firefly, I is the fluorescence intensity
of the firefly at the source, and [ is the fluorescence intensity at distance r.
Next, it is necessary to determine the model of fluorescence absorption and
attenuation during transmission in the medium. If the absorption coefficient of
fluorescence by the medium is -, then at distance r, the fluorescence intensity
decays as
I(r) = Is-e7 " (2)

where r, I, and I have the same meaning as in Eq. (1).

Considering the combined effect on fluorescence intensity by distance and
absorption of the transmission medium, Egs. (1) and (2) can be approximated
by combining them as

I(r) = I Lo (3)

Next, the attraction model between fireflies must be determined. According to
the previous assumption, the degree of attraction between two fireflies is pro-
portional to their fluorescence intensity, so the attraction model can be defined
by Eq. (3) as
Br) = fo-e " (4)

where v and r have their meanings in Eq. (3), § is the attraction between two
fireflies, and 3y is the attraction when the distance between two fireflies is zero,
i.e., their maximum attraction.

Based on the above three models, when the fluorescence intensity of firefly
i is lower than that of firefly j, then firefly ¢ will be attracted to firefly j, i.e.,
firefly ¢ will move toward firefly j so as to realize a position update,

bt +1) = aF @) + Bi;(t) - x?(t) —zk(t))

a(t) (randfj(t) —0.5) (5)
Bis(t) = Bo e (6)
o 2
rij(t) = o (0) — @@l = | D @k () —2f(@t) (7)
k=1
where z(t) and z%(t) are the positions of fireflies i and j, respectively, in the

kth dimension of the tth iteration; r;;(¢) is the distance between fireflies ¢ and j
in the tth iteration; D is the maximum dimension of the problem space; rand is
a random number uniformly distributed in [0, 1]; and « is a random factor. The
evolution equation of the firefly position consisting of Egs. (5)—(7) is the FA.
The position update equation of the firefly can be divided into three parts,

where z%(t) is the flight inertia of the firefly itself; 3;;(t) - (xf(t) — k(1)) is the
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motion of firefly ¢ by the attraction of firefly j, which is equivalent to the conver-
gence behavior of the firefly in the evolutionary process; and a(t)- (randfj (t)—0.5)
is a random search term that is completely independent of fireflies 7 and j, by
which a random disturbance can be generated to make a firefly reach a new
search position.

Yang [1,3] proposed that when implementing and applying FA, 5y = 1; the
constant v, where v € [0.01, 100], is generally set to 1; and the constant «, where
a € [0,1], is generally set to 0.5.

If v = 0, i.e., the medium does not absorb the fluorescence intensity, and
the absorption coefficient 3 = [y = 1, then the position update equation of the
firefly is

oht+1) = xf(t) + alt) - (randfj (t) —0.5) (8)

If v — o0, i.e., the medium completely absorbs the fluorescence and the absorp-
tion coefficient § = 0, then the position update equation of the firefly is

Rt +1) = 2F@) +at)- (randf’j (t) — 0.5) (9)

From equations (5), (8), and (9), we can see that the random search term is
an important component of the firefly position update regardless of whether the
fluorescence is absorbed, and the ability of the random search is affected by the
random factor «, so the study of the random factor can be used to improve the
FA’s search ability, which we do below. The algorithm flow of FA is shown in
Fig. 1.

3 Research on the Random Factor Control Method of FA

3.1 Problem Analysis

As discussed in Sect. 2.2, the selection and control method of the random factor
« in FA affects the optimization performance of the algorithm. The FA in the lit-
erature has a fixed value, but it varies. From Egs. (5), (6), and (7), it can be seen
that at the early stage of the operation of the algorithm, the distance between
fireflies is large, and the attraction coefficient is small. At this point, the fireflies
are expected to be highly random, which can make the algorithm optimize in a
large search range; as the swarm evolves, the distance between fireflies gradually
decreases, and the attraction coefficient gradually increases, which enables the
algorithm to gradually converge, and the randomness of fireflies should also be
reduced at this point to speed up convergence and improve the accuracy of the
solution.
A two-dimensional multimodal function, whose mathematical expression is

Y = —(e~E—P=(—0) | ((~(e+1~ (=)

1. T g (et ) (10)
is used to verify the above results. In the domain [—5, 5], it has two positions with
a global minimum of —2, at (0, 0) and (0, —4), and two with a local minimum
of —1, at (—4, 4) and (4, 4).
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We chose four ways to control the random factor « of FA. Two of these are to
fix the value of a at 0.5 and 0.05, which is consistent with most of the literature;
the other two are to set the values of a to 0.5 and 0.05, decreasing linearly with
the number of iterations to zero. The settings of the experiments are shown in

Table 1.

We recorded the positions of each firefly at the initialization, 20 iterations,
40 iterations, and the end of the algorithm, as shown in Figs. 2, 3, 4 and 5,
respectively, from which we can see that the random factor with decreasing
control can better control the convergence behavior of the algorithm.

Table 1. Parameter settings for the experiments on «

Population size 20 Control method 1 |a = 0.5
Maximum iteration 50 Control method 2 | = 0.05
Maximum absorption coefficient | 3o = 1| Control method 3 | a = 0.5 — 0
Absorption coefficient A =1 | Control method 4 |a = 0.05 — 0
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3.2 New Control Method for the Random Factor

The analysis and experimental results in Sect. 3.1 show the effect of the decreas-
ing random factor o with iteration on the convergence process and accuracy of
the solution. Therefore, for the random factor, we propose a control method that
decreases geometrically, i.e.,

alt+1) = k-a(t),a0) = 0.5 (11)

where t is the current number of iterations, and k is the common ratio. It is
found from a previous study that a k value in the interval [0.97, 0.998] can
be optimized for the standard benchmark function to obtain more reasonable
results. In this paper, the 20 sets of common ratios in Table 2 are used to
investigate the optimization performance of FA. The effect of different k values
on the random factor values depends on their rate of decrease. Figure 6 shows
the decreasing curves for four k values, and the rate of decrease of the random
factor decreases as k increases.
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Table 2. Values of k

0.97 0.98 0.99 0.9901 | 0.9902
0.9903 | 0.9904 | 0.9905 | 0.9906 | 0.9907
0.9908 | 0.9909 | 0.991 |0.992 |0.993
0.994 1 0.995 |0.996 |0.997 |0.998
05
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03 \\
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Fig. 5. Values of random factor on different values of k

4 Experimental Results

4.1 Experiment Design

Nine commonly used standard benchmark functions were used to analyze the
effect of the proposed control method on the optimization ability of FA, and
their mathematical expressions, search ranges, and global optimum values are
listed in Table 3. All the standard benchmark functions were tested using FA
and the improved FA with the proposed geometrically decreasing random factor.
Each algorithm was randomly run 100 times for each function. The dimension
of the benchmark function was 30, the population size of the algorithm was 20,
the maximum number of iterations was 3000, the maximum attraction of the
algorithm By = 1, and the absorption coefficient A = 1. The optimal solution
obtained from each run was recorded, and the mean value of the optimal solutions
after 100 runs was obtained, which is presented in Table 4 together with the
standard variance statistics. The data in the first row corresponding to each
algorithm in Table 4 are the mean values of the optimal solutions, and the data
in the second row in parentheses are their standard variances.
k(z; —a)™
Among them, y; = 1++(z;+1), u(z;, a,k,m) = 0
k(—x; —a)™ 2; < —a

i >a
—a<zx;<a
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Table 3. Nine benchmark functions

Functions Search | Global
space optimum
fi(z) = P a? +100 |0
i 2
fa(@) = P2, (2 2y) +£100 |0
=1
fa(@) = 721 [100(ig1 — 2F) + (wi — 1)?] +30 0
fa(z) = P —x;sin(y/[zq]) +500 | —418.98D
fs(x) = Zf): 1 |27 — 10 cos(2mz;) + 10] +5.12 |0
6(x) = —20exp(—0.2 = =, x7) —exp(— ~_.cos2mx;)+ 20+ e 32 0
DI 5 i1 +
fr(x) = 1o P 27 — lecos(%)+1 +600 |0
fs(z) = F{10sin®(wy1) + P21 (i — D?[1 + 10sin® (rysq1)] + (yp — 1)%}
+3P  u(z, 10,100, 4) +50 0
1241 .2 s

fo(z) = 0.1{sin?(37xy) + ZZD:II (@ ) {2+ s (3271'1,4_1)}

" +(xzp — 1)*{1 +sin“(2wzp)}
+>P_ | u(zi,5,100,4) +50 0

4.2 Results Analysis

To determine whether a significant difference exists in the optimization perfor-
mance of the algorithm’s random factors when different common ratios are used,
we first tested for a significant difference between the algorithm’s means for each
benchmark function using analysis of variance (ANOVA) at p < 0.05. The calcu-
lated F-values are given in the last row of Table 4. By querying the F-statistics
table and comparing them, it is clear that the algorithms differ significantly for
each benchmark function, indicating that the random factor of FA had an impact
on the performance of the algorithm after the new control method was adopted.
Therefore, it is necessary to further clarify the advantages and disadvantages of
the algorithms in terms of optimization performance at different common ratios.
The step-up method [11] was used to perform multiple comparisons to obtain the
priority relationship of the algorithm in each benchmark function. Specifically,
the algorithms were ranked in increasing order according to the mean values
in Table 4. The scoring of all the algorithms was set to 1; then the algorithms
were compared pairwise from the smallest two mean values, and if there was
a significant difference, the score of the algorithm with the larger mean value
was increased by 1. Otherwise, there was no change to the score, and the two
algorithms were included in the same group. After several pairwise comparisons,
the scoring results of each algorithm in each test function were obtained, and
the scoring results of each algorithm in each benchmark function were summed
to obtain the total score of each algorithm. The smaller the score the better the
overall optimization performance of the algorithm. The final scores are listed in
Table 5.

From the scores in Table 5, it can be seen that the optimization performance
of FA and improved FA showed significant differences in the optimal solution of
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Table 4. Experimental results for nine benchmark functions (average values and stan-
dard deviations)

i f2 f3 f1 fs fo fr fs fo
FA 3.10E—-04 |2.11E-02 |59.87 —7977.64|64.26 |4.1TE—03 |4.47TE-03 | 1.04E-03 |1.44E-03
(487TE—05) | (7.44E—03) | (78.82) | (728.52) | (19.96) | (2.91E—04) | (6.02E—03) | (1.04E—02) | (3.72E—03)
k = 0.97 2.62E-75 |3896.55 333.07 | —7068.08 | 66.7 4.52E—-02 |1.38E—-03 |8.72E—03 |3.50E—-03
(5.30E—76) | (1255.82) | (606.02) | (749.83) | (21.45) | (1.84E—01) | (3.27E—03) | (3.00E—02)  (5.57E—03)
k =0.98 1.07TE—48 | 1667.73 126.76 | —7425.57 | 74.02 | 1.86E—02 |4.43E—-03 |1.04E-02 | 3.06E—-03
(1.97E—49) | (821.48) | (240.61) | (738.13) | (21.55) | (1.32E—01) | (6.64E—03) | (3.14E—02) | (5.39E—03)
k = 0.99 2.33E—-22 |20.17 129.06 | —7605.18 | 70.64 |3.46E—12 |3.55E-03 |2.07TE-03 | 1.98E—-03
(3.40E—23) | (22.47) (262.39) | (704.26) | (21.99) | (3.62E—13) | (6.04E—03) | (1.4TE—02) | (4.26E—03)
k = 0.9901|4.09E—22 |21.54 140.22 | —7643.76 | 69.89 |4.81E—12 |3.84E—03 |1.46E—24 |2.64E—03
(6.96E—23) | (28.59) (332.64) | (633.46) | (26.11) | (4.53E—13) | (5.81E—03) | (3.65E—25) | (4.7T4E—03)
k = 0.9902| 7.68E—22 |22.47 76.32 —7649.3769.43 |6.53E—12 |2.37TE—03 |2.07TE—-03 |1.52E—-03
(1.42E—22) | (36.26) (108.63) | (727.43) | (23.4) | (4.92E—13) | (4.53E—03) | (1.4TE—02) | (4.36E—03)
k = 0.9903 | 1.44E—21 16.38 137.48 | —7533.51|66.52 |8.77TE—12 |2.42E—-03 |4.80E—24 |2.64E—-03
(2.41E—22) | (26.59) (336.06) | (745.52) | (19.8) | (8.83E—13) | (4.55E—03) | (9.78E—25)  (4.74E—03)
k = 0.9904|2.52E-21 |13.15 90.23 —7631.87|67.54 |1.20E—11 |3.06E-03 |8.34E-24 |1.74E-03
(5.08E—22) | (16.42) (172.94) | (673.97) | (21.56) | (1.17E—12) | (4.99E—03) | (2.07E—24) | (4.55E—03)
k = 0.9905| 4.80E—-21 |13.71 78.83 —7592.86 | 69.29 |1.59E—11 |4.93E-03 |4.15E—-03 |2.64E—-03
(8.16E—22) | (18.54) (101.42) | (721.86) | (21.47) | (1.27E—12) | (5.52E—03) | (2.05E—02) | (4.74E—03)
k = 0.9906  8.38E—21 |8.38 123.36 | —7711.1568.63 |2.16E—11 |4.93E-03 |6.22E—-03 | 2.20E—-03
(1.62E—21) | (14.77) (204.99) | (700.13) | (20.59) | (1.64E—12) | (5.52E—03) | (2.49E—02) | (4.44E—03)
k = 0.9907| 1.51E—-20 |13.04 190.31 | —7817.81|68.59 |2.93E—11 |3.45E—03 |2.07TE—03 |2.84E—-03
(2.16E—21) | (20.29) (295.75) | (826.79) | (21.41) | (2.62E—12) | (5.95E—03) | (1.4TE—02) | (5.28E—03)
k = 0.9908|2.91E—20 |11.17 138.5 —7557.43|67.42 |4.04E—11 |4.04E-03 |9.71E-23 |2.60E—03
(4.19E—21) | (22.65) (281.6) | (702.82) | (21.77) | (2.94E—12) | (5.58E—03) | (2.44E—23) | (5.56E—03)
k = 0.9909 | 5.36E—20 |7.49 164.25 | =7722.41|73.55 |5.33E—11 |2.46E—03 |4.15E—-03 |2.20E-03
(9.68E—21) | (11.88) (347.07) | (828.57) | (26.85) | (4.32E—12) | (4.37E—03) | (2.05E—02) | (4.44E—03)
k = 0.991 |9.55E—20 |7.09 128.84 |-—.12 66.14 |7.29E—-11 |3.74E-03 |2.99E-22 |2.86E—03
(1.56E—20) | (12.71) (281.43) | (773.43) | (17.84) | (5.75B—12) | (6.14E—03) | (5.58E—23) | (4.87E—03)
k =0.992 | 3.95E-17 |1.08 126.75 | —7581.21|65.85 |1.49E-09 |2.86E—03 |2.07E—-03 |2.20E-03
(7.78E—18) | (3.87) (171.99) | (744.42) | (22.37) | (1.21E—10) | (6.27E—03) | (1.47TE—02) | (4.44E—03)
k =0.993 |1.60E—14 |1.88E—02 |108.23 |-7765.53|60.63 |2.92E—08 |4.98E—03 |5.03E—17 |2.64E—03
(2.29E—15) | (133E—01) | (213.89) | (704.13) | (15.74) | (2.87TE—09) | (6.28E—03) | (8.75E—18) | (4.74E—03)
k =0994 |6.25E—12 |1.07TE—10 |108.45 |-7816.91|63.92 |5.80E-07 |3.45E-03 |4.15E-03 |1.98E—-03
(L11E—12) (348E—11) (198.8) |(734.81) | (21.34) | (4.96E—08) | (6.86E—03) | (2.05E—02) | (4.26E—03)
k =0.995 |244E-09 |2.75E-08 |45.33 —7759 65.17 | 1.1TE—-05 |5.32E—03 |2.07TE—03 |1.32E—03
(3.90E—10) | (8.67E—09) | (43.62) | (818.12) | (19.1) | (8.15E—07) | (6.65E—03) | (1.47E—02)| (3.61E—03)
k =0.996 |9.79E-07 |8.35E-06 |66.27 —7917.3 |72.09 |2.31E-04 |3.06E—03 |2.68E—09 |4.40E—04
(1.37E—07) | (2.88E—06) | (84.41) | (704.1) | (20.07) | (1.86E—05) | (5.77E—03) | (5.23E—10) | (2.17E—03)
k = 0.997 |3.77TE—04 |2.52E-03 |42.62 —8257.41 | 63.8 4.58E—-03 |5.92E—03 |1.02E—-06 |1.55E—03
(5.62E—05) | (9.82E—04) | (39.71) | (729.71) | (22.41) | (3.70E—04) | (7.92E—03) | (1.70E—07) | (3.85E—03)
k =0.998 |1.30E—01 |6.73E—01 |58.22 —8159.7366.36 |1.12E-01 |3.51E-01 |3.54E-04 |7.61E-03
(181E—02) | (1.78E—01) | (61.42) | (801.51) | (19.91) | (8.27E—03) | (3.97E—02) | (6.67E—05) | (4.09E—03)
F 102988.23 | 15264.8 124.41 | 219.25 46.25 | 549.74 104578.97 |70.29 176.32

f1, f2, fe, and fg, with the performance of improved FA better than that of FA. In
the optimal solution of other functions, the improved FA showed no improvement
for the solution of f3, and obtained better optimization results than FA for fy, f5,
f7, and fg. The improved FA had better optimization results than FA. Overall,
when the coefficients of the geometric sequence were 0.9902, 0.9903, and 0.9904,
the corresponding improved FA could achieve the best combined optimization
results among all nine functions. Therefore, the optimization performance of
FA with the decreasing geometric sequence was improved by the random factor
control method. The new control method used for the random factor of FA
only performs a simple constant multiplication operation on the random factor;
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Table 5. Ranking of FA and improved FA based on ANOVA

filfe [fs | fa | fs [fe|fr | fs | fo
FA 19| =4| =1 =3 | =1 17| =12| =9 | =2| 68
k=0.97 1 /21 |21 |21 =1 |20 =1 | =9 =2 97
k =0.98 2 120 | =6| =12| =18 19| =12| =9| =2|100
k =0.99 3 |17 | =6| =12|18 1 |=1 =9 =2 69
k=0.9901 (4 |18 | =6|=12| =1 |2 | =12|1 =2| 58
k =0.9902 |5 |19 | =6| =3 | =1 |3 | =1 | =9|=2| 49
k =0.9903/6 (16 =6| =12 =1 |4 | =1 |2 =2| 50
k =0.9904 |7 |14 | =6| =12| =1 |5 1 /3 =2 51
k =0.9905|8 |15 | =6| =12| =1 |6 | =12 =9|=2| 71
k =0.9906 9 |11 |=6|=3 | =1 |7 | =12| =9| =2| 60
k =0.9907 /10|13 |20 | =3 | =1 |8 | =1 | =9|=2| 67
k =0.9908 1112 | =6| =12 119 =124 =2| 69
k =0.9909 12|10 | =6 3 | =18/10| =1 | =9| =2| 71
k =0.991 139 =6|=12| =1 11| =1 |5 =2| 60
k =0.992 |14 |8 =6| =12 =1 |12 1 |=9|=2| 65
k =0.993 154 =6|=3 | =1 13| =12|6 =2| 62
k =0.994 161 =6|=3 | =1 |14| =1 | =9 =2 53
k =0.995 172 =1|=3 | =1 |15| =12 9 2| 62
k =0.996 183 =1|=3 | =18|16| =1 |7 1 68
k =0.997 (20| =4| =1| =1 | =1 |18 1218 =2 67
k =0.998 217 1 1 1 /2121 =921 103

so, this improvement does not increase the computational complexity of the
algorithm.

4.3 Comparison with Other Decreasing Control Methods

We compare the optimization performance using linearly decreasing and expo-
nentially decreasing control methods with the control method using geometric
decreases in the previous section. The mathematical form of these two control
methods is

a(t) = (amax — Qmin) - (T —t)/T 4 Qmin (12)

amax)(l/(lﬂo%))

a(t) = amin - ( (13)

min
where t is the current number of iterations, T is the maximum number of iter-
ations, amax = 0.5, and apmy, = 0. Figure6 depicts the graphs of the three
control methods.

These two control methods were applied to FA, and the same parameters
as in Sect. 4.2 were used to optimally solve the nine benchmark functions. The
mean and standard deviation of the optimal solutions obtained after 100 random
runs are shown in Table 6, from which shows the improved FA with a common
ratio of 0.9902 achieves better optimization results than the other two control
methods for the six benchmark functions, and shows a stronger optimization
capability.
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9902

Fig. 6. Different decreasing control methods of k

Table 6. Experimental results based on three different control methods

N f2 f3 fa Is Jo bid Js Jo
k =0.9902 | 7.68E—22 2247 76.32 —7649.37 | 69.43 | 6.53E—12 2.37TE—03 2.07E—-03 1.52E—-03
(1.42E-22) | (36.26) (108.63) | (727.43) | (23.4) | (4.92E—13)  (4.53E—03) | (1.47E—02) | (4.36E—03)
Eq. (12) 9.20E—-04 2.66E—03 48.39 —7531.65 | 72.17 | 2.56E—02 6.53E—-03 6.22E—-03 1.79E-03
(1.03E—04) | (6.27E—04) (67.12) | (762.15) | (21.87) (1.31E—01) | (7.08E—03) | (249E—02) | (4.07E—03)
Eq. (13) 1.76E-01 1.45E+02 286.1 -7908.6 |75.29 |2.56E—-01 3.77TE-01 2.79E-03 4.19E-02
(5.46E—02) | (4.91E+01) | (551.3) | (821.97) | (22.42) (1.45E—01) | (1.13E—01) | (1.25E—03) | (1.64E—02)

Table 7. Comparison among FA and PSO with variants

fr f2 fa fa fs fo fr fs fo
FA with  |7.68E-22 |2247  |76.32 —7649.37 6943 |6.53E—12 [2.37TE-03 |2.07E—03 |1.52E—03
k= 09902 (142E-22) |(36.26) |(108.63) |(727.43) |(23.4) |(4.92E-13) (4.53E—03)|(1.47E—02) | (4.36E—03)
FIPS 2.81E—46 10.9 39.76 —10445.25 | 54.96 2.27E-01 4.64E—03 3.94E-02 8.19E—-02
(1.30E—45) | (11.56) | (41.32) [ (1038.95) |(14.92) | (4.68E—01) |(1.12E—02) |(7.52E—02) |(5.10E—01)
GBBPSO |2.00E+02  |13809.09 1151532 | —8796.74 |110.83 |T.67E4+00 | 5.06E+00 |643E—02 | 1.10E—01
(LAIE+03) | (8198.37) | (20305.68) | (622.49) |(36.46) | (8.85E+00) |(L.73E+01) | (9.34E-02) | (3.79E-01)
PSO.CO  |351E-38 |0.05 27.78 ~18485.21 |68.57 | 2.78E+00 |9.56E-02 |9.12E-02 | 1.23E-01
(1.07E—37) |(0.13) | (28.35) | (2797.71) |(18.74) | (1.28E+00) |(244E—01) |(1.21E—01) |(5.26E—01)
PSOIN  |1.96E—13  |766.51 |88.42 -33603.31 |45.69 |4.87TE—02 |1.83E—02 |7.94E4+01 |6.15E—03
(347E—13) |(1076) | (92.11) | (4117.75) |(32.28) | (248E—01) |(2.76E—02) |(5.61E+02) |(1.04E—02)
PSOLB [823E-10 |2084.05 |78.01 —31596.47 |49.45 |2.80E-01 |L17E—02 | 1.91E—02 |3.75E—03
(9.40E—10) | (952.14) | (52.5) (3970.77) | (11.49) | (6.16E—01) | (1.59E—02) |(4.56E—02) |(9.32E—03)
SPSO 354E-26  |4151 374 —16766.27 |63.96 | 1.69E-01 |6.60E—03 | 2.90E—02 |7.28E—02
(4.92E-26) |(34.26) | (30.56) | (2386.1) | (14.44) | (445E—01) |(1L.02E—02) |(5.94E—02) | (5.09E—01)

Table 8. Ranking of FA and the other compared algorithms

f2

I3

fa

fs

fo

fr

fs | fo

Total

FA with k =0.9902
FIPS

GBBPSO

PSO_CO
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PSO_LB

SPSO

W O Ut NN

= O O = N W

N Ol O = W

=D = W o Ot 3

IS TN BNSCI

W Ut N O e

W N OO U

26
26
55
32
34
33
29




Study on the Random Factor of Firefly Algorithm 69

4.4 Performance Comparison with Other Swarm Intelligence
Algorithms

We compared FA with other PSO algorithms, including standard PSO (SPSO)
[12], PSO with inertia weight (PSO-In) [13], PSO with constriction factor (PSO-
Co) [14], Gaussian barE—bones PSO (GBBPSO) [15], PSO with lbest (PSO-
Lb) [16], and fully-informed PSO (FIPS) [16], for optimization performance.
These algorithms were also used to optimize the nine benchmark functions in
4.1, with the same experimental parameters as in Sect. 4.1. The experimental
results are given in Table 7. The performance of the seven algorithms was scored
and analyzed using the same statistical method as in Sect. 4.2, and the results
are presented in Table 8. Tables 7 and 8 show that the combined optimization
performance of the improved FA with a common ratio of 0.9902 is close to that of
the FIPS optimization algorithm, and it can achieve better optimization results
than several other algorithms.

5 Conclusion

We first analyzed the design idea and mathematical model of the firefly algo-
rithm. We pointed out that the random search term of the algorithm is an
important factor affecting optimization performance. Through numerical exper-
iments, we analyzed the relationship between the optimization performance of
an algorithm and the way the random factor takes values. Based on those results,
we designed a method to control the values of the random factor by geometri-
cally decreasing them. Using different common ratios for FA, we compared the
optimization performance of nine standard benchmark functions and analyzed
the optimization results by ANOVA and step-up statistical methods. The anal-
ysis results show that the improved FA has better optimization ability. We also
compared linearly and exponentially decreasing controlling values for the ran-
dom factor with geometrically decreasing it. The results of our numerical exper-
iments show that the geometric method achieved better optimization results in
most tested functions. The performance of the improved FA was compared with
that of the PSO and improved PSO algorithms, and the results show that the
improved FA was able to achieve better optimization results. In conclusion, the
proposed geometric decreasing of controlling values for the FA random factor
can improve the optimization effect of FA and is a feasible control method.
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Abstract. Nature-inspired metaheuristic optimization has been widely
used in many problems in industry and scientific investigations, but their
applications in designing selling scheme are rare because the solution
space in this kind of problems is usually high-dimensional, and their
constraints are sometimes cross-dimensional. Recently, the Swarm Intel-
ligence Based (SIB) method is proposed for problems in discrete domains,
and it is widely applied in many mathematical and statistical problems
that common metaheuristic methods seldom approach. In this work, we
introduce an extension of the SIB method that handles solutions with
many dimensions, or tensor solution in mathematics. We further speed
up our method by implementing our algorithm with the use of CPU par-
allelization. We then apply this extended framework to real applications
in designing selling scheme, showing that our proposed method helps to
increase the profit of a selling scheme compared to those suggested by
traditional methods.
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1 Introduction

Inspired by the behavior of biological systems and physical or chemical systems in
nature [1], nature-inspired metaheuristic algorithms have been widely recognized
as a powerful tool for optimization problems that are usually extremely complex
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and challenging in the real world. Swarm intelligence [2], which describes a col-
lective intelligent behavior of self-organized and decentralized systems, is a major
class of metaheuristics. Some well-known algorithms, such as Genetic Algorithms
(GA) [3], Artificial Bee Colony [4], Particle Swarm Optimization (PSO) [5], the
Swarm Intelligence Based (SIB) method [6], and many others, belong to this
algorithm family. Among all, PSO is widely used in engineering problems and
some scientific investigations in the past decades. It has been well-designed for
solving high-dimensional optimization problems in various fields. [7] pointed out
four distinctive features for the popularity of the use of PSO among engineers.
There are many versions and variants of PSO after its first introduction in (8],
we denote PSO as the traditional framework of PSO mentioned in [8] for the
rest of this paper unless specified.

Similar to many metaheuristics, PSO works well in a continuous domain as
its velocity and position are well-defined with physical meanings, but it may not
be the best candidate for problems with solutions in a non-continuous domain,
which is not necessarily a discrete domain but some domains with “holes”.
Such optimization methods are common in mathematics and statistics, espe-
cially when solutions are in the matrix form and full of categorical variables like
choices or symbols. Even though [7] and many others suggest to tackle thiese
discrete scenario via a simple round-off, it is not trivial to verify if the resulting
solution is truely optimal. This leads to an introduction of the Swarm Intelli-
gence Based (SIB) method proposed in [6] that works perfectly in a wide range of
discrete optimization problems, such as the constructions of optimal experimen-
tal designs [9], the uniform distribution of testing points [10], target localization
[11], supercomputing scheduling [12], hot spot determination [13], and many
others. Details will be briefly reviewed in the next section.

Traditionally, a solution can be just a zero-dimensional number, an one-
dimensional vector, or at most a two-dimensional matrix. A solution that has
dimensions more than two is rare because the search becomes difficult in a huge
solution domain, and the higher the dimensions, the larger the solution domain.
As science and technology have advanced, practitioners attempt to perform
complex optimization problems, and the computing power of searching high-
dimensional solutions is available in the era of artificial intelligence. Not only do
high-dimensional solutions test the feasibility of computation in both hardware
and software, but additional cross-dimensional constraints, like some interac-
tive quantities among several dimensions, create additional complexity in the
optimization procedure. If cross-dimensional constraints do not exist, one may
decompose the high-dimensional solution into layers of low-dimensional com-
ponents and optimizes them one-by-one, but the existence of cross-dimensional
quantities, which commonly exist in the real applications, break this layer inde-
pendency assumption.

A real example of complex optimization with high-dimensional solution space
exists in supply chain management, which was first termed in 1982 by Keith
Oliver, a consultant at Booz Allen Hamilton. Supply chain management is the
flow of goods and services management, and it includes all processes that trans-
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form raw materials into final products [14]. It can also be considered as the
connection of a business’s supply-side from suppliers to customers. Good supply
chain management helps a company gain a competitive advantage in the mar-
ketplace. Readers who are interested in the basics of supply chain management
are referred to [15] and [16]. It is of great interest to coordinate all parts of
a supply chain from supplying raw materials to delivering products under the
purpose of minimizing total costs and maximizing net profits in the process.
Surprisingly, many optimization problems in supply chain management employ
traditional methods like linear programming and others [17]. In the era of big
data and artificial intelligence, there are many advanced optimization techniques
that can greatly reduce the computational complexity and include many compli-
cated problem constraints into consideration. This growing gap of optimization
methods becomes an obstacle for researchers in supply chain management to
develop large-scale data analysis techniques for better optimization schemes like
the multi-channel selling scheme where products and services are sold and deliv-
ered to customers via different means.

In this work, we consider the optimization of the multi-channel selling scheme
via a modern optimization technique in swarm intelligence. In Sect. 2, we briefly
review optimization techniques in swarm intelligence. In Sect. 3, we implement
the swarm intelligence based method for the optimization of the multi-channel
selling scheme. Two real-life examples are used to demonstrate the efficiency
of the proposed optimization method in Sect. 4. Some concluding remarks are
stated in the last section.

2 A Brief Review of PSO and SIB

In this section, we review the basics of PSO and SIB, which are the two main
algorithms used in this work. Readers who are interested in the details and
theories of these algorithms are referred to [5] and [6].

Particle Swarm Optimization (PSO) Algorithm. Particle Swarm Opti-
mization (PSO) is one of the most representative swarm intelligence algorithms
in the past decades, and it has been widely applied in many industrial and sci-
entific optimization problems. It is popular because of its easy implementation,
and it is highly efficient in terms of memory and speed. In a PSO algorithm, we
first initialize a swarm or a number of random particles, each of which represents
a possible solution to the objective problem in the search space. The position
of a particle is expressed as a vector consisting of values in every dimension. In
addition to a position, each particle is given a velocity to determine its move-
ment. At the end of every iteration, the position of every particle is updated
based on its own velocity.

To make the swarm results in a good solution, an objective function has to
be defined for evaluating the performance of a solution. With this definition, we
are able to determine the Local Best (LB) particle and the Global Best (GB)
particle. LB is the best solution a particle has encountered so far, and GB is the
best one among all LB or the best solution that the whole swarm has encountered
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so far. In each iteration, each particle’s position is influenced by its LB and GB
position through its velocity, which can be expressed as the following equations:
ot bl — ol + el — )

o =l
where ¢ denotes the number of the iteration, v; is the velocity of the particle,
alpha is the inertia weight, b is the weight given to the cognitive/individual
aspect, c¢ is the weight given to the social aspect, x; is the particle’s position,
x; is the LB position of the particle, and :E;" is the GB position of the swarm.
The determinations of b and ¢ are generally user-defined or based on expert’s
experience.

Swarm Intelligence Based (SIB) Algorithm. Although PSO does not have
any assumptions for the objective function, the search space is assumed to be
continuous in the standard framework. There exist some variants of PSO to
modify non-continuous domains, such as a simple round-off of velocities or using
a probabilistic approach, but they may not be as good as in the Swarm Intelli-
gence Based (SIB) method, which can be viewed as a hybrid method that some
of SIB components can be viewed as a discretized version of PSO.

Similar to PSO, there is a swarm consists of several particles, LB particles,
and a GB particle in the SIB algorithm. The objective function is also defined
for evaluating the performance of particles. The main difference comes in the
velocity update process. Rather than a linear combination formula of inertia and
information from the two best particles in PSO, SIB extracts some important
information from LB and GB particles by “mixing” particle units in the MIX
operation. In addition, instead of only one choice of position updates in PSO,
SIB picks the best of the three candidates to update in the MOVE operation.
Below are the details of the two operations.

In the MIX operation, every particle has to be mixed with their own LB and
GB, respectively, which returns two new positions called mizwLB and mizwGB.
To mix a particle with a best particle, a given proportion, called g, g and gap for
mixing with LB and GB respectively, of entries in the particle is modified based
on the corresponding values in the best particle. For example, we may simply
replace the entry with the value in the best particle, or we may choose a random
number in the range of two values to be the new value from the entry. Although
there are no theoretical derivations to set the optimal values of q;, 5 and ¢gp, our
experience suggests setting g5 > qgp to avoid premature convergence towards
a relative good particle without an adequate exploration of the search space.

The MOVE operation is undertaken after all MIX operations are completed
in an iteration. The performances of mizwLB and mizwGB are compared with
the original position based on the objective function. If the best one among
these three positions is one of the mizwLB and mizwGB, then it will be the new
position of the particle. If none of the modified particles perform better than the
original particle, we randomly alter some units in the original particle to create
a new particle, so the particle can escape from the trap of a local optimum and
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explore unknown search space near original positions. The algorithm is ceased
at some pre-defined stopping criteria, such as reaching the assigned maximum
number of iterations or achieving convergence towards a pre-defined threshold
range of GB.

3 Method and Implementation

Multi-channel selling is a process of selling products on more than one sales chan-
nel. This sale strategy is popular in the E-commerce world nowadays, but the
optimization of such a sale strategy can be very complicated with the existence
of a middleman for product centralization between suppliers and customers. For
example, a selling scheme of farm products may involve products gathering to
a middleman company from multiple suppliers (farmers) and reselling to cus-
tomers from the middleman company. On the other hands, a direct sale skips
the middleman and connects the selling relationship between farmers and cus-
tomers. It is obvious that if a direct sale is considered, the multi-channel selling
scheme may not only increase the revenues of farmers and decrease the prices of
products sold to customers, but also simplifies the complexity of the optimization
and thus shortens the computational time.

Due to its high-dimensional and discrete natures of the selling scheme, we
choose to use the SIB algorithm to tackle this important supply chain man-
agement problem. We consider a scenario that there are M suppliers supplying
K types of products to N customers. The overall selling scheme is a three-
dimensional matrix or a tensor with dimensions N x K x M. Before we propose
the SIB algorithm for this problem, we state several underlying assumptions
behind this scenario. First, we assume that all products are delivered directly
from suppliers to customers, and there are no further complications on resale,
buy-back, or others. Second, we assume that the quantities of supply and demand
are known in prior. This assumption is possibly valid nowadays as the selling
information can be collected online and analyzed via big data analytics. Third,
we assume that every product has a constant price for customers and a constant
cost for buying from suppliers, and the transportation cost per mile for a specific
product is constant. This assumption makes the optimization simpler, and it is
not difficult to implement price and cost variations in the optimization.

Table 1. The SIB algorithm.

Initialize a swarm of particles.
Evaluate the objective function values of each particle.
Determine the Local Best (LB) and the Global Best (GB) for each particles.
while STOPPING CRITERIA NOT FULFILLED
Do MIX operation.
Do MOVE operation.
Update all LB particles and the GB particle.

Check the conditions of convergence.
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To implement the SIB method for the multi-channel selling scheme, we follow
the standard framework in [6] with pseudo-codes stated in Table 1. It consists of
an initialization part and an iteration part. In short, we first randomly generate
a set of different schemes that are feasible to exist under the constraints. By
evaluating the objective function values, we define the LB schemes as the initial
schemes and the GB scheme as the one with maximum profit. Then in the
iteration part, each scheme is mixed with its own LB scheme and the GB scheme
respectively and results in two mixed schemes (MIX operation). Two newly
created schemes are compared wth the original scheme in terms of profits, and
the particle is updated if the mixed scheme creates a higher profit (MOVE
operation), or a perturbed scheme from the original scheme is used for update.
Iteration contines until the pre-defined terminal criteria are fulfilled. The details
about the implementation of the operations and the strategies for preserving the
feasibility are specified as follows.

Initialization. We define a particle in SIB as a three-dimensional tensor X with
dimensions N x K x M for N customers, K product types, and M suppliers.
Each entry z,km, in X stands for the number of the kth product suggested to
be sold to the nth customer from the mth supplier. Each column with K entries
represents a selling scheme between a supplier and a customer, and each slice of
size M x K represents a selling scheme towards a specific customer of interest.
In a supply chain optimization problem, the objective function is generally the
profit that a selling scheme is able to earn. The profit is the difference between
sales and costs. To simplify our problems, we only consider the cost of packaging
from suppliers and the cost of delivery to customers as the only two costs in the
objective function, and the sale is simply product prices and quantities that a
customer purchases. Mathematically speaking, we have

Profit = Sale — Cost, (1)

where Cost = X (Delivery + Package) and Sale = X (Price X Quantity).

There are constraints in supply and demand in this problem, and we imple-
ment these constraints in the particle generation step. In specific, we generate
each column separately and combine these columns into a particle. To make
sure the availability of products in both supply and demand, we record the
remaining supply and demand after generating each slice of the particle. We
randomly choose integers from 0 to the minimum between the remaining supply
and demand to the available entry. In case of no remaining supply or demand,
the entry will set to be zero. Moreover, we shuffle the generating order in both
column level and slice level to increase variations among particles. Once the
particle initialization is done, then their objective function values are evaluated,
and the best particles are defined accordingly.

Iteration and Update. Every particle is mixed with its own LB and GB of the
swarm respectively in an iteration step and results in two outcomes denoted as
mixwLB and mixwGB. The MIX operation is done via mixing two particles in
a column-by-column fashion and shuffling the order of columns in each slice. We
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deal with a pair of columns in each MIX operation, one from the original particle
and another from either the LB or the GB particle. To ensure the availability
of output positions, we calculate the remaining demand and supply and update
them after every MIX operation of a pair of columns is completed. For each
pair of columns, we first identify entry indices that their values are larger in
the best particle, and both demand and supply constraints are still fulfilled. In
other words, we do not do anything if there are no remaining counts in the
demand or supply constraints. Then, we randomly choose a specific proportion
of those selected indices and replace values in the original particle with the values
corresponding best particle, where the proportion is equal to qr.5 or qgp; we set
qrB to be 0.6 and ggp to be 0.4. Since we only select entries with larger values in
the best particle, the objective function values will only increase in this process,
and we determine to add this condition for achieving convergence faster.

After the MIX operation, we have three tensor particles: the original particle,
the mixwLB particle, and the mixwGB particle. The MOVE operation in this
algorithm is the same as the standard SIB algorithm. If either the mixwLB or
the mixwGB particle has a better objective function value, then the original
particle will be updated with a better choice. If the original particle still has
the best objective function value, we first count the number of elements that
corresponds to the non-zero demand in each column, then we randomly choose
half of them and assign new integers that are randomly generated from the range
between 0 and the minimum within the remaining demand and supply. This step
ensures that the particle is out of the local-attractive trap while fulfills demand
and supply constraints.

The procedure continues until the stopping criteria are reached. The criteria
can be the maximum number of iterations, the achievement of a pre-defined profit
value, or a convergence of a large proportion of tensor particles towards GB. Once
the procedure is completed, the GB particle is the outcome, which is the optimal
multi-channel selling scheme suggested by our proposed SIB algorithm.

Acceleration by CPU Parallelization. The computation among tensors is
time-consuming, so we use the CPU parallelization technique to accelerate the
whole process. Using the python package Multiprocessing, the data of the global
best particle is stored in the shared memory while pairs of particles and their
local best particles are stored in different CPUs. The MIX and MOVE operations
for every particle are run in different CPUs, and the new positions are compared
with the GB particle separately. If an output particle performs better than the
GB particle, we modify the GB particle in the shared memory. To keep the
process synchronous, Barriers are used to hold the complete sub-processes until
all particles are completed. Moreover, a Lock is used to protect a shared resource
from being modified by two or more concurrently running processes at the same
time to make sure that the correct information is recorded.

Since our SIB algorithm contains a lot of for-loop and basic numerical func-
tions, it is essential for the success of our program to implement efficiently.
Numba [18], which translates Python functions to optimize machine code at
runtime using the industry-stand LLVM compiler library, is a suitable choice for
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our SIB algorithm. Numba-compiled numerical algorithms in Python is claimed
to approach the speeds of C or FORTRAN. The source code of Numba can be
found in Github at github.com/numba/numba.

Numba translates Python functions to optimize machine code at runtime
using the industry-standard LLVM compiler library. Numba-compiled numerical
algorithms in Python can approach the speeds of C or FORTRAN. Our program
contains a lot of for-loop and basic numerical functions, which makes it suitable
for applying Numba.

4 Applications

In this section, we apply our SIB algorithm in two examples. The first example
is the real data from the layer industry in Taiwan with one dealer playing the
only supplier in the supply chain. We can neither find any data with multiple
suppliers (without dealer) nor find other data with a larger number of customers
and products, so we randomly generate data as an extended example with addi-
tional suppliers based on this real data in order to demonstrate the capability
of handling high-dimensional data of our SIB algorithm.

A Real Example in Layer Industry in Taiwan. In this example, we have
30 farmers, 82 customers, 78 products, and one dealer. We consider the dealer as
the only supplier in this supply chain. Our data consists of the supply amount
of each product, the cost of purchasing eggs from farmers, distances between
customers and the dealer, the transport cost per mile for each product, and
product prices that are different among customers due to quantities. To compare
the performance of the SIB method on this data, we implement the GA algorithm
and the PSO algorithm (with feasible initial particles, constrained velocities and
a random back strategy).

In the first experiment, the simulations are performed about 100 times for
each algorithm. The swarm size is set at 50 particles, and the stopping criterion is
fulfilled after 50 iterations. Figure 1 shows the boxplots of the profits of the final
GBs suggested by the algorithms. The SIB algorithm achieves a better position
and deviates in a smaller range than the other two algorithms. The profit of the
best selling scheme by the SIB algorithm is $2,071,885, and those of the PSO
and GA algorithms are only $ 1,629,555 and $1,622,400 respectively.

It is possible that the PSO and GA algorithms might not achieve their con-
vergence with small number of iterations, so we rerun the same experiemnts
for the PSO and the GA algorithms for 100 times with the stopping criterion
fulfilled after 1000 iterations. Figure 2 shows the profits of the selling scheme
suggested by the two algorithms, and we also plot the result of SIB algorithm
with 50 iterations for comparison. The highest final profits are $1,643,027 and
$1,712,644 suggested by the PSO and GA algorithms respectively. It is obvious
that even after 1000 iterations, the performance of the output selling schemes
are still underperformed by the one suggested by the SIB algorithm with less
iterations.
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An Example of Multi-channel Selling. The first example is not “multi-
channel” because there is only one dealer on the supply side of the selling scheme.
In addition, the numbers of customers and products are quite small when we
consider standard e-commerce. Therefore, we artificially generate extended data
based on the real data in the first example, with 1000 customers, 100 kinds
of products, and 100 different suppliers. We set the swarm size at 20, and the
maximum number of iterations are set at 100 steps. Since each particle in this
example is a tensor of size 1000 x 100 x 100, and the computation is time-
consuming, thus CPU parallelization is employed. As a comparison, the whole
procedure is completed in roughly an hour with CPU parallelization instead
of 20h without CPU parallelization. In this case, we only compare the SIB
algorithm with the GA algorithm since the PSO algorithm cannot deal with
multi-supplier cases.

Figures 3 and 4 show how the profits of the multi-channel selling scheme are
improved through the iterations in the GA and SIB algorithms. We discard the
potential unfairness in this comparison by setting the initial swarm for both algo-
rithm the same. Notice that the range of the y-axises are different. The resulting
profits given by SIB algorithm is $437,947,645 and that of GA is $437,358,222
while the best selling scheme in the initial swarm can only earn $437,357,771.
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The significant increase in the profit from the initial swarm to the final swarm
shows that the SIB algorithm has greatly improved the multi-channel selling
scheme. In specific, it modifies the scheme by creating a better configuration
between the sellers and buyers, so that the selling scheme produces a very good
profit as a result.

5 Conclusion

In the era of big data and artificial intelligence, a multi-channel selling scheme
is an important advancement in supply chain management and e-commerce.
However, computations on the optimization of the multi-channel selling scheme
are infeasible if one employs traditional optimization techniques instead of par-
allelization. In this work, we propose the use of the SIB method to tackle this
highly computational intensive problem. We introduce the high-dimensional ten-
sor particle to be a solution particle in the SIB method with the consideration
of demand and supply constraints and a new MIX operation to handle the infor-
mation exchange between two particles with the preservation of the particle
validity under these constraints. The simulation shows that the SIB method
helps to increase the profits of these multi-channel selling schemes.

Extended from the current works, there are many practical considerations in
multi-channel selling that we simplified in our assumptions. Some of them are
easy to implement as additional constraints, and they can be handled similarly to
supply and demand constraints in our SIB method. If one considers the variations
of price and cost due to the change of demand and supply, which is valid in the
common sense of microeconomics, we may need advanced marketing models to
perform predictions prior to the optimization. If one considers any buy-back or
resale actions, we may need to consider the sale dynamics rather than a static
model.
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Abstract. Dragonfly Algorithm (DA) is a new intelligent algorithm based on
the theory of dragonfly foraging and evading predators. DA exhibits excellent
performance in solving multimodal continuous problems. To make DA work in
the binary spaces, this paper introduces an angle modulation mechanism on DA
(called AMDA) to generate bit strings, that is, to give alternative solutions to binary
problems. Instead of running on the original high-dimensional binary spaces, the
original AMDA utilizes the four-dimensional trigonometric function. However,
the original AMDA has certain limitations, such as poor algorithm stability and
slow convergence speed. Therefore, an improved AMDA called IAMDA is pro-
posed. Based on the original generating function, a variable coefficient is added to
control the vertical displacement of the cosine function. In this paper, seven high-
dimensional zero-one knapsack problems are considered. Experimental results
prove that IAMDA has superior convergence speed and quality of solution as
compared to AMDA, BDA and BPSO.

Keywords: Angle modulation mechanism - Trigonometric generating function -
Dragonfly algorithm - Binary optimization - 0—1 knapsack problem

1 Introduction

Over the years, more and more algorithms based on artificial intelligence, sociality
of biological swarms, or the laws of natural phenomena have emerged. Many com-
plex optimization problems are difficult to solve by traditional optimization algorithms,
and various studies have proved that nature-inspired optimization algorithms are good
alternative tools for solving complex computing problems. This type of optimization
algorithms can be roughly divided into the following five categories: (i) evolutionary
algorithms (EAs), (ii) swarm intelligence, (iii) simulated annealing [1], (iv) tabu search
[2, 3], and (v) neural networks. EAs includes genetic algorithms (GA) [4, 5], differential
evolution (DE) [6] and immune system [7]. Among these three algorithms, GA is based
on the concept of survival of the fittest mentioned in Darwin’s theory of evolution, GA
and DE can be considered as the most standard form of EAs. The swarm intelligence
algorithms such as classic particle swarm optimization (PSO) [8], bat algorithm (BA)
[9], artificial bee colony [10], ant colony algorithm [11], firefly algorithm [12], artificial

© Springer Nature Switzerland AG 2021
Y. Tan and Y. Shi (Eds.): ICSI 2021, LNCS 12689, pp. 83-93, 2021.
https://doi.org/10.1007/978-3-030-78743-1_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78743-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-78743-1_8

84 L. Wang et al.

fish-swarm algorithm [13] and fruit fly optimization algorithm [14]. These algorithms
mentioned above are based on social activities of birds, bats, honey bees, ants, fireflies,
fish and fruit flies, respectively. Intelligent optimization algorithms are technically ran-
dom search algorithms based on biological intelligence or physical phenomena, they
are far less perfect in theory than the traditional optimization algorithms at present, and
often fail to ensure the optimality of the solution. Considering the perspective of practical
applications, this type of budding algorithm generally does not require the continuity
and convexity of the objective function and constraints, and it also has excellent ability
to adapt to data uncertainty.

Dragonfly algorithm (DA) is a new type of swarm intelligence optimization algorithm
proposed by Seyedali Mirjalili [15] in 2015. Since the principle of DA is simple, easy
to implement, and possesses certain optimization capabilities, it has shown promising
results when applied to multi-objective optimization [15], image segmentation problem
[16], and parameter optimization of support vector machines [16]. And a binary version
of DA (BDA) was proposed by Mirjalili [15], which was successfully applied in the
feature selection problem [17]. Traditional binary algorithms were developed by using
transfer functions, which may be limited in applications for optimization problems,
owing to poor algorithm stability and slow convergence speed.

To avoid such problems, Zakaria et al. proposed an angle modulated bat algorithm
called AMBA in 2015 [18]. Inspired by AMBA, an angle modulated dragonfly algo-
rithm (AMDA) is proposed in this paper to make DA work more efficiently in binary-
valued optimization spaces, which can generate n-dimensional bit strings by apply-
ing a 4-dimensional trigonometric function. AMDA is observed to have better perfor-
mance as compared to BDA and BPSO. Nevertheless, the limitation of the original four-
dimensional trigonometric function is that there is no dynamically scalable parameter
for adjusting the vertical displacement of the cosine function. Accordingly, this limita-
tion may lead AMDA to produce a relatively large standard deviation when dealing with
some problems.

To mitigate the shortcomings and improve the performance of AMDA, this paper
proposes an improved AMDA, called [AMDA. Based on the original generating function,
a variable coefficient is added to control the vertical displacement of the cosine function
in the generating function. According to seven 0—1 knapsack problems, the experimental
results have proven that as compared to AMDA, BDA and BPSO, IAMDA performs
better in terms of optimization ability, convergence speed, stability and calculating time.

2 Dragonfly Algorithm
Every swarm in DA follows the principle of survival, and each dragonfly exhibits two
separate behaviors: looking for food and avoiding the enemies in the surrounding. The

positioning movement of dragonflies consists of the following five behaviors:

(1) Separation. The separation between two adjacent dragonflies is calculated as
follows:

Si== Y, (Xi=X) (M



An Improved Dragonfly Algorithm 85

where Xj is the location of the i-th individual, X; indicates the location of the j-th
neighboring individual, and N is the number of neighborhoods.
(2) Alignment. The alignment of dragonflies is calculated as follows:

ZNzl Vi
A== )
where V; indicates the velocity of the j-th neighboring individual.
(3) Cohesion. The cohesion is derived as follows:
Yiii X
Ci==" — X 3)

where X; is the location of the i-th individual, N represents the number of
neighboring individuals, and X; shows the location of the j-th neighboring
individual.

(4) Attraction. The attraction toward the source of food is calculated as follows:

Fi=X"-X; “4)

where X; is the location of the i-th individual, and X* represents the location of the
food source.
(5) Distraction. The distraction from an enemy is derived as follows:

E; =X +X; ®)

where X; is the location of the i-th individual, and X~ indicates the location of the
natural enemy.

To update the location of dragonflies in a search space and to simulate their move-
ments, two vectors are considered: step vector (AX) and position vector (X). The step
vector suggests the direction of the movement of dragonflies and can be formally defined
as follows:

AX'H = (sS; + aA; + cC; + [ F; + eE)) + wAX! ©)

where s is the separation weight, S; is the separation of the i-th individual, a shows the
alignment weight, A; indicates the alignment of i-# individual, c is the cohesion weight,
C; indicates the cohesion of the i-th individual, f represents the food factor, F; shows the
food source of the i-th individual, e indicates the enemy factor, E; represents the position
of an enemy of the i-th individual, w represents the inertia weight, and ¢ represents the
iteration count.

According to the calculation of the above step vector, the position vector can be
updated by using Eq. (7):

Xt =xt 4 Axi! (7)

where ¢ indicates the current iteration.
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3 Improved Angle Modulated Dragonfly Algorithm (IAMDA)

3.1 AMDA

In this paper, the AM technique is used for the homomorphic mapping of DA to convert
the complex binary optimization problem into a simpler continuous problem. And the
angle modulated dragonfly algorithm (AMDA) is derived the original DA that uses a
trigonometric function to generate bit strings. The trigonometric function comes from
angle modulation technology, which was firstly applied in signal processing [19]. The
value of trigonometric function can be calculated by the following formula:

g(x) =sinrn(x —a) x b x cos2n(x —a) xc)) +d (8)

where x represents a single real number element, which indicates evenly spaced
intervals, and a bit string value can be generated by Eq. (9), and the four parameters q, b,
¢, and d are in [—1, 1] at initialization. The corresponding candidate binary solutions are
composed of these generated bit strings. If the output value g(x) is negative, the result
corresponding to the bit value is bit 0; otherwise, the result is bit 1. This mapping method
can be explained by the following formula:

0,g(x) <0

l,gx) >0 ©)

gx) = {

The main steps of AMDA are simplified as the pseudo-code shown in Algorithm 1.

Algorithm 1: Pseudo code of AMDA

Initialize the continuous algorithm DA in [-1,1]*

Initialize the dragonflies’ population X; (i=1, 2, ..., popsize)

Initialize the step vectors 4X; (i=1, 2, ..., popsize)

while the end condition is not satisfied
Calculate the objective values of all dragonflies
Update the food source and enemy
Update w, s, a, ¢, f, and e
Calculate S, 4, C, F, and E using Egs. (1) to (5)
Calculate the output value g(x) using Eq. (8) to generate bit strings
Update the position vectors using Eq. (9)

end while

Return the best bit string as the solution;

Alg. 1. Pseudo-codes of AMDA.
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3.2 IAMDA

AMDA’s generating function is a combination of a sine wave and a cosine wave. The
parameter d can control the vertical displacement of the sine wave but the vertical
displacement of the cosine wave cannot be corrected, which results in a large variance
of the entire generating function value. This defect, coupled with a small initialization
range of DA, will encounter some difficulties while searching for a binary solution
consisting of the majority of bit O or bit 1.

To alleviate the problem of the inability to control the vertical displacement of
the cosine wave in the original AMDA generating function, this paper introduced an
improved AMDA, called IAMDA. The proposed IAMDA uses a variable coefficient
k to modify the generating function. which controls the degree of disturbance of the
generating function in the transformation space, and gives the following generating
function:

gx) =sinr(x —a) x b x cosRr(x —a) xc)+k)+d (10)

When the dragonfly individual is initialized in the dragonfly algorithm, the drag-
onflies are initialized randomly in the domain [—1, 1]5. Therefore, the five parameters
a, b, ¢, d, and k are also in [—1, 1] at initialization. Then, the standard DA is used for
evolving a quintuple that is composed of (a, b, ¢, d, k), and this leads the position of
each dragonfly to become a 5-dimensional vector. Therefore, the optimization procedure
only generates the tuple values, which are substituted back to the Eq. (10), bit strings
are generated.

The original generating function has one limitation, if the value of d is not large
enough, the generating function will always be above or below 0, which will make the
bit string only contain O or 1 bit. Hence, a variable parameter & is added to IAMDA to
generate a bit string composed of 0’s and 1’s. The effect of parameter k is to compen-
sate for the insufficient disturbance in trigonometric function as well as adjust vertical
displacement of cosine function. Compared with the original method, the advantage of
this improved method is that, even if the vertical displacement is not large enough, the
generating function can still lie in the region of 0 and 1. In this manner, it is easier to
generate solutions that are mostly 0 s or 1’. Moreover, the displacement coefficient k
can increase the diversity of the solutions, so that IAMDA may achieve better solutions
in certain adverse problem situations.
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In order to demonstrate the mapping procedure, Fig. 1 shows the procedure of using
the improved trigonometric function to map a continuous 5-dimensional search space to
a discrete n-dimensional search space. The main process of IAMDA can be described
as the following pseudo-code given in Algorithm 2.

Algorithm 2: Pseudo code of IAMDA
Initialize the continuous algorithm DA in [-1,1]°
Initialize the dragonflies’ population X; (i=1, 2, ..., popsize)
Initialize the step vectors 4X; (i=1, 2, ..., popsize)
while the end condition is not satisfied
Calculate the objective values of all dragonflies
Update the food source and enemy
Update w, s, a, ¢, f, and e
Calculate S, 4, C, F, and E using Egs. (1) to (5)
Calculate the output value g(x) using Eq. (10) to generate bit
strings
Update the position vectors using Eq. (9)
end while
Return the best bit string as the solution;

Alg. 2. Pseudo-codes of IAMDA.

i-th dragonfly |

Iteration=t

CONTINUOUS Step vector Position vector Bit-vector solution
SEARCH |AX,, AX, AX. AXg AX; | X, Xp Xo Xa Xi ‘ |Bz B: Bs... Buw |
SPACE

[ [
I }

. —
‘ Equation (6) ‘ ‘ Equation (7) ‘

‘AX,/ AXy AX. AXJ AX,('}—‘ T

“Ya, X' X' Xd X! ‘ Equation (10)

Update (0 or 1)

| i-th dragonfly |

Iteration=t+1 o - -
BINARY Step vector Position vector Bit-vector solution
SEARCH AX, AX)y AXe AXq AXA»‘ | Xo Xp Xo Xa Xk | ‘B: B: Bs... Bu |

SPACE

Fig. 1. The process of mapping a continuous 5-dimensional search space to a discrete n-
dimensional search space.
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4 Experimental Results and Discussion

In this paper, the population size of IAMDA, AMDA, BDA and BPSO is set to 30 and
the number of iterations is set to 500. To avoid the resulting bias caused by chance, the
algorithm runs independently on each function 30 times.

Table 1 represents kg—k 12 [20], which are high-dimensional 0—1 knapsack problems,
after applying a random number generator. In the tables, ‘D’ indicates the dimension
of a knapsack problem, ‘C’ denotes the capacity of a knapsack, ‘Total values’ in Table
1 represents overall profits of all items. Table 2 shows the best, worst and average
solutions for 0—1 knapsack problems, besides, the average calculation time and the
standard deviation (SD) are also listed.

Table 1. Related parameters of seven randomly generated zero-one knapsack problems.

No. |D C Total values
ke | 200|1948.5| 15132
k7 300 | 2793.5 | 22498
kg 500 | 4863.5| 37519
ko 800 | 7440.5 | 59791
k1o | 1000 | 9543.5 | 75603
ki1 | 1200 | 11267 | 90291
k1p | 1500 | 14335 | 111466

Table 2 indicates that IAMDA and AMDA can always find better results in less com-
puting time, suggesting the strong global optimization capabilities and computational
robustness of IAMDA and AMDA in discrete spaces. Besides, it can also be observed
that the higher the dimensionality of the 0-1 knapsack problem, the more obvious the
advantages of IAMDA and AMDA. Moreover, as compared to AMDA, the standard
deviation of IAMDA is much smaller, which suggests that in some cases, IAMDA is
more stable and effective than AMDA for solving the 0—1 knapsack problems.
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Table 2. Result comparisons between IAMDA, AMDA, BDA and BPSO on 0-1 knapsack
problems in various dimensions.

No. Alg. Best Worst Mean SD time
ke TAMDA 1.3075e+04 1.2300e+04 1.2632¢+03 207.7428 0.4770
AMDA 1.2801e+04 1.1921et04 1.2498e+03 211.4083 0.4631

BDA 1.2820e+04 1.1501e+04 1.2316e+03 315.2521 1.6793

BPSO 1.1640e+04 1.0951e+04 1.1174e+06 213.5035 0.6185

k;  IAMDA 1.8386e+04 1.6408e+04 1.7800e+04 413.3773 0.6500
AMDA 1.8220e+04 1.6107¢+04 1.7595¢+04 594.7544 0.6137

BDA 1.7979¢+04 1.6227e+04 1.7554e+04 370.3743 2.8821

BPSO 1.6084e+04 1.5385e+04 1.5717e+04 181.8523 0.8482

ks IAMDA 3.1266e+04 2.8010e+04 3.0387e+04 713.8203 0.9952
AMDA 3.0763e+04 2.7902e+04 3.0134e+04 816.0871 0.9457

BDA 2.9598e+04 2.6478e+04 2.8067e+04 848.2838 3.6978

BPSO 2.5404¢+04 2.3997e+04 2.4656e+04 328.1345 1.3125

ky  IAMDA 4.7364e+04 4.1702e+04 4.5928e+04  1.4190e+03 1.7125
AMDA 4.7078e+04 4.0453¢e+04 4.5502e+04  1.6564e+03 1.7014

BDA 4.5734e+04 4.1055e+04 4.2988e+04  1.2721e+03 5.3235

BPSO 3.8119¢e+04 3.6775e+04 3.7448e+04 355.7410 2.0791

ko  TAMDA 5.9952¢+04 5.5335e+04 5.8646¢+04 1.3125e+03 2.5047
" AMDA 5.9566e+04 5.3099¢+04 5.7783e+04  1.8917e+03 2.5023
BDA 5.7356e+04 5.0011e+04 5.3727e+04  2.3538e+03 6.2211

BPSO 4.6572e+04 4.5209e+04 4.5749¢e+04 362.8049 2.6863

ki, IAMDA 7.1022e+04 6.3479¢+04 6.8977e+04  1.9784e+03 3.2814
AMDA 7.0417¢+04 5.9200e+04 6.7161et04  3.0546e+03 3.0616

BDA 6.7241e+04 5.5492e+04 6.3396e+04  3.0978e+03 7.6517

BPSO 5.5506e+04 5.3168e+04 5.4227e+04 552.3881 3.0838

ki, IAMDA 8.8872e+04 8.1067e+04 8.7179¢+04  2.1245e+03 3.5053
AMDA 8.8091e+04 7.8917e+04 8.6422¢+04  2.5499¢+03 3.3711

BDA 8.2644¢+04 6.9772e+04 7.6970et04  3.9042e+03 8.5147

BPSO 6.7097e+04 6.5470e+04 6.6496e+04 648.1773 3.7690

Figure 2 indicates the average convergence curves of the four algorithms on the
selected large-scale problems in 30 independent runs. As denoted in the figure, (i) the
purple curve representing IAMDA is always on the top of the other curves and the
effect becomes more obvious with increasing the problem dimension; (ii) the red and
blue curves representing BDA and BPSO are slowly climbing, or even stagnating. In
other words, IMADA has the strongest convergence, while BDA and BPSO converge
prematurely to solve large-scale testing problems.
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Fig. 2. Average convergence graphs of IAMDA, AMDA, BDA and BPSO on some selected
large-scale problems over 30 independent runs. (a) - k7. (b) - kg. (c) - k9. (d) - k19. (e) - k11. (f) -
k13.

It can be summarized from the above simulation results that when IAMDA solves
the 0—1 knapsack problems, it decreases the computational time while ensuring the
accuracy of the solution. JAMDA has a smaller variance than AMDA and the original
BDA, indicating better robustness of the IAMDA algorithm.

5 Conclusions

To make the dragonfly algorithm work efficiently in the binary space, this paper applies
an angle modulation mechanism to the dragonfly algorithm. The original AMDA applies
the four-dimensional trigonometric function instead of running on the high-dimensional
binary spaces. Hence, using AMDA can decrease the computational cost as compared
to BDA. However, AMDA also has some limitations, such as poor algorithm stability
and slow convergence speed.
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To deal with the limitations and to improve the performance of AMDA, this paper pro-
poses an improved angle modulated dragonfly algorithm (IAMDA) which runs on a con-
tinuous 5-parameter tuple through a five-dimensional trigonometric function. According
to high-dimensional zero-one knapsack problems, it can be concluded that IAMDA out-
performs AMDA, BDA and BPSO in terms of stability, convergence rate, quality of the
solution and computational time.
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Abstract. As a new bio-inspired algorithm, the Physarum-based algo-
rithm has shown great performance for solving complex computational
problems. More and more researchers try to use the algorithm to solve
some network optimization problems. Although the Physarum-based
algorithm can figure out these problems correctly and accurately, the
convergence speed of Physarum-based algorithm is relatively slow. This
is mainly because many linear equations have to be solved when applying
Physarum-based algorithm. Furthermore, many iterations are required
using Physarum-based algorithm for network optimization problems with
large number of nodes. With those observations in mind, two new meth-
ods are proposed to deal with these problems. By observing the traffic
network data, there are many redundant nodes, which don’t need to be
computed in practical applications. The calculation time of the algo-
rithm is reduced by avoiding these special nodes. The convergence speed
of Physarum-based algorithm can then be accelerated. Two real traffic
networks and eighteen random sparse connected graphs are used to verify
the performance of the proposed algorithm.

Keywords: Physarum-based algorithm - Network optimization -
Redundant nodes - Traffic networks

1 Introduction

Physarum-based algorithm, as a bio-inspired algorithm, has caused widespread
concern. Physarum polycephalum is a multinucleated single-celled organism,
which shows high intelligent behavior in maze experiment. Physarum poly-
cephalum can spontaneously form a shortest protoplast tube connecting the
starting and exit nodes in the labyrinth tube. Tero [20] first proposed a mathe-
matical model for the adaptive dynamics of the transport network in an amoeba-
like organism with the Physarum. They used agar to make a labyrinth [17],
placing two food sources at the beginning and exit nodes of the labyrinth. If the
food source was placed in towns’ locations in Tokyo by the relative geographical
information, the road network was established by Physarum polycephalum had
a better performance than the real Tokyo railway transportation network [18].
© Springer Nature Switzerland AG 2021
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Most existing methods adopted by some researchers in the network opti-
mization problems. Here, several categories were proposed. Tero constructed
mathematical models with Poiseuille’s law and Kirchhoff’s Law to solve the
shortest path in the maze. In the perspective of non-traditional computer mod-
els, Adamatzky analyzed the foraging behavior of Physarum polycephalum [2]
and realized the Oregonator model by the BZ reaction. The multi-agent model
established by Jones had simulated the dynamic evolution process and charac-
teristics of Physarum polycephalum network [3,6-8]. In the cellular automata
model, Gunji modified the morphology of Physarum polycephalum [4,5]. In
addition, Pershin leveraged a new physical memristors [15] to model the learn-
ing behavior and explore the predictive ability to the periodic signal in the
Physarum polycephalum. Tsompanas designed the amoeba-like cellular automa-
ton (ALCA) of Physarum polycephalum with software and hardware methods,
and simulated Physarum polycephalum [21] to manufacture the railway net-
work in Tokyo. Tusda performed a Boolean gate as a biological device made of
slime mold Physarum polycephalum to achieve self-repairing computation [22].
Many scholars took the intelligent behavior of Physarum polycephalus as the
research object and established mathematical models, such as, the Oregon equa-
tion model, Agent-based bionic model, and positive feedback mechanism model
(hereinafter referred to as PMM). The PMM model first proposed by Tero was
widely developed since its excellent fault tolerance and performance. In the posi-
tive feedback mechanism of Physarum polycephalum, the intelligent behavior of
Physarum polycephalus was simulated by the combination of flow conservation
theory and Poiseuille formula. The PMM model was first applied to the maze
problem and a series of network problems, such as, fuzzy shortest path [25]
, multi-objective shortest path problem [14,26], 0-1 knapsack problem [24],
etc. Tero also described how the network of tubes expanded and contracted
depending on the flux of protoplasmic streaming, and reproduced experimen-
tal observations of the behavior of the organism [19]. This model constructed
a multi-object shortest path network with a great fault tolerance. In the com-
plex network problem, Zhang used the Physarum polycephalum algorithm to
calculate the centrality of the complex network [28]. In addition to solve the
shortest path problem, the Physarum algorithm can also figure out other NP-
hard problems, for instance, the classic TSP problem [9] and constrained shortest
path [23,27]. Of course, Physarum algorithms can not only solve NP-hard prob-
lems, but also optimize some existing algorithms. Especially, the positive feed-
back mechanism in the PMM model of physaum solver can optimize some heuris-
tic algorithms, such as, Ant Clony Optimization [12,16], genetic algorithm [11],
random walks [13], etc. Physarum algorithm can enhance the robustness of orig-
inal algorithm, accelerate the convergence speed of the original algorithm. In
the past decade, researches have shown that the physarum solver with good
performance to solve complex network problems, there are still some shortcom-
ings limiting the development of the algorithm. The shortcomings of Physarum
algorithm are mainly reflected in the following: when we utilize the physarum
algorithm to solve some NP-hard problems, we need to solve a large number of
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linear equations to obtain the pressure value of each node. While the problem
scale is large enough, each iteration requires a lot of calculation to solve those
linear equations and cost a lot of computing time. According to the standard
incomplete Cholesky conjugate gradient scheme [10], if the graph we need to
solve is sparse and undirect, the time complexity of the physarum algorithm is
O(n?), where n is the number of the nodes in the graph. As a result, the time
of the entire algorithm has been greatly increased when n is big enough. In this
paper, we propose two effective improvement methods to improve the calcula-
tion efficiency of Physarum algorithm, and increase the convergence speed for
the problems raised above. In order to verify the optimization of the algorithm,
we select two real traffic networks, and randomly generated eighteen sparse and
connected networks. After that, we employ the novel Physarum-based algorithm
and the traditional Physarum algorithm to detect the shortest path for the total
networks.

The rest of this paper is organized as follows. In the Sect. 2, we briefly intro-
duce the classical concepts and notations of the classic Physarum algorithm. In
the Sect. 3, we give a detailed overview and demonstration of our novel methods.
In the Sect. 4, we prove the feasibility of the proposed methods through specific
experiments. Finally, in the Sect. 5, we draw conclusions and some future works.

2 Classical Physarum Algorithm

In this section, we elaborate on the basic principles of the Physarum algorithm
and some basic notations. In addition, the shortest path convergence of the
physarum polycephalum are proposed and analysed.

2.1 Basic Notations

G(V, E) represents an undirected graph G and S = {s, a1, Va2, Va3, - - - » Vak—1,
t} represents a series of nodes sequences on the path from node s to node ¢, and
all nodes are sorted in the order from s to ¢. Then the total length of this path

Table 1. Mathematical Notations.

Symbols | Description Symbols | Description

G Graph D;; Conductivity along edge e;;

% Set of nodes in G Lij Length of edge e;;

E Set of edges in G Di Pressure of node v;

S Starting node Qij Flux through edge e;;

t Exit node Dreat Conductivity in the next time
S The shortest path Daisy Current conductivity gap

€ij Edge between v; and v; | Bt The degree of v;

S One path from s to ¢ Din A predefined conductivity gap
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k—1
is Y Lyyivaisr» Where vgo and ve, denote the starting node s and exit node ¢.

1=0
In particular, the shortest path between s and ¢ is represented by Sx. All the
mathematical notations used in the rest of this paper are summarized in Table 1.

2.2 Physarum Algorithm

In the labyrinth experiment [17], the phytoplasma tube of Physarun covers the
entire maze firstly. Then, the longer tube disappears. Finally, the protoplasm
tube converges to the shortest path. Tero analyzed the convergence process of
physarum in detail fistly. The radius of the protoplasmic pipeline and the flow in
the pipeline show a positive feedback relationship, that is, an increase in the flow
stimulate the increase in the radius of the pipeline, and an increase in the radius
of the pipeline also stimulate an increase in the flow in the pipeline. On this
basis, Tero used the Poiseuille equation to describe the relationship between the
pipe’s radius and the flux, and established a positive feedback mechanism based
on Kirchhoff’s law to modify the intelligent behavior presented by Physarum
polycephalum. Here, we briefly introduce the PMM.

In the Physarum algorithm, the flow in the protoplasmic tube roughly obeys
the Poiseuille flow, so the relationship among the flux @) and the conductivity
D and the pressure value p can be expressed as Eq.(1).

Q“_ﬁpi_pj_pi_pjl)” (1)
K 8w Lij B Lij *

where r;; represents the radius of the tube between v; and v;, and the w repre-
sents the viscosity coefficient of flow. According to the above formula, it is shown
that the conductivity D;; is related to r and w. But w is the viscosity coeflicient
of the fluid, which is only related to the fluid. So here, the value of w is a fixed
value, then D;; can be obtained only positively related to p and Q;;. Considering
that the flow in the protoplasmic pipeline is regarded as a fluid, so the flow need
to follow the law of conservation of flow in the Physarum algorithm. T'wo nodes
as the starting node s and the exit node ¢ are setted respectively. Then the flow
flows in from the starting node and flows out from the exit node, so the flow at
the starting node is set to —1 and the flow at the exit node is set to +1. The
flow at other nodes must match the flow conservation, so the flow in other nodes
is zero. The flow conservation of Physarum algorithm is described in Eq. (2):

-1, fori=s
> =40, fori#i,j (2)
i#j +1, fori=j

In the initial stage of the algorithm, all edges have an initial conductivity
D = 1, and then the pressure value of the exit node is zero. Combining the
above Eq. (1) with Eq. (2), the pressure value p; of each node and the flow value
Q;j of each edge are obtained. Next, the algorithm starts to iterate. According



98 D. Wang and Z. Zhang

to the adaptive behavior of Physarum, the flow is the larger in the pipe, the
thicker the pipe become larger. On the contrary, the pipes gradually disappear
with smaller flow. Therefore, the conductivity D;; changes with the flow Q;.
In order to describe the adaptive behavior of Physarum, the following equation
is leveraged to establish an mathematical model to calculate the change of the
conductivity D;; during the convergence process of Physarum.

d

dt

In the above equation, r is the decay rate of the conductivity. Since the

conductivity of the pipelines increases with the increase of the flow, it is obvious

that the function f is a monotonically increasing continuous function. It means

and when the flow is zero, the conductivity is also zero. So the function satisfies

f(0) = 0. In order to simplify the calculation of the algorithm, Eq. (4) is ususlly
leveraged instead of Eq. (3).

Dij = f(|Qi;|) — 7Dy 3)

d
5 Dis = 1Qij| — Dy (4)

3 Novel Physarum-Based Algorithm

The proposed Physarum Algorithm is summarized in the Sect. 3. First of all, we
initialize all pipelines. The initial conductivity of all the pipelines is set to 1,
and the flow of starting node is set to -1. What’s more, we set up a conductivity
differential Dg;¢¢, a threshold value of the minimum conductivity D,,;, and the
conductivity D,e.:. When the conductivity of an edge is less than the threshold,
it basically means that the edge has no flux passing through. We can remove such
edge from the network. Furthermore, when the Dgy;s; between the conductivity
of a certain iteration and the previous iteration is less than an initial set value
Dipin, it means the iterative process of the algorithm is terminated and the
network is converged to the shortest path.

In the above section, we briefly introduce some basic principles of classical
Physaum algorithm. It can be shown that the essence of Physaum algorithm is
to continuously delete nodes and edges that not exist in the shortest path. In the
end, all the flow concentrates on the shortest path, so as to reach the purpose
of the algorithm: filtering the shortest path. In order to achieve this goal, we
need to delete these nodes and edges from algorithm to form the shortest path
quickly. A large quantity of experiments show that removing nodes ande edges
with too many iterations slowly is not enough efficiency.

As a result, the algorithm cannot achieve the desired effect to search the
shortest path. In order to accelerate the efficiency of eliminating redundant nodes
in the Physarum algorithm, two novel methods are proposed to accelerate the
convergence speed of physarum algorithm.

In the classical Physarum algorithm, those edges with conductivity below
a certain threshold are removed with continuous iteration. The above contents
are mentioned, the way to delete the nodes is obviously not enough efficiency. In
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Algorithm 1: Classical Physarum Algorithm
Input: G,s,t
Output: The shortest s — ¢ path Sx

1 Dgifs < 00, Dipin < 1075, D « 1, and itr « 0;
2 while Ddiff > Dmin do
3 itr «—itr + 1;
4 obtain node pressure p with Eq. (2);
5 update @) according to Eq.1;
6 calculate the new conductivity Drnest using Eq. (4);
7 | Dairs — sum(|Dnear — DJ);
8 D + Dnext;
9 end
10 return S;

order to accelerate the convergence speed, we optimize the process to remove the
nodes and edges in the graphs and propose two methods. The first method can
quickly delete redundant edges to accelerate the convergence speed. The other
method can effectively reduce the computation of the algorithm. It can reduce
the each iterative time in the algorithm to enhance the performance.

3.1 Method 1: Quickly Removing Redundant Edges

To explain the proposed method, there is a special path in the original graph
or algorithm process, as shown in the Fig. 1(2) and Fig. 1(3). There are two
paths between v, and vy, respectively, path 1 and path 2. And the lengths of
path 1 and path 2 are different. If v, and v, are in the shortest path, then either
path 1 or path 2 must be in the shortest path. Obviously, we search the shortest

——link | 1 |
' bt b_|_a b
20.8 ——link 4
06 : @) ¢ (3)
S04
d
0.2 b ¢
" 3~ b a d
0 5 10 15 20
Iteration 2 4) (5)
(1)

Fig. 1. (1) Variation of conductivity of non-redundant and redundant edges, Link 1 rep-
resent non-redundant edge, and others represent different redundant edges. (2) redun-
dant nodes and redundant edges in different networks.
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path between two nodes and delete the longer path 2 from the graph without
multiple iterations. We call the similar edge as a redundant edge. However, it is
important to notice that paths 1 and 2 are non-bifurcated paths. For example,
in the Fig. 1(4), there is two paths v, v, vy and v, v, between v, and vy, but
v. in the path has additional path to vg. Therefore, edges such as e,. and eq
cannot be called redundant edges. In the example, on the path 1, there is only
one node v, between v, and v,. There may be multiple such nodes between v,
and vp. If none of these nodes has a bifurcation path, these edges are regarded
as redundant edges. In the method, those redundant edges are removed directly
from the graph. In order to illustrate the correctness of the redundant edges
deletion, we conduct several experiments to test the variables in the conductivity
of the redundant edges we need to delete in the classical Physarum algorithm.

The experimental results are shown in the Fig. 1(1), we can show that the
conductivity of the redundant edges continue to decrease, reach the thresholds
and these redundant edges are removed by the algorithm eventually. With the
variable rates in the conductivity become slower and slower as the process of the
algorithm, it leads to redundant edges staying in the network for long time. It
requires many iterations to delete those redundant edges, significantly affecting
the efficiency of the algorithm. Therefore, the running time are decreased greatly
by removing redundant edges in advance.

3.2 Method 2: Merging Redundant Nodes

The classical physarum algorithm needs to deal with a large number of lin-
ear equations to obtain pressure value of each node. If other factors remain
unchanged and the scale of the linear equation is smaller, the algorithm will
cost shorter running time. We hope to reduce the scale of the algorithm during
the process of the algorithm. So, a method is proposed to reduce the number of
nodes. In the Fig. 1(5), it is discovered that a lot of redundant nodes appear in
the graph while the redundant edges are deleted. At the beginning and running
stages of the algorithm, some edges gradually disappear in the iterative process,
and finally forming a path similar to the structure.

We can realize that the degree of v, and v, is two without additional branch in
the undirected graph. And the feature of vy, and v, are retained. In next iteration,
instead of analysing of v, and v, v, vy V. vg are combined into an edge e,q. And
Laqg = Lay+ Lpe + Leg- In this way, we can greatly reduce the computation of the
algorithm to achieve the purpose of accelerating the algorithm in each iteration.
The novel physarum-based algorithm is described in the Algorithm 2 in details.

4 Computational Experiments

In this section, two real traffic networks and eighteen randomly generated graphs
are selected to examine the effects of proposed methods. We compare the experi-
omental result of the classical physarum algorithm (PA) with the proposed novel
physarum-based algorithm (NPA). All the computations are performed using the
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Algorithm 2: Novel Physarum-Based Solver
Input: G,s,t
Output: The shortest s — ¢ path Sx

1 Dgifs < 00, Dipin < 1075, D « 1, and itr « 0;
2 while Ddiff > Dnin do
3 if By =2 and k # s,t then
4 if e;; exist and Li; > Lii + Lji then
5 ‘ Delet €ij;
6 else
7 Delet ejx, €ix;
8 Lij < Ljx + Li ;
9 end
10 end
11 itr «— itr 4+ 1;
12 obtain node pressure p with Eq.(2);
13 update @ according to Eq.1;
14 calculate the new conductivity Dyez: using Eq.(4);
15 Dgiyy «— sum(|Dneat — DI);
16 D «— Dpext;
17 end

18 return Sx;

MATLAB 2016b in Windows 10 with an Inter Core I17-6700 CPU (3.40 GHz) and
16 GB of memory.

In the experiment, different starting and exit nodes are extracted in the same
graphs many times. The shortest path between two nodes has been tested at
least ten times and pick up the average results in total. In addition, we perform
the same training as above with the PA algorithm, and then make a detailed
comparison of the results. In the following, we respectively test the time required
by different algorithms to find the shortest path with the same starting node,
exit node and the iterations. In order to simulate the real traffic network, all
graphs are sparse and connected. The feature of sparse and normal graphs is
represented in Table 2 and Table 3.

Table 2. The feature of sparse graphs.

Items | RG-1 | RG-2 | RG-3 | RG-4 | RG-5 | RG-6 | RG-7 | RG-8 | RG-9 | RG-10
1% 100 | 200 |300 400 | 500 | 600 | 700 | 800 | 900 |1000
E 255 542 | 788 |1001 |1341 |1531 | 1780 | 2189 |2357 |2771

The results of the NPA and the PA algorithm in randomly generated graphs
are shown in Fig. 3. Among all the comparisons, NPA algorithm always takes
the shortest time to find the shortest path and spend the least iterations. More-
over, we can detect that the optimization effect of NPA is very well compared
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Table 3. The feature of normal graphs.

Items | BRG-1 | BRG-2 | BRG-3 | BRG-4 | BRG-5 | BRG-6 | BRG-7 | BRG-8
\%4 100 200 300 400 500 600 700 800
E 387 804 1229 1784 2261 2589 | 3681 4007

with PA, which greatly decrease the running time. Different with PA, the NPA
algorithm can be reduced by 10% running time in the normal graphs and can
even reach the highest reduction 90% in the sparse graphs. In addition, we anal-
ysis that average degree of network graph is the smaller and the optimization
effect is the better in the NPA algorithm, since the more redundant nodes can be
found in the sparse graphs. Even though the real traffic network exist without
high average degree, eight random graphs are utilized and the average degree
is in the interval of [4.0,5.0] from some relative experiments. It can be shown
in Fig. 3 (normal) that the improvement of NPA has over 10% than the PA.
Therefore, the NPA algorithm proposed is more suitable to select the shortest
path of the network graphs with low average degree. Compared with PA, two
real traffic network graphs are leveraged in the NPA algorithm, such as, Berlin
Mitte Prenzlauerberg Friedrichshain Center Network (BMPF), Chicago Area
Transportation Network [1]. Here, the BMPF network contians 2184 edges and
975 nodes, especially, there is one isolated node (node 105). In Chicago area
transportation network, there are 933 nodes and 2950 edges. The starting and
exit nodes are selected randomly, and four different pairs of nodes are adopted
in two real traffic network graphs.

Table 4 reveals that the proposed NPA algorithm shows obvious advantages
that have the shorter running time and less iterations than PA in the real traffic
network graphs. Also, we can indicate that the change of the starting and exit
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Fig. 2. Change in the number of redundant nodes over time.
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nodes for NPA has little effect on the running time. The overall number of
iterations and consuming time maintain stable basically. However, we discover
that the consuming time and the number of iterations have the connection in the
distance between two nodes in the PA. Therefore, NPA algorithm has excellent
robustness compared with PA.

—%— lterations of PA
—E— lterations of NPA
#— Time of PA
—&—Time of NPA

—¥— lterations of PA
40 160 [ |5 lterations of NPA
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Fig. 3. Performance of PA and NPA in sparse and normal graphs

Table 4. Performance comparison of PA and NPA in real traffic networks.

Items s t Iterations (PA) | Time(s) (PA) | Iterations (NPA) | Time(s) (NPA)
BMPF 78 | 515 | 30 20.57 10 6.67
BMPF 1900 |11 12.61 10 6.18
BMPF 31,789 |19 16.21 10 6.28
BMPF 50| 511 | 14 13.91 10 6.07
Chicago 2/900 13 12.11 9 9.45
Chicago 5|614 | 11 11.92 9 9.53
Chicago 41893 |12 12.01 9 9.81
Chicago | 200 | 900 | 25 14.82 9 9.93

5 Conclusions

In this paper, two novel optimization methods are combined with the PA, which
quickly remove redundant edges and merge redundant nodes. The performance
of the classical physarum algorithm is improved greatly by proposed methods.
The NPA can greatly reduce the number of iterations and the time required for
each iteration, and finally achieve the goal of optimizing the algorithm. Finally,
eighteen random graphs and two real traffic networks are leveraged in the exper-
iments. The experimental results are compared with PA, and the performance
of computation time is pretty great in the proposed methods.
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In the future, the NPA algorithm can be further developed to some NP-hard
problems, such as, Steiner minimum tree problem, TSP problem, path opti-
mization problem, transportation problem, 0-1 backpack problem and so on. In
addition, we can analysis the Physarum algorithm combined with other opti-
mization algorithms. And the combined algorithm may combine the advantages
of different algorithms, while try to avoid some weakness, so as to solve some NP-
hard problems more efficiently. Of course, we can also devote to develop other
models of physarum polycephalum, such as the multi-agent model, ALCA and
Oregonator model, etc. So that the physarum can solve more NP-hard problems.
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Abstract. Traveling Salesman Problem (TSP) is one of the most classic com-
binatorial optimization problems. It can be widely applied in many real-world
applications. In this paper, we propose an efficient method via swarm intelligence
to handle the traveling salesman problem, which may not be suitable for the stan-
dard particle swarm optimization due to its domain’s discrete nature. Compared
to the classic Ant Colony Optimization method, the SIB method performs well
in terms of efficiency and accuracy in the TSP problem. For TSP with cities size
between 15 to 25, SIB has a significantly lower average executing time to obtain
an adequate solution with close distance.

Keywords: Traveling Salesman Problem - Swarm intelligence - Ant Colony
Optimization - Combinatorial optimization problems - Metaheuristic method

1 Introduction

With the rapidly-growing technological development and innovation nowadays, real-
world search and optimization problems in various sectors have become highly com-
plex. Many optimization problems belong to the category of combinatorial optimization
problems, which is nonlinear and usually consists of multi-objective scopes. Addressing
these problems through traditional methods is challenging since traditional methods are
mainly local search, problem-specific and difficult to solve nonlinear or discontinuity
problems, leading the range of solutions to be easily stuck in local regions. Moreover,
traditional methods mostly search through all possible solutions for a correct answer,
which leads to an exponential growth in the whole process time.

In order to tackle these challenges, recent research in solving combinatorial optimiza-
tion problems has been toward metaheuristic methods. In contrast to traditional methods,
the metaheuristic methods result in an approximate global solution through processes
of group searching and information sharing to improve local candidate solutions. More-
over, most metaheuristic methods employ stochastic techniques to escape from the local
optima to avoid trapping [1]. Thus, for most modern combinatorial optimization prob-
lems that are intractable and with non-mathematically-defined objective functions, the
metaheuristic methods are suitable for building solution systems or algorithms within
an affordable execution time.
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Among all metaheuristic methods, the nature-inspired methods, especially methods
based on swarm intelligence [2], are popular. The main idea of swarm intelligence is
to mimic natural, physical or biological phenomena and immerse them to build opti-
mization procedures [3]. Decision making for solutions is generated by agents such as
ants or bees through interacting with other agents and updating local information among
their own community. Representative swarm intelligence-based algorithms include Ant
Colony Optimization (ACO) [4], Particle Swarm Optimization (PSO) [5], Artificial Bee
Colony (ABC) [6], and many others. In addition to these representative methods, the
number of new algorithms based on swarm intelligence, like Bat Algorithm (BA) [7],
Cuckoo Search (CS) [8], and others, have increased remarkably over the last decade.
They showed more supreme performance than the existing methods in the literature,
and they are effective for solving combinatorial optimization problems in various real-
world applications such as Traveling Salesman Problem (TSP), Vehicle Routing Problem
(VRP), and integrated circuit design. Among these application areas, TSP is the most
studied one. Due to its NP-hard nature, it is viewed as a highlighted application of meta-
heuristic algorithms to show how they can be a powerful alternative solution. It can be
extensively applied to many practical applications in the industry.

In this paper, we propose a new optimization approach for the TSP problem, based
on swarm intelligence called the Swarm Intelligence Based (SIB) method, to find an
optimal route passing through a defined number of destinations. The SIB method was
first introduced by Phoa [9], which is widely considered as the discrete version of the
PSO with some variants to tackle optimization problems with discrete solution domains.
The SIB method has demonstrated good performances for problems with discrete or
continuous domains in experimental designs [10, 11], target localization [12], scheduling
[13], and others. This paper is structured as follows: In Sect. 2, we propose a modified
framework of SIB for solving TSP. In Sect. 3, a test of SIB for TSP is presented for
practical data. We draw some concluding remarks in the last section.

2 The Swarm Intelligence Based Method for Solving TSP

The traveling salesman problem is to find the shortest distance route for individuals to
visit all target stations exactly once with returning to the starting station. It can be defined
by a graph G = (V, E), where V = {1, 2, ..., N} is a group of nodes and E is a group of
edges. Each node represents a target station, and each edge represents the path between
station pairs if the path exists. Each edge (i, /) € E is assigned a distance d;;, which is
the distance between target stations i and j. The main goal is to find an order of target
stations in one route such that the total distance of the route is minimum.

The most representative metaheuristic methods for solving TSP include Simulated
Annealing (SA), Tabu Search (TS), Ant Colony Optimization (ACO), Particle Swarm
Optimization (PSO) and Genetic Algorithm (GA). Readers who are interested in the
introduction and implementation of these methods towards TSP are referred to [14—19].
In this paper, we describe how the SIB method is modified for implementing the TSP
problem.

A standard SIB method consists of three main parts: initialization, iteration and
output. After the initialization step for particle generations and parameter definitions,
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one enters an iterative process to improve the particle status according to the user-defined
objective function. This iterative process consists of two operators: MIX and MOVE. The
MIX operator can be viewed as an information exchange process between the current
particle and its (local or global) best particle. The process is similar to the crossover step
in the genetic algorithm. After the MIX operator is completed, three candidate particles,
including the current particle and two mixed particles with the local and global best
particles, are compared in the MOVE operator. The current particle is then updated to
the best of three if some components of the particle change, or several randomly chosen
components of the current particle are randomly assigned from the pool to create the
slight alteration. After the iteration process is done, the global best particle becomes the
solution of the problem suggested by the SIB method.

It is not trivial to directly implement the SIB method to the TSP problem. Table 1
shows the modified framework of SIB and some detailed descriptions are provided in
the rest of this section.

Table 1. The SIB algorithm

Input Distance matrix, number of particles N, number of iterations (N_loop),
qs and gas .

Output  The optimal GB particle

1: Randomly generate a set of N routes (particles) with m stations as initial
particles

2: Evaluate value of objective function for each particle, i.e., the total dis-

tance of each route

Initialize LB for all routes

Initialize GB

For each N_loop
For each particle, perform MIX operation
For each particle, perform MOVE operation
Evaluate value of objective function for each particle
Update the LB for all particles
Update GB

end loop

—ESYeN kW

—_ O

2.1 Initialization Step

The initialization step can be viewed as the zeroth iteration of the SIB algorithm
procedure. Users are required to input initial parameters as follows:

1. Distance Matrix. The distance matrix shows the distance between pairs of target
stations.

2. Number of particles (N). The number of randomly generated particles in the SIB
algorithm. These particles represent the routes with stations in TSP. Note that the



3.

4.

Traveling Salesman Problem via Swarm Intelligence 109

larger the N is, the smaller number of iterations are required to reach optimization,
but it requires more time to execute in each iteration. As a rule of thumb, if we set a
number of particles to be 100 as there are less than 11 stations in the TSP, we can get
an accurate result within few seconds. When the number of target stations reaches
20 or higher, we recommend N to be at least 200.

Number of iterations (N_loop). The number of iterations executed in the SIB algo-
rithm. The larger the N_loop is, the more accurate the value of an objective function
towards optimization, but it generally requires more time to execute. As a rule of
thumb, an accurate result can be obtained within a few seconds if N_loop is set to
be 100 and N is set to be 100 for a TSP with less than 11 stations. We recommend
to set NV to be 300 if there are more than 25 stations in a TSP.

Number of discrete units being exchanged with LB and GB particles (qrpand qgp).
The SIB algorithm is expected to converge to optimal value by exchanging q units
with LB or GB consistently in every iteration. A large value of grp or ggp will
accelerate particles towards the best particles with a probability of overlooking the
potentially good particles in between the current particle and the best particle. We
suggest that setting g p = [m/3] or [m/4] and ggp = [m/2], respectively. Here [x]
refers to the rounded positive integer at least as large as x, m is the number of target
stations (Fig. 1).

'Ulit Funocl:g:lclﬁ\",:lue
Particler | 3 | 9|7 [..|21]15] 9| |D1]
Partice2 [ 1|7 [ 5| . [11]2]16] |[D2]
ParticleN |18 |20 3 [ .. | 4 | 6 [17]| |DN]

Fig. 1. A set of particles with N size

We begin with randomly generating N tours as a set of N particles named “initial

particles”. Each tour is represented by a single particle, and there are m stations in one
single particle. A station is considered as a unit in a particle. Then we evaluate the value
of an objective function for each particle, i.e., the total distance for each tour from a
distance matrix. As a result, there will be N values of objective functions in one set
of particles. Then we can define the Local Best (LB) particle for each particle and the
Global Best (GB) particle for all particles according to these objective function values.
This ends the initialization step of the SIB algorithm.

2.2 TIteration Step

We have a set of initial particles, a set of initial LB particles, and a GB particle prior to the
iteration step. The goal of this iteration step is to obtain a particle with an approximate
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minimum value of an objective function after N_loop iteration. The resulting particle,
i.e., the GB particle, describes the best tour for m target stations suggested by the SIB
algorithm with an order and an approximate minimum value of objective function, or
the shortest distance of the suggested best tour.

Although the SIB algorithm is similar to the PSO, a fundamental difference between
two algorithms appears in the information sharing step. In PSO, the LB and GB infor-
mation are shared to the current particle via the velocity update formula, which can also
be considered as a weighted linear combination of the two best particles plus the inertia.
In contrast, the LB and GB particles are mixed with the current particle separately to
create two new particles in the MIX operation, and the MOVE operation serves as a
decision maker to pick the best of three. This difference helps the SIB to preserve the
information sharing and domain searching properties of the PSO but it can converge to
the optimum more efficiently.

Below is the detailed implementation of the MIX and MOVE operations in TSP.

2.2.1 MIX Operation
The MIX operation consists of mixing with LB and GB respectively (Fig. 2).

1.Max
0+dsy |dyotds, | .. |dy +0 |
2.0ri U  4.new_U 3.var_LB
xt [3]o]..]7] [15]7].[12]

loc U ————— 5 joc U

xv[18]20] .. |3]| [e6]17]..]9] N

Fig. 2. MIX operation for LB for X1: This figure just shows one-time swapping - ori_U and
new_U will be swapped.

In the MIX operation with the LB, we change unit order based on the LB particle
information. Consider a candidate particle X from an initial particle set and its LB
particle. We first evaluate the distance value between two consecutive units in X. Then
we find a unit with the biggest value of a sum of distance values from its two adjacent
sides. We consider this unit too far from its two adjacent stations in that order and thus
we change its location. We denote this unit be ori_U and its location of this unit be
loc_U. We refer to the same loc_U location in its LB particle, and then find the unit on
loc_U, denoted as var_LB. Next, we go back to X and find the unit value equivalent
to var_LB in X denoted as new_U. Then, we proceed to swap the ori_U units and the
new_U unit in X. The same swap procedure is performed qL.B times. We obtain a new
particle called mixwLB from the original X after this procedure is completed. Similar
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procedures are done in other particles X in the original particles set and we get a set of
mixwLB as the result of the MIX operation for LB.

We perform the same procedure for an initial particle to swap with a GB particle,
except only that we use qGB instead of qLB, and we find units in the loc_U location in
the GB particle instead of LB. After applying the MIX operations for LB and GB, we
obtain both mixwLB set for LB and mixwGB set for GB, which are the mixed particles
set based on LB information and GB information, respectively.

2.2.2 MOVE Operation

The MOVE operation comes after the MIX operations. We get three candidates, mixwLB,
mixwGB and X. The MOVE operation is a decision-making procedure to select the best
particle among all candidates with the optimal value of objective functions. First, we
compare the value of objective function among mixwLB, mixwGB and X. Then we
choose the best one with a minimum value of an objective function and replace X with
it. However, if both mixwL.B and mixwGB are worse than X, two units of X are randomly
chosen and then swapped with each other as an update of X. We perform this random
swap several times to escape from the local optimum trap, but we suggest not to perform
these random swap more than qLB times.

2.2.3 Update Procedure

After each X has been updated from either mixwLB, mixwGB or a random swap of
X from the MOVE operation, we obtain a new set of particles. For each particle in the
set, we evaluate the value of an objective function again, and compare it with its LB’s
objective function value, and update LB if its objective function value is smaller than the
original LB’s. After all particles update their LB, we can get a new GB particle among all
update LB particles. After all current particles, all LB particles and the GB particle are
updated, the search continues to the next iteration in the same way until the pre-defined
N_loop is reached. The final GB particle and its objective function value are considered
as the outputs of the SIB algorithm.

3 Performance of SIB for TSP

3.1 Implementations

This experiment aims at determining an optimal tour that passes all cities and backs to
the original station using the proposed SIB algorithm and evaluate its performance. We
use the ACO algorithm as a method comparison to the SIB algorithm in a small city
size. We use data provided by a logistic company in our experiments as an input data
source, but one may use any types of address data for similar comparisons. We select the
number of cities ranging from 10 to 30. The data contains two columns: target station
name and its location. The location is in coordinate format for each station. Then we
obtain the distance between each pair of cities and get a distance matrix as input data
for the objection function calculating in SIB procedure.
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Both algorithms are executed 10 times and the average distance is served as the com-
parison metric. The parameters for both algorithms are listed in Table 2. We obtain the
average execution time and the average distance of the tour generated by each algorithm
for the specified number of cities. All implementations were executed on a MacBook
Pro with Intel Core 17 2.6 GHz.

Table 2. Iteration parameters set-up for both algorithms

Iteration parameters ACO SIB

10 cities ant = 30, N_loop = 200 particle = 100, n_loop = 200
15 cities ant = 30, N_loop = 200 particle = 100, n_loop = 200
20 cities ant = 30, N_loop = 200 particle = 200, n_loop = 200
25 cities ant = 30, N_loop = 300 particle = 200, n_loop = 300
30 cities ant = 30, N_loop = 300 particle = 300, n_loop = 300

3.2 Results

Figure 3 shows that the average executing times of both algorithms among 10 times
executions tested for 10 cities, 15 cities, 20 cities, 25 cities and 30 cities. The SIB
algorithm performs significantly efficient in terms of executing time in the tests of 15
cities, 20 cities and 25 cities. For example, for the test with 25 cities, the average executing
time and average best distance for ACO is 15.6 s and 100 km, while it only needs 10.8
s for SIB to find an optimized solution of 104 km. Figure 4 shows the corresponding
distance. The total distances of the tests in 10 cities, 15 cities, 20 cities and 25 cities
are very close for both algorithms. However, in the test in TSP with 30 cities, the ACO
obtains a shorter distance then the SIB and the difference in average distance is about
10 km. Still, the SIB algorithm has the significant advantage of a short execution time to

Average Executing Time Comparison

25.0
216

-+—ACO
SIB

Executing Time (s)

20

0.0
10 city 15 city 20 city 25 city 30 city
Number of cities

Fig. 3. Average executing time comparison
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solve TSP, and it can obtain almost the same quality of solution in the problems under
25 cities and an adequately good solution in 30 cities.

Average Tour Distance Comparison
140000

120000

100000 /479
100481

80000 —

0000 [ - 74877 -+-ACO

62131 SIB
40000

Average Tour Distance (m)

20000

0
10 city 15 city 20 city 25 city 30 city
Number of cities

Fig. 4. Average tour distance comparison

3.3 Discussion

From the previous section, we know the SIB algorithm has good performance for solving
a small number of destinations ranging from 10 to 25 destinations. We expect that
the SIB method for TSP can be efficiently find optimal solutions in various practical
fields of small-size TSP, which has a wide range of applications because a route with
less than 25 destinations is close to common practice in the real-world problems. If
the number of destinations exceed 25, conventional wisdom suggests to group these
destinations into clusters first before executing optimization for groups with smaller
number of destinations. This kind of TSP problem is called generalized TSP (GTSP)
and their framework usually comes with a clustering stage of large number of destinations
and a TSP optimization of small number of destinations in a cluster. See [20, 21] for
details.

4 Conclusion

We present the SIB algorithm for addressing small-size Traveling Salesman Problem.
The experiment result shows that it works excellent with better efficiency than the tra-
ditional ACO method in a number of cities ranging from 15 to 25 cities. In reality, it is
seldom to schedule a daily route with more than 25 destinations due to the 24-h limit
and the driver’s working hours, so we expect the SIB algorithm for small size TSP can
be widely applied to solve various related problems efficiently and provide adequately
good solutions. We only propose the basic framework in this work and there are many
potential modifications to this framework to improve its practicality and feasibility.
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Abstract. Lion swarm optimization (LSO) is a swarm intelligence algo-
rithm that simulates lion king guarding, lioness hunting, and cub follow-
ing. However, there are problems that lions are easily out of bounds when
the range of activity is large and the position update formulas are not
universal, which affect the performance of LSO. Aiming at above prob-
lems, a swarm intelligence algorithm, lion swarm optimization by rein-
forcement pattern search (RPSLSO) is proposed. The algorithm is based
on the proposed modified lion swarm optimization (MLSO) and rein-
forcement pattern search (RPS) algorithm. The former solves above two
problems, and the latter enhances the local search capability of MLSO,
making the search more directional. In order to test the performance of
RPSLSO, RPSLSO was compared with MLSO, LSO and the other two
algorithms on the CEC2013 test function set. The experimental results
show that the performance of RPSLSO is better, and the modifications
to LSO and the proposed RPS in this paper are also effective.

Keywords: Modified lion swarm optimization - Reinforcement pattern
search - Q-learning - Pattern search

1 Introduction

Swarm intelligence algorithm is a kind of optimization algorithm by simulating
intelligent behaviors of biological population. Particle swarm optimization (PSO)
proposed by Kennedy in 1995 is a classic swarm intelligence algorithm [1]. Later,
swarm intelligence algorithms such as artificial fish swarm algorithm [2] and arti-
ficial bee colony algorithm [3] appeared one after another. In recent years, some
scholars have proposed swarm intelligence algorithms such as marine predators
algorithm [4] and artificial jellyfish search optimizer [5].

As animals at the top of the food chain, lions are inseparable from the intel-
ligent behaviors of lions such as cooperative hunting. At the same time, the
efficient hunting behavior of lions is worth learning. In recent years, some schol-
ars have proposed swarm intelligence algorithms based on the behaviors of lions
[6-10], with better results.

Lion swarm optimization (LSO) is a swarm intelligence algorithm proposed
by S. Liu in 2018 [11]. The algorithm simulates the intelligent behaviors of lion
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king guarding, lioness hunting, and cub following. The lion king guards territory
and possesses the priority of food, lionesses cooperate in hunting, and lion cubs
fall into eating, learning to hunt, and being expelled after entering adulthood.
LSO has a fast convergence speed, but there are problems that lions are easily
out of bounds when the range of activity is large and the position update for-
mulas are not universal. In response to above problems, a modified lion swarm
optimization(MLSO) is proposed in Sect. 2. In order to enhance the local search
capability of MLSO, the paper proposes a reinforcement pattern search (RPS)
algorithm in Sect. 3, which uses Q-learning to guide the pattern search to make
the local search more directional. In Sect.4, the lion swarm optimization by
reinforcement pattern search (RPSLSO) is proposed. In order to verify the per-
formance of RPSLSO, the paper compares RPSLSO with MLSO, LSO, PSO,
and Gaussian bare bones particle swarm optimization (GBBPSO) [12] on the
CEC2013 test function set in terms of error and convergence curve in Sect. 5.
Experimental results show that RPSLSO performs better, and MLSO and RPS
are also effective.

2 Modified Lion Swarm Optimization

2.1 Lion Swarm Optimization

The locations of lion king, lioness and lion cub are updated as follows.
The lion king moves around the best food area to ensure his own privileges,
and the location is updated:

it =gF (1+4|pF - g"|1) . (1)

where g* represents the optimal position of the k-th generation group, v is a
standard normal random number, p¥ represents the historical optimal position
of the k-th generation of the i-th lion.

A lioness is also known as a hunting lion. It needs to cooperate with another
lioness to hunt, and the position is updated:

k1 _ DY DL

: P (L +ap), e)

where p¥ is the historical optimal position of a lioness randomly selected in the
k-th generation. oy is defined as:

£\ 10
= step - _ hd
oy = step exp[ 30<T>

step = 0.1 (high — M)

b

where

indicates the maximum step size that the lion can move within the range of
activity. low and high are the minimum mean and maximum mean of each
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dimension in the range of lion activity space, respectively. T is the maximum
number of iterations, and ¢ is the current number of iterations.
The position of lion cub is updated:

*+p¥

P (l+an), ¢<3

k+1 __ ;

o = BedPl (14 ), $<¢<
2<g<

~k .k
% (1 + OéCpY) 9

: 3)

Wl

1

where p¥, is the k-th historical optimal position of lioness followed by lion cub.
q is a uniformly distributed random number. «. is a parameter that decreases
linearly with the number of iterations and it is defined as:

(7)
o, = step )

g" = low + high — g*
is the ¢-th lion cub being driven away from the lion king.

LSO converges fast, but it is easy to fall into the local optimum, and the
local search ability is not strong enough.

2.2 Problems with LSO

Problem 1: In LSO, if the search range of the optimized problem is large, that is,
the range of the lion’s activity space is large, so that the step and the parameters
ay and a. in the early stage of the algorithm operation are relatively large.
Observing the update formula (2) and (3) of lionesses and cubs, we can find that
when the search range of the optimized problem is large, 1 + ayy and 1 + a.y
in parentheses will be very large, so the positions of lionesses and cubs will
frequently cross the boundary. After crossing the boundary, they are initialized
randomly, which makes the directionality and search efficiency of LSO worse,
and tends to be random. This problem can be summarized as lions are easily
out of bounds when the range of activity is large.

Problem 2: Suppose the minimum point of a test function is at the origin, that
is, all dimensions are 0. In the lioness’s update formula (2) and the cub’s update
formula (3), once 1+ a7y and 1+ a7y in parentheses are equal to 0 or approach
0, LSO will quickly approach the minimum point, and the fitness curve appears
as a jump. Taking into account the number of lions and the number of iterations,
the probability of the above occurrence is relatively high. In addition, LSO is
easy to fall into local optimum when the function with local minimum at the
origin is optimized by LSO. This problem can be summarized as non-universal
position update formulas.

It can be seen that the above two problems are caused by 1+oa vy and 1+acy
in parentheses, so we can start from here.
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2.3 Modifications to LSO

The original paper of LSO obtains the position update distribution of lion
through normal distribution sampling, and illustrates it with a one-dimensional
distribution. The location update distribution of the lion king is:

zi(t+1) ~ N (g, |ps fg|2)~ (4)

The location update distribution of the lioness is:

T (t+1)~N(pi;pc,afc>. (5)

The location update distribution of the cub is:

N (£ ad), g <3
2 (t 4+ 1) ~ { N (P52 a7)

g+tpi 2
NE)

¢<3. (6)
qg<1

WIN o=
INIA

From above three normal distributions, we can see that the standard deviations
of the location update distribution of lion king, lioness and cub are |p; — g|, ay
and «, respectively, and the maximum values of the latter two are only 1/10 of
the lion’s range of activity, and the three distributions are not close to 0, which
better avoid the two problems mentioned in Sect. 2.2. Then we can redesign the
position update formula of the lion swarm according to the three distributions.
For the sake of simplification, let each dimension obey the above distribution,
as shown below.

Given X ~ N (0,1), then Y = g+ 0X ~ N (p,0?).

According to (4), the position update formula of the lion king is rewritten
as:

zft = g" +|pf —g" 07, (7)

where 7 is a D-dimensional standard normal distribution random number vector,
©® represents the Hardman product, and other symbols have the same meanings
as above.

According to (5), the update formula for lioness is rewritten as:

ph+l _ PLEPe

According to (6), the position update formula of cub is rewritten as:

1
k+1 __ +p;
it =L Pl gy Log <2 ©)
’ 2
5<4q

Through above modifications, MLSO is obtained. By comparing the position
update formulas in LSO, we can clearly see the differences between them.
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3 Reinforcement Pattern Search

In order to strengthen the local search ability of the lion king in MLSO, the time
complexity of the algorithm is required to increase slightly, which requires the
local search to be directional. For this reason, RPS is introduced, and the idea
of Q-learning is used in pattern search.

3.1 Pattern Search

The pattern search algorithm is an improved search method based on the coordi-
nate search method proposed by Hooke and Jeeves [13]. The algorithm includes
two important steps: axial search and pattern movement, which are performed
alternately to achieve the purpose of search. The pseudo code of the algorithm
is shown in Algorithm 1.

Algorithm 1. Pattern Search
1: Initialization: initial point 1, step J, dimension D, acceleration factor «, deceler-

ation factor 3, accuracy €, orthonormal basis {e;, j =1,2,---, D}, y; = x1, k = 1,
Ji=1

2: while § > ¢ do

3: for j € [1,D] do

4: if f (yj +5e]~) <f (yj) then

5: yjH:yj—i—éej;

6: else if f (y; —de;) < f (y;) then

7 Yjir1=Y; — dej;

8: else

9: Yit1 = Y5

10: end if

11: end for
12: if f(ypy1) < f(xk) then

13: Th+1 = Ypi1, Y1 = Tht1 + @ (Trt1 — Tk);
14: else

15: 0=00,y, = Tk, Thi1 = Tk;

16: end if

17: k=k+1;
18: end while
19: Return the point x after the search.

3.2 Q-learning

The main components of reinforcement learning include a learning agent, an
environment, states, actions and rewards. Q-learning is a typical and commonly
used reinforcement learning algorithm [14]. Let S = [s1,82, - ,8,] be a set
of states of the learning agent, A = [aj, a2, - ,a,] be a set of actions that
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the learning agent can execute, r;4; be the immediate reward acquired from
executing action a, v be the discount factor within [0,1], a be the learning rate
within [0,1], @ (s¢,a:) be the total cumulative reward that the learning agent
has gained at time ¢, then the updated Q value is:

Qiv1(5¢,a) = Q (5¢,a1) + o |reg1 + VmgXQ (s¢41,a) —Q (Suat)} . (10)

3.3 Reinforcement Pattern Search Algorithm

The RPS algorithm is shown in Algorithm 2. Algorithm2 performs a one-
dimensional pattern search according to the dimension selected by random or Q
table, and the Q table update formula is simplified by (10). Use the Q-learning
guidance mode to search for better directionality.

Algorithm 2. Reinforcement Pattern Search(RPS)

1: Initialization: initial point @1, step §, dimension D, acceleration factor «, decel-
eration factor 8, accuracy ¢, K, p € [0, 1], immediate reward r, learning rate aq,
Q table Q = zeros (1, D), orthonormal basis {e;, j =1,2,---, D}, y =1, k = 1;

: while § > ¢ && k < K do

if rand < p then //rand ~ U (0, 1)

Random choose d € [1, DJ;
else
Select the dimension d where Q (d) = max (Q);

end if
/*If the following two if conditions are out of bounds, initialize randomly*/

8: if f(y+deq) < f(y) then

9: y=y+deq, r=1;

10: else if f(y —deq) < f (y) then
11: y=y —odeq, r=1;

12: else

13: r=—1;

14: end if

15: Q(d)=Q(d)+ ag (r—Q(d)); //Update Q table
16: if f(y) < f (zx) then
/*Initialize randomly if y (d) is out of bounds*/

17: Trt1 =Y, Y (d) = Try1 (d) + @ (@rga (d) —xk (d)), k =k + 15
18: else

19: 6 = [6;

20: end if

21: end while
22: Return the point x after the search.
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4 Lion Swarm Optimization by Reinforcement Pattern
Search

In this paper, the proposed RPS algorithm (Algorithm2) is introduced into
MLSO, and the local search ability of MLSO is improved by strengthening the
local search ability of lion king. The proposed RPSLSO is shown in Algorithm 3.

Algorithm 3. Lion Swarm Optimization by Reinforcement Pattern Search

(RPSLSO)

1: Initialization: the number of lions NV, the maximum number of iterations 7', the
proportion of adult lions;

2: Initialize the position of the lion swarm randomly, and calculate the fitness;

3: Get the historical optimal position pBest and historical optimal value pValue of
each lion;

4: Obtain the historical optimal position gBest and the optimal value gV alue of the
lion swarm;

5 t=1;

6: while t < 7T do

7: Compute the Q learning rate ag = 1 — 0.9%;

8: Update the position of the lioness by (8);

9: Assign g” to the lion king, and use Algorithm 2 on the lion king;

10: Update the position of the cub by (9);

11: for i € [1,N] do

12: if fitness(i) < pValue(i) then
13: pValue(i) = fitness(i);

14: pBest(i) = lion(i);

15: end if

16: if pValue(i) < gValue then
17: gValue = pValue(i);

18: gBest = pBest(i);

19: end if

20: end for

21: t=1t+1;
22: end while
23: Return gBest and gValue.

5 Experiment and Analysis

In order to verify the performance of the RPSLSO proposed in this paper, includ-
ing the modifications to LSO and the proposed RPS, the proposed algorithm is
compared with MLSO, LSO and PSO. In addition, the original LSO paper men-
tioned that the basic update method of the algorithm comes from GBBPSO, so
GBBPSO is also added to the comparison.
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5.1 Experimental Setup

The CEC2013 test function set [15] is selected as the experimental test function,
which includes 5 unimodal functions, 15 multimodal functions and 8 composi-
tion functions, a total of 28 test functions, which are rich in types and widely
used. The domain of each dimension of 28 functions is [—100, 100], and function
dimension is set to 30.

The experiment was carried out on the Matlab2019a platform of Windows10.
The population size of the five algorithms is set to 100, and the number of
iterations is set to 5000. In the PSO algorithm, the acceleration constant c¢; =
co = 2, and the inertia weight w linearly decreases from 0.9 to 0.4. The proportion
factors of adult lions in the three lion swarm optimization algorithms are all 0.2.
In the RPSLSO, the acceleration factor o« = 1, the deceleration factor 5 = 0.5,
the accuracy € = 1076, the number of searches K = 10, and the initial step size
0 = 1. Each algorithm runs independently 30 times to obtain the errors of 30
results, then the mean error is calculated.

5.2 Comparison of Experimental Results

The average error of each algorithm is shown in Table 1. Sort the error of each
algorithm under each test function from small to large, then give an evaluation
of 1 to 5 respectively, and give the same evaluation if the error is the same, and
finally accumulate the evaluations of all test functions to get Rank. The smaller
the Rank value, the smaller the mean error on the 28 test functions, and the
better the result.

From the Rank value in Table 1, it can be seen that the proposed RPSLSO
has the best result on the CEC2013 function set, followed by MLSO, the result
of LSO is the worst, and PSO and GBBPSO are in the middle. It shows that
RPSLSO and MLSO are better than the other three algorithms, which proves
that the modifications to LSO in this paper is effective, and RPSLSO is bet-
ter than MLSO, which proves that RPS is also effective. The above conclusions
can also be seen from the number of functions that achieve the smallest error
in several algorithms. RPSLSO has the smallest error on 15 functions, which
is more than half of the total number of functions. MLSO performs best on 7
functions, four of which are combination functions. PSO and GBBPSO perform
best on 6 and 4 functions respectively. The error of LSO is the smallest on only
one function. Dividing Table 1 into three parts: unimodal functions, multimodal
functions, and combination functions, RPSLSO performs best on unimodal func-
tions and slightly worse on multimodal functions, but it is also better than the
other four. RPSLSO is slightly worse than MLSO in combination functions. This
may be due to the slightly higher complexity of the combination functions, which
weakens the local search ability of RPS.

In order to compare the performance of the five algorithms intuitively, select
F2, F6, F16, F27 among the 28 test functions, and draw the logarithmic error
curves of five algorithms as shown in Fig. 1. F2 is an unimodal function, F6 and
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F16 are multimodal functions, F27 is a combination function. All three func-
tions are selected. It can be seen from Fig.1 that RPSLSO converges fast on
F2, F6 and F16 functions, with relatively small errors. It shows that RPSLSO
has more advantages when optimizing unimodal functions and multimodal func-
tions. RPSLSO and MLSO have similar curves on F27. Although the initial
convergence speed is not as good as GBBPSO, the final error is smaller than
GBBPSO, and GBBPSO quickly stagnated. Although MLSO performs generally
on unimodal and multimodal functions, slightly better than PSO, it performs
better on combination functions, which can also be seen from Table 1.

Table 1. Mean errors of five algorithms.

Function | RPSLSO MLSO LSO PSO GBBPSO

F1 0.00E+00 | 2.27E—13 | 5.78E+03 |2.27TE—13 | 0.00E+00
F2 1.68E+05 | 6.35E4+06 |1.11E408 |9.66E+06 | 1.73E+406

F3 3.39E+06 | 5.72E+06 | 3.79E+10 | 7.45E407 | 4.37TE407

F4 2.89E+03 | 1.36E+04 | 4.09E+04 | 3.46E+403 | 4.97E+403

F5 1.53E—-06 |3.91E—02 | 1.69E403 |3.41E—13 |2.27E—-13
F6 8.42E+00 | 3.54E+01 |4.29E+02 | 6.54E+401 | 3.48E+401

F7 5.09E+00 | 5.85E+00 | 1.63E+02 | 3.00E4+01 | 7.26E+401

F8 2.09E+01 | 2.09E+01 | 2.09E+01 | 2.09E+01 | 2.10E401

F9 1.11E+401 | 1.24E401 | 3.85E401 |2.18E+01 |2.60E+401

F10 2.08E—01 | 2.79E—01 |9.25E+02 |1.63E—01 | 1.73E—01

F11 2.68E4+01 | 1.57TE+01 |2.72E+02 | 1.54E+401 | 4.19E+401

F12 2.45E4+01 | 1.76E+401 | 2.94E+02 |8.07TE4+01 | 9.94E+401

F13 5.10E4+01 | 4.05E+01 | 2.74E+02 | 1.42E+402 | 1.82E+02

Fl14 4.56E+03 | 6.17TE403 | 7.49E403 | 7.20E4+02 | 6.76E+02
F15 4.50E+03 | 5.28E+403 | 7.30E+403 | 6.47E4+03 | 5.06E+03

F16 1.61E+400 | 2.35E400 |2.34E400 |2.15E400 | 2.34E400

F17 1.01E4+02 | 1.78E402 | 3.34E402 | 5.01E+401 | 6.95E+01

F18 1.16E+402 | 1.86E+402 |3.16E402 |2.29E+02 | 1.59E+02

F19 6.07E4+00 | 5.80E+00 |8.22E+02 | 2.70E400 | 3.87E+400

F20 1.05E+01 | 1.14E+01 | 1.30E+4+01 | 1.35E401 | 1.12E+01

F21 3.33E4+02 | 3.04E+02 | 1.75E+03 | 2.93E+402 | 2.99E+02

F22 3.98E+03 | 3.38E+03 | 7.73E+03 |8.12E402 | 6.75E+02
F23 4.59E+03 | 3.61E+403  7.79E403 | 6.74E403 | 4.94E+03

F24 2.04E+02 | 2.04E+402 | 3.06E+02 | 2.66E4+02 | 2.65E4+02

F25 2.19E402 | 2.07TE+02 | 3.25E+02 | 2.84E+402 | 2.91E+402

F26 2.21E402 | 2.00E+02 | 2.05E+02 | 3.37TE+4+02 | 2.46E402

F27 3.43E+02 | 3.45E402 | 1.17TE+03 | 8.82E402 | 9.57TE+402

F28 2.80E+02 | 3.00E+02 |2.41E+03 |4.03E402 | 3.00E402

Rank 56 73 132 80 77

In short, RPSLSO has better optimization performance and higher conver-
gence accuracy than the other four algorithms. The performance of MLSO is
also much better than LSO. It proves that both the modifications to LSO and
the proposed RPS are more effective, which improve the performance of LSO.
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Fig. 1. Logarithmic error curves of five algorithms.

6 Conclusion

This paper proposes a lion swarm optimization by reinforcement pattern search
(RPSLSO). Firstly, a modified lion swarm optimization (MLSO) is proposed,
which solves the problems of the basic lion swarm optimization (LSO) that
lions are easily out of bounds when the range of activity is large and the posi-
tion update formulas are not universal. Secondly, based on the pattern search
algorithm and Q-learning algorithm, a new local search algorithm-reinforcement
pattern search (RPS) algorithm is proposed. The advantages are that the local
search is more directional and the time complexity is slightly increased. Finally,
RPSLSO is proposed based on MLSO and RPS. In order to test the perfor-
mance of RPSLSO, the CEC2013 test function set was used to compare RPSLSO
with MLSO, LSO, particle swarm optimization and Gaussian bare bones particle
swarm optimization. Comparing the mean error and convergence curve of each
algorithm, it is found that RPSLSO has the best performance, higher accuracy,
and faster convergence speed. The performance of MLSO is also much better
than LSO, and MLSO and RPS are both effective.

Acknowledgement. This study is supported by the Shandong Province Science
Foundation of China (Grant No. ZR2020MF153) and Key Innovation Project of Shan-
dong Province (Grant No. 2019JZ2ZY010111).



RPSLSO 129

References

10.

11.

12.

13.

14.

15.

Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN
1995-International Conference on Neural Networks, vol. 4, pp. 1942-1948. IEEE
(1995)

Jiang, M., Yuan, D.: Artificial Fish Swarm Algorithm and its Application. Science
Press, Beijing (2012)

Jiang, M., Yuan, D.: Artificial Bee Colony Algorithm and its Application. Science
Press, Beijing (2014)

Faramarzi, A., Heidarinejad, M., Mirjalili, S., Gandomi, A.: Marine predators algo-
rithm: a nature-inspired metaheuristic. Expert Syst. Appl. 152, 113377 (2020)
Chou, J., Truong, D.: A novel metaheuristic optimizer inspired by behavior of
Jellyfish in ocean. Appl. Math. Comput. 389, 125535 (2021)

Kaveh, A., Mahjoubi, S.: Lion pride optimization algorithm: a meta-heuristic
method for global optimization problems. Scientia Iranica 25(6), 3113-3132 (2018)
Boothalingam, R.: Optimization using lion algorithm: a biological inspiration from
lion’s social behavior. Evol. Intel. 11(1), 31-52 (2018)

Yazdani, M., Jolai, F.: Lion optimization algorithm (LOA): a nature-inspired meta-
heuristic algorithm. J. Comput. Des. Eng. 3(1), 24-36 (2016)

Rajakumar, B.: Lion algorithm for standard and large scale bilinear system iden-
tification: a global optimization based on lion’s social behavior. In: 2014 TEEE
Congress on Evolutionary Computation (CEC), pp. 2116-2123. IEEE (2014)
Rajakumar, B.: The lion’s algorithm: a new nature-inspired search algorithm. Pro-
cedia Technol. 6, 126-135 (2012)

Liu, S., Yang, Y., Zhou, Y.: A swarm intelligence algorithm-lion swarm optimiza-
tion. Pattern Recogn. Artif. Intell. 31(5), 431-441 (2018)

Kennedy, J.: Bare bones particle swarms. In: Proceedings of the 2003 IEEE Swarm
Intelligence Symposium, SIS 2003 (Cat. No. 03EX706), pp. 80-87. IEEE (2003)
Wei, M., Sun, Z.: A global cuckoo optimization algorithm using coarse-to-fine
search. Acta Electron. Sin. 43(12), 2429-2439 (2015)

Samma, H., Lim, C., Saleh, J.: A new reinforcement learning-based memetic par-
ticle swarm optimizer. Appl. Soft Comput. 43, 276-297 (2016)

Liang, J., Qu, B., Suganthan, P., Herndndez-Diaz, A.: Problem definitions and
evaluation criteria for the CEC 2013 special session on real-parameter optimization.
Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China
and Nanyang Technological University, Singapore, Technical Report 201212(34),
281-295 (2013)



l‘)

Check for
updates

Fuzzy Clustering Algorithm Based
on Improved Lion Swarm Optimization
Algorithm

Haiyan Yu!, Mingyan Jiang'®® Dongfeng Yuan', and Miaomiao Xin?

! School of Information Science and Engineering, Shandong University,
Qingdao 266237, China
jiangmingyan@sdu.edu.cn
2 School of Mechanical and Electrical Engineering, Qilu Institute of Technology,
Jinan 250200, China

Abstract. Aiming at the shortcomings of fuzzy C-means (FCM) clus-
tering algorithm that it is easy to fall into local minima and sensitive
to initial values and noisy data, this paper proposes a fuzzy clustering
algorithm based on improved lion swarm optimization algorithm. Aiming
at the problem that lion swarm optimization (LSO) algorithm is easy to
fall into the local optimum, this paper improves lion swarm optimiza-
tion algorithm by introducing sin cos algorithm and elite opposition-
based learning. In addition, the introduction of a supervision mechanism
enhances the lions’ ability to jump out of local optimum and improves
the local search ability of lion swarm optimization algorithm. The opti-
mal solution obtained by improved lion swarm optimization algorithm
is used as the initial clustering center of FCM algorithm, then FCM
algorithm is run to obtain the global optimal solution, which effectively
overcomes the shortcomings of FCM algorithm. The experimental results
show that, compared with original FCM clustering algorithm, FCM clus-
tering algorithm based on improved lion swarm optimization algorithm
has improved the algorithm’s optimization ability and has better clus-
tering results.

Keywords: Fuzzy C-mean clustering + Lion swarm optimization
algorithm - Sin cos algorithm - Data mining

1 Introduction

Cluster analysis is an important part of data mining technology. It can discover
new and meaningful data distribution patterns from potential data. Clustering is
to group data according to its own characteristics. The important feature is that
things are clustered, that is, the larger the gap between different groups of data,
the more obvious, the better, and the data in each group should be as similar as
possible, and the smaller the gap, the better. Therefore, the boundaries of differ-
ent categories are clear. But in the real world, there are many practical problems
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without strict attributes. Therefore, people have proposed a soft division of the
objects to be processed. The fuzzy set theory proposed by L.A. Zedeh provides
a powerful analysis tool for soft partitions. The use of fuzzy methods to deal
with clustering problems is called fuzzy clustering. The fuzzy C-means (FCM,
where C represents the number of clustering categories) clustering algorithm was
established by Dunn [1] and Bezdek [2]. In summary, there are mainly the fol-
lowing aspects: (1) The number of initial centers needs to be given in advance,
and there are no guidelines to follow; (2) Only clumpy clusters can be identified,
irregular clusters and ribbon clusters cannot be identified, and they are sensitive
to noise in many cases; (3) Sensitive to the initial clustering center, it is easy to
fall into the local optimum, it is difficult to obtain the global optimum, or the
entire clustering process takes a long time to converge to the global optimum,
which affects the clustering effect.

In recent years, many documents have proposed improved methods for prob-
lem (3), which can be summarized as: combining the improvement of genetic
algorithm, the improvement of cuckoo optimization algorithm, the improvement
of bat algorithm, etc., such as fuzzy clustering based on improved genetic algo-
rithm [3], fuzzy clustering based on cuckoo optimization algorithm [4], fuzzy
clustering based on bat algorithm [5]. These algorithms use different methods to
improve FCM algorithm, and improve the performance of the FCM algorithm
to a certain extent. With the advent of the intelligent era, swarm intelligence
algorithm is an important branch of intelligent optimization methods. Because
of its distributed, self-organizing, cooperative, robust and easy to implement,
swarm intelligence algorithm has good performance in many optimization prob-
lems. The commonly used algorithms include ABC [6], AFSA [7], IA [8], PSO [9]
and LSO [10] algorithm, etc. This paper introduces improved lion swarm opti-
mization (ILSO) algorithm into FCM algorithm to improve FCM algorithm’s
shortcomings that it is easy to fall into the local optimum and sensitive to the
initial clustering center. Tested on a classic data set, the experimental results
show that this improvement is effective.

2 The Basic Theory

2.1 Fuzzy C-Mean Clustering

The fuzzy C-means clustering algorithm is an iterative optimization algorithm,
which can be described as minimizing the exponential function. Suppose set
X ={x1, 29, ...,x,} is a finite data set on the feature space R", then X is divided
into ¢ categories (2 < ¢ < n), and suppose cluster centers cis V' = {v1, va, ..., v }.
n x c-dimensional matrix U = (u;;),u;; € [0,1] represents the membership
matrix of each sample, where: i =1,2,..n;7 =1,2,...c.

The objective function of FCM algorithm is as follows, the minimum value
is obtained under the constraints of formula (2):

n (&
Trom (U V) =D > ullai — v;] %, (1)

i=1 j=1
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c
Zuij =1, Uij € [Oa 1] . (2)
j=1

Applying Lagrangian multiplication and combining the constraints of formula
(2) to derive formula (1), we get:

n m .
dim1 Ui T4

n m
dic Uy

1
e

Siet |t ]
where: m is a fuzzy weighted index, and a suitable m value has the effects of
suppressing noise and smoothing the membership function, but how to optimize
the parameter m is still lacking theoretical guidance.

FCM algorithm obtains fuzzy clustering of the data set by iterative opti-
mization of the objective function. The objective function is decreasing in the
iterative process. This method depends to a large extent on the selection of
the initial clustering center. The unreasonable selection of the central matrix

will cause false clustering, increase the complexity of the system and reduce the
efficiency of the algorithm. The pseudo code of FCM algorithm is as follows:

3)

’Uj:

(4)

uij

Algorithm 1. FCM

1: Input: The number of clusters ¢ and the data set.

2: Out: The cluster center set v; minimizes Jroam (U, V).

3: According to the number of clusters ¢, randomly give the cluster center Vo =
(v1,v2,...,vc) and the termination error €, and set the current iteration number as
t=0.

4: Find the membership matrix U; according to formula (3).

: According to formula (4), find the cluster center Vi;1 of the next iteration.

6: If | U — U'|| < ¢, end the iteration, otherwise set t = ¢ + 1 and return to 4.

ot

2.2 Lion Swarm Optimization Algorithm

According to a certain proportion, lion group is divided into three categories:
lion king, lioness and cub. The lion king is responsible for the distribution of
food, the protection of territory and the protection of the cub. The lioness is
mainly responsible for hunting and taking care of the cub. Update the lioness
position according to formula (5).

t+17p§+p21 - 30 t\1" 5
€Z; *T( +o‘f’>/)7 Oéf—St@p~eXp - T ) ()
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where p! is the i lioness of the ¢ generation. p. is the lioness randomly selected
from the ¢ generation of lioness. 7 is the random number generated by normal
distribution. «a; is perturbation factor. step is the step size of the lioness. T is
the population iteration number. t is the current iteration number.

The activities of cub are mainly divided into three situations: when they are
hungry, they eat close to the lion king; when they are full, they learn to hunt
with the lioness; when they grow up, they will be driven out of the group by the
lion king and come back to challenge the status of the lion king after growing
up. Update the cub position according to formula (6).

+p;
gfzpf(l—s-acv), qgé
t+1 b t
o = PP (14 ayy), 1<q< 2, (6)
T4Pl (14 am), 2<q<1
5 )y 55¢<

where g is the global optimal lion of the generation. p!, is the history optimal
position of lioness. a, is perturbation factor. g’ is the position far away from the
lion king.

2.3 Sin Cos Algorithm

Sin cos algorithm (SCA) [11] is optimized by using the oscillation characteristics
of sine function and cosine function. Its advantages are good convergence and
easy implementation.

[min] f () = min f (21, 22, ..., ) 1)
s.t Lt < Xl < Ui,i = 1,2,...,n ’

where X is the i-th variable to be optimized, L; and U; are the upper and lower
boundaries of X, respectively.

SCA first randomly generates IV search individuals, calculates the fitness of
each individual according to the fitness function, and records the individual with
the best fitness as the optimal individual X*. The individual position update
formula in the optimization process is:

St X!+ rysin(rg) [rs X — X!, rs < 0.5 (8)
i Xt+ricos(ra)|rs Xy — X! ,ry > 0.5

t
r=a (1 - ) . 9)
tIIlaX

Among them, X! is the position of the i-th individual in the ¢-th generation
population, X/ is the current optimal individual position. a is a constant greater
than 1, and is assigned a value of 2 in this article, ¢ is the number of previous
iterations and ¢,,,x is the maximum number of iterations. ro € (0, 27) is a random
number subject to uniform distribution, rs € (0,2) is a random number subject
to uniform distribution, 4 € (0,1) is a random number subject to uniform
distribution.
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2.4 Elite Opposition-Based Learning

Opposition-Based Learning (OBL) is a new strategy that has emerged in the
field of computational intelligence in recent years. Studies have shown that the
probability that the reverse solution is closer to the global optimal solution is
50% higher than the current solution. This strategy can effectively enhance the
diversity of the population and prevent the algorithm from falling into local
optimums. Elite Opposition-Based Learning (EOBL) [12] is proposed for the
problem that the reverse learning strategy is not necessarily easier to find the
global optimal solution than the current search space. This strategy uses dom-
inant individuals to construct the reverse population, in order to increase the
diversity of the population.

Assuming that X; = (2;1, %2, ..., z;p) is an ordinary particle, and the corre-
sponding extreme is the elite particle X7 = (2, x5, ..., x5p), the elite reverse
solution can be defined as:

Xie =LU (daj + db]) - l‘?j, (10)

where xf; € [aj,b;],k € (0,1) are random numbers that obey a normal distri-
bution, and [daj,db;] is the dynamic boundary of the j-th dimensional search
space, which can be calculated according to formula (11):

da; = min (x;;), db; = max (x;;). (11)

Using dynamic boundaries to replace the fixed boundaries of the search space can
accumulate search experience, so that the generated inverse solution is located
in the gradually reduced search space and accelerate the algorithm convergence.
When the generated reverse solution lies outside the boundary, use a randomly
generated method to reset. As shown in formula (12):

X{ =rand (daj, db;) . (12)

3 The Improved Lion Swarm Optimization Algorithm

3.1 The Improved Lion Swarm Optimization Algorithm

The improvement of lion swarm optimization is to update the positions of lioness
and cub.

Improvement of Lioness Position Updating Method. For the location
update method of lioness, introduce the sine part of sin cos optimization algo-
rithm. Update the position of the lioness according to formula (13).

X;.H_l = th —+ 7 sin (’1"2) (T’ggt - Xf) (13)
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Improvement of Position Updating Method for Cub. For the position
update mode of cub, introduce sin cos optimization algorithm. Update the posi-
tion of the cub according to formula (14).

if rs < 0.5
if rqg <0.5
X = XE 4y sin () (139t — XYF)
else
X = Xt + 7y cos (r2) (ragh — XY) (14)
else
if ry <0.5
X = X+ rysin (r2) (rapl, — X7)
else

X = X+ 7y cos (r2) (r3pt, — XP)
The Introduction of Supervision Mechanis