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Preface

This book and its companion volume, comprising LNCS volumes 12689 and 12690,
constitute the proceedings of The Twelfth International International Conference on
Swarm Intelligence (ICSI 2021) held during July 17–21, 2021, in Qingdao, China, both
on-site and online.

The theme of ICSI 2021 was “Serving Life with Swarm Intelligence.” The con-
ference provided an excellent opportunity for academics and practitioners to present
and discuss the latest scientific results and methods, innovative ideas, and advantages
in theories, technologies, and applications in swarm intelligence. The technical pro-
gram covered a number of aspects of swarm intelligence and its related areas. ICSI
2021 was the twelfth international gathering for academics and researchers working on
most aspects of swarm intelligence, following successful events in Serbia (ICSI 2020,
virtually), Chiang Mai (ICSI 2019), Shanghai (ICSI 2018), Fukuoka (ICSI 2017), Bali
(ICSI 2016), Beijing (ICSI-CCI 2015), Hefei (ICSI 2014), Harbin (ICSI 2013),
Shenzhen (ICSI 2012), Chongqing (ICSI 2011), and Beijing (ICSI 2010), which
provided a high-level academic forum for participants to disseminate their new research
findings and discuss emerging areas of research. ICSI 2021 also created a stimulating
environment for participants to interact and exchange information on future challenges
and opportunities in the field of swarm intelligence research.

Due to the ongoing COVID-19 pandemic, ICSI 2021 provided opportunities for
both online and offline presentations. On the one hand, ICSI 2021 was held normally in
Qingdao, China, but on the other hand, the ICSI 2021 technical team provided the
ability for authors who were subject to restrictions on overseas travel to present their
work through an interactive online platform or video replay. The presentations by
accepted authors were made available to all registered attendees on-site and online.

The host city of ICSI 2021, Qingdao (also spelled Tsingtao), is a major
sub-provincial city in the eastern Shandong province, China. Located on the western
shore of the Yellow Sea, Qingdao is a major nodal city on the 21st Century Maritime
Silk Road arm of the Belt and Road Initiative that connects East Asia with Europe, and
has the highest GDP of any city in the province. It had jurisdiction over seven districts
and three county-level cities till 2019, and as of 2014 had a population of 9,046,200
with an urban population of 6,188,100. Lying across the Shandong Peninsula and
looking out to the Yellow Sea to its south, Qingdao borders the prefectural cities of
Yantai to the northeast, Weifang to the west, and Rizhao to the southwest.

ICSI 2021 received 177 submissions and invited submissions from about 392
authors in 32 countries and regions (Algeria, Australia, Bangladesh, Belgium, Brazil,
Bulgaria, Canada, China, Colombia, India, Italy, Japan, Jordan, Mexico, Nigeria, Peru,
Portugal, Romania, Russia, Saudi Arabia, Serbia, Slovakia, South Africa, Spain,
Sweden, Taiwan (China), Thailand, Turkey, United Arab Emirates, UK, USA, and
Vietnam) across 6 continents (Asia, Europe, North America, South America, Africa,
and Oceania). Each submission was reviewed by at least 2 reviewers, and had on



average 2.5 reviewers. Based on rigorous reviews by the Program Committee members
and additional reviewers, 104 high-quality papers were selected for publication in this
proceedings, an acceptance rate of 58.76%. The papers are organized into 16 cohesive
sections covering major topics of swarm intelligence research and its development and
applications.

On behalf of the Organizing Committee of ICSI 2021, we would like to express our
sincere thanks to the International Association of Swarm and Evolutionary Intelligence
(IASEI), which is the premier international scholarly society devoted to advancing the
theories, algorithms, real-world applications, and developments of swarm intelligence
and evolutionary intelligence. We would also like to thank Peking University, Southern
University of Science and Technology, and Ocean University of China for their
co-sponsorships, and the Computational Intelligence Laboratory of Peking University
and IEEE Beijing Chapter for their technical co-sponsorships, as well as our supporters
including the International Neural Network Society, World Federation on Soft Com-
puting, International Journal of Intelligence Systems, MDPI’s journals Electronics and
Mathematics, Beijing Xinghui Hi-Tech Co., and Springer Nature.

We would also like to thank the members of the Advisory Committee for their
guidance, the members of the Program Committee and additional reviewers for
reviewing the papers, and the members of the Publication Committee for checking the
accepted papers in a short period of time. We are particularly grateful to Springer for
publishing the proceedings in the prestigious series of Lecture Notes in Computer
Science. Moreover, we wish to express our heartfelt appreciation to the plenary
speakers, session chairs, and student helpers. In addition, there are still many more
colleagues, associates, friends, and supporters who helped us in immeasurable ways;
we express our sincere gratitude to them all. Last but not the least, we would like to
thank all the speakers, authors, and participants for their great contributions that made
ICSI 2021 successful and all the hard work worthwhile.

May 2021 Ying Tan
Yuhui Shi
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Swarm Unit Digital Control System Simulation
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Abstract. Physical swarm unit, as an object under digital control is analyzed.
It is shown, that Von Neumann digital controller, as a physical device, has new
properties in comparison with analogue controllers, namely due to sequentially
interpretation of control algorithm there are time delays between quests to sen-
sors and actuators, that cause influence on a swarm unit performance as a whole.
Flowchart of digital control system is worked out and closed loops transfer func-
tion, which takes into account real properties of VonNeumann digital controller, is
obtained. The method of time lags estimation, based on notion the interpretation
of arbitrary complexity cyclic algorithm as semi-Markov process, is proposed.
Theoretical postulates are confirmed by simulation of two-loop digital control
system functioning. Results of simulation emphatically show how data skew and
feedback lag affect on swarm unit control dynamics.

Keywords: Physical swarm unit · Object under control · Von Neumann
controller · Semi-Markov process · Transfer function · Time delay · Data skew ·
Feedback lag

1 Introduction

Basic concept of modern swarm development is complication of tasks, which decide
every unit, when solving common swarm aim problem [1–3]. When physical swarm
units operate at the environment space, the problem is to minimize a time of units
mutual control, that increase demands to units digital control systems [4]. As a rule,
for control the unit onboard equipment Von Neumann computers are used. This device,
in comparison with analogue controllers, possesses with new properties, which follows
from sequential, operator-by-operator, interpretation of algorithm [5–7], embedded into
controller. So it is necessary to spend any time to calculate action, transmitted to actuator
after receiving data from sensors [8]. Time intervals emerging between input/output data
vectors (data skew), and between input data from sensors and output data to actuators
(pure lag) affect on quality characteristics of swarm unit control system as a whole [9,
10], so they should be taken into account when design the system.

There are no any difficulties in estimation of time intervals in simple case, when
cyclic control algorithm include input-output-calculation-return operators only, butwhen
structure of soft, involving transactions operators, is rather complicated, there is the
problem to estimate time intervals between transactions at the stage of algorithm design.
To solve the problem one should to take into account those facts, that data, forming on
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swarm unit sensors outputs, are random one; data may be processed by quite different
algorithm branches, possessing quite different time complexities; algorithm includes
decision operators at branching points. So to facilitate the problem solution semi-Markov
processes theory [11–14] should be accepted as basic concept for control algorithm
simulation. Methods of swarm unit digital control system simulation at the stage of its
design in order to determine unit performance are notwidespread, that confirms necessity
and relevancy of investigation in the area.

2 Features of Von Neumann Computer Control

Multi, K-loop, digital control system (DCS) structure is shown on the Fig. 1. It is rather
classic one, and includes two subsystems: linear Object Under Control (OUC) and Dig-
ital Controller (DC). OUC consists of K units, every of which is described with transfer
function vectorWk(s) = [Wk1(s), ..., Wkl(s), ..., WkK (s)] and feedback scalar trans-
fer function W0, k(s), 1 ≤ k ≤ K . Vectors Wk(s), and scalars W0, k(s), describe the
dynamics of OUC k-th unit itself and feedback sensor, respectively. DC is real time
Von Neumann type computer, which interprets control program, and in cycle generates
quests both to actuators, and to sensors for organizing the managing procedure.

OUCDC

...

...

Wc(s)

W1(s)

W0,1(s)

...

Wk(s)

W0,k(s)

...

WK(s)

W0,K(s)

F1(s)

Fk(s)

FK(s)

X1(s)

Xk(s)

XK(s)

U1(s)

Uk(s)

UK(s)

X0,1(z)

X0,k(z)

X0,K(z)

Fig. 1. Flowchart of swarm unit digital control system

System operates as follows. The control aim vector
F(s) = [F1(s), ..., Fk(s), ..., FK (s)] is generated element-by-element by controller,
or inputted element-by-element into DC from outside. On outputs of controller action
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vector U(s) = [U1(s), ..., Uk(s), ..., UK (s)] is generated by software, and is physi-
cally transformed into the swarm unit state X(s) = [X1(s), ..., Xk(s), ..., XK (s)] as
follows:

X(s) = U(s) · W(s) = U(s) ·

⎡
⎢⎢⎢⎢⎢⎣

W1(s)
...

Wk(s)
...

WK (s)

⎤
⎥⎥⎥⎥⎥⎦
, (1)

where s is the Laplace operator [15].
OUC state is measured by K sensors, and vector signal X0(s) =[

X0, 1(s), ..., X0, k(s), ..., X0,K (s)
]
is inputted into DC back, sequentially, element-

by-element. Due to time intervals between transactions are essential values for DC
description, below is considered, that they are counted frommoment of input of the first.
All other data are input/output respectively element F1(s) ∈ F(s) with lags, nominated
as follows:

Fk(s) are inputted respectively F1(s) with lags τf , k , 2 ≤ k ≤ K ;
X0, k(s) are inputted respectively F1(s) with lags τ0, k , 1 ≤ k ≤ K ;
Uk(s) are outputted respectively F1(s) with lags τu, k , 1 ≤ k ≤ K .

In accordance with the theorem about shifting in the time domain [15, 16]

L[ϕ(t − τ)] = exp(−τ s)�(s), τ > 0, (2)

where τ is the shifting value; t is the time; ϕ(t) is a function; L[...] - direct Laplace
transform: �(s) is the Laplace transform of ϕ(t).

From (2) it follows, that

Fsh(s) = F(s) · Qf (s); (3)

Xsh(s) = X0(s) · Q0(s); (4)

Ush(s) = U(s) · Qu(s), (5)

whereFsh(s),Xsh(s),Ush(s) are vectorsF(s),X0(s),U(s), elements of which are delayed
on time;Qf (s) = ⌊

Qf , kl(s)
⌋
,Q0(s) = ⌊

Q0, kl(s)
⌋
,Qv(s) = ⌊

Qu, kl(s)
⌋
are diagonal lag

matrices, in which

Qf , kl(s) =
⎧⎨
⎩
0, when k �= l;
1, when k = l = 1;
exp

(−τf , ks
)
, when 2 ≤ k = l ≤ K;

(6)

Q0, kl(s) =
{
0, when k �= l;
exp

(−τ0, ks
)
, when k = l; (7)
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Qu, kl(s) =
{
0, when k �= l;
exp

(−τu, ks
)
, when k = l.

(8)

Data, processed in DC, are discrete one, so in strict sense, ordinary transfer function
apparatus is not fit for description of U(s) vector elements calculation. But, when sam-
pling period is approached to zero, then data processing in frequency domain may be
described as ordinary transfer function matrixWc(s). So, in the case, when, processing
feedback signal, DC realizes a linear control law, on its outputsU(s) the following vector
signal is generated [5, 6]:

U(s) = ⌊
F(s) · Qf (s) − X(s) · W0(s) · Q0(s)

⌋ · Wc(s) · Qu(s), (9)

where Wc(s) = ⌊
Wc, kl(s)

⌋
is the K × K matrix of linear transfer functions, which are

embedded into DC as a software; W0(s) = ⌊
W0, kl(s)

⌋
is the K × K diagonal matrix,

whose elements are as follows:

W0, kl(s) =
{
0, when k �= l;
W0, k(s), when k = l.

(10)

Simultaneous solution of (9) and (11) relatively to X(s) gives the following
expression

X(s) = [E − W0(s) · Q0(s) · Wc(s) · Qu(s)]
−1

× F(s) · Wc(s) · Qf (s) · W(s) · Qu(s),
(11)

where E is the K × K unit diagonal matrix;
Matrices Qf (s) = ⌊

Qf , kl(s)
⌋
, Q0(s) = ⌊

Q0, kl(s)
⌋
, Qv(s) = ⌊

Qu, kl(s)
⌋
, character-

izing lags, are situated both in the numerator, and in denominator of (12). Matrices sit-
uated at numerator, defines so called data skew and common lag of external commands
execution. Matrices situated at denominator, defines common feedback lag, therefore
changes qualitatively characteristics of transition process.

3 Semi-Markov Model of DC Operation

For estimation of time intervals the model of Von Neumann computer operation in time
domain should be worked out. For simplicity it may be represented as including trans-
action operators only. Control process in such model is reduced to elements of vectors
F(s), X0(s) reading from interface and elements of vector U(s) writing to interface.
The algorithm, generated quests, is the cyclic one, but in it absent a looping effect. The
algorithm may generate transactions in an arbitrary sequence, with one exception; the
same transaction can not be generated twice at a time. Also, due to the fact, that for
control action U(s) calculation all element of vectors F(s) and X0(s) should be used,
the strong connectivity condition should be imposed [17, 18] on the graph, which, rep-
resents the structure of control algorithm. In common case such properties has the full
oriented graph without loops, shown on the Fig. 2 a. In simplest case vectors F(s) and
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X0(s) elements are quested in turn, after that control action is calculated, and after that
elements of U(s) are quested in turn (Fig. 2 b).

With taking into account randomness of time interval between transactions and
stochastic transactions sequence for external observer, the adequate approach to algo-
rithm simulation is semi-Markov process [11–14], which states are abstract analogues
of algorithm operators. Semi-Markov process is represented by the semi-Markov matrix

h(t) = [hkl(t)] = [
gkl(t)

] ⊗ [
pkl(t)

]
, (12)

where pkl(t) is probability of the direct switching from the k-th state to the l-th state;
gkl(t) is the time density of residence the process (17) in the k-th state before switching
into the l-th state; ⊗ is the direct multiplication sign; t is the physical time.

1 k

l3K

1 k

l3K

a

b

1 ... k ... l ... 3K

c

Fig. 2. Common structure of semi-Markov process (a), simplest case (b) and the model for time
interval estimation (c)

Semi-Markov process (13) is ergodic one and does not include both absorbing, and
partially absorbing states. Due to semi-Markov process ergodicity on densities gk, l(t)
and probabilities pk, l(t) following restrictions are imposed:

0 < Tmin
kl ≤ arg[gkl(t)] ≤ Tmin

kl < ∞, 1 ≤ k, l ≤ 3K; (13)

3K∑
l=1

pkl = 1; (14)

where 3K is common quantity of transaction operators; Tmin
kl and Tmax

kl are upper and
lower bounds of density gkl(t) domain.

When estimation of time intervals between transactions it is no matter how semi-
Markov process (13) gets l-th state from the first one. Determining in the case is that



8 E. Larkin et al.

switch is the first, but not second, third, etc. For time interval estimation initial semi-
Markov process should be transformed into the process with the structure, shown on the
Fig. 2 c, in which first state is the starting one, and l-th state is the absorbing one. For
getting such structure:

First column and l-th row of h(t) are reset to zeros;
Probabilities pki(t) in all rows excluding the l-th, and in all columns, excluding the first,
are recalculated as follows:

p′
ki = pki

1 − pk1
, 1 ≤ k, i ≤ 3K , k �= l, i �= 1. (15)

In such a way

h(t) → h′(t) = [
gkl(t) · p′

kl

]
. (16)

After recalculation probabilities according (15), partially absorbing states are anni-
hilated, and events of getting the l-th state from the first state begin to make up a full
group of incompatible events. In such a way, time density of wandering from the first
state to the l-th state may be estimated as follows [19]

g�
1, l(t) = Ir1 · L−1

⎡
⎣

∞∑
j=1

{
L
[
h′(t)

]}j
⎤
⎦ · Icl , (17)

where L−1[...] is the inverse Laplace transform; Ir1 is the row-vector, first element of
which is equal to one, and other elements are equal to zeros; Icl is the column-vector,
l-th element of which is equal to one, and other elements are equal to zeros.

For time density (19) the expectation and the dispersion may be calculated, as usual
[20]:

T�
1l =

∞∫

0

t · g�
1l (t)dt; (18)

D�
1l =

∞∫

0

(
t − T�

1l

)2 · g�
1l (t)dt (19)

In simplest case density, expectation and dispersion of reaching time the l-th state
from the first, are as follows:

g�
1l (t) = L−1

[
l−1∏
k=1

L
[
gk, k+1(t)

]]
, (20)

T�
1l (t) =

l∑
k=1

Tk, k+1; (21)
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D�
1l(t) =

l∑
k=1

Dk, k+1; (22)

where gk, k+1(t), Tk, k+1, Dk, k+1(t) are density, expectation and dispersion of time of
residence the process, shown on the Fig. 2 c, in the k-th state before switching into the
(k + 1)-th state.

ExpectationsT�
1l (t) = τ1l givemiddle estimations of time delays. Also time intervals

may be estimated with using “three sigma rule” [21], as follows:

τ1l = T�
1l + 3

√
D�
1l . (23)

Estimations (17)–(23) define lags of input/output vectors F(s),X0(s),U(s) elements
with respect to input the element F1(s). All other delays may be obtained from these
parameters. For example, delay between input of k-th element, 1 ≤ l ≤ 2K and output
of l-th element 2K + 1 ≤ m ≤ 3K may be defined as

τkl = τ1l − τ1k . (24)

When obtaining swarm unit control system closed loop transfer function according
(11) estimations (18), (21), or (23) may be used.

4 Example of Control System Analysis

As an example, swarm unit two-loop digital control system is considered (Fig. 3).
Structure of algorithm, realized in DC, is shown on the Fig. 2 b.

W11(s)

W21(s)

W12(s)

W22(s)

X1(s)

X2(s)

U1(s)

U2(s)

F1(s)

F2(s)

-

-

DC OUC

Fig. 3. Swarm unit two-loop digital control system
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Transfer functions, which define OUC dynamics are as follows:

W11(s) = W22(s) = 5

0, 2s + 1
; W12(s) = W21(s) = 2

0, 2s + 1
. (25)

In the system proportional feedback is realized. Sensors, which measure state vector
[X1(s), X1(s)] of OUC, are characterized by transfer functionsW0, 1(s) = W0, 2(s) = 1.
Inputs F1(s) and F2(s) are Laplace transform of Heaviside functions L−1[F1(s)] =
1·η(t), L−1[F2(s)] = 0.5·η(t). Values of Heaviside functions are established differently
to divide plots on ordinate axis. Transition processes are shown on the Fig. 4. Plots on
all charts, shown on the Fig. 4 have the same nominations, namely x1(t) = L−1[X1(s)]
x2(t) = L−1[X2(s)], when data skew of vector [F1(s), F2(s)] is absent; x1, τ(t), x2, τ(t)
denote signals x1(t), x2(t), when under experimental conditions signal x2(t) lag behind
signal x1(t) at 0,5 s.

Fig. 4. Plots of transtion processes

Figure 4 a shows transition processes, when controller in the system is an analogue
one. As one can see at the plots, the system is absolutely stable and have good perfor-
mance, both when a data skew in the signals F1(s), F2(s) is absent, and when the skew
take place. Figure 4 b, c, d show transition processes, when data lags at interfaces are:

Figure 4 b - τU , 1 = 0, 02 s, τU , 2 = 0, 025 s, τ0, 1 = 0, 01 s, τ0, 2 = 0, 015 s;
Figure 4 c - τU , 1 = 0, 025 s, τU , 2 = 0, 03 s, τ0, 1 = 0, 015 s, τ0, 2 = 0, 02 s;
Figure 4 d - τU , 1 = 0, 03 s, τU , 2 = 0, 035 s, τ0, 1 = 0, 02 s, τ0, 2 = 0, 025 s.
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At all named plots processes start with delays, which are defined by output lags
of signals U1(s), U2(s). Figure 4 b demonstrates in general a stable system, but with
increased overshooting and time of reaching the mode. Figure 4 c demonstrate the
performance of system, close to stability border, and Fig. 4 c shows fully unstable
system.

5 Conclusion

As a result, the mathematical model of physical swarm unit digital control system,
which takes into account real characteristics of VonNeumann type controllers, is worked
out. Method of estimation of time intervals between transactions, generated by digital
controller algorithm of arbitrary complexity, to unit actuators and sensors, is proposed. It
is shown, that time delays between input/output elements of the same vector (data skew),
and between input of data from sensors and output data to actuators (feedback lag) causes
deterioration of swarm unit performance characteristics, such as overshooting and time
of reaching the mode. The results of investigation may be recommended for utilization
in ingineering practice of swam unit soft design.

Further investigations in the domain may be directed to working out methods of
practical swarm control algorithms synthesis, optimal to complexity-quality ratio.

The research was supported by the Foundation for Basic Research under the project
19-47-710004 r_a.
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Abstract. Multi agent strategies in mixed cooperative-competitive
environments can be hard to craft by hand because each agent needs
to coordinate with its teammates while competing with its opponents.
Learning based algorithms are appealing but they require a compet-
itive opponent to train against, which is often not available. Many
scenarios require heterogeneous agent behavior for the team’s success
and this increases the complexity of the learning algorithm. In this
work, we develop a mixed cooperative-competitive multi agent envi-
ronment called FortAttack in which two teams compete against each
other for success. We show that modeling agents with Graph Neu-
ral Networks (GNNs) and training them with Reinforcement Learning
(RL) from scratch, leads to the co-evolution of increasingly complex
strategies for each team. Through competition in Multi-Agent Rein-
forcement Learning (MARL), we observe a natural emergence of hetero-
geneous behavior among homogeneous agents when such behavior can
lead to the team’s success. Such heterogeneous behavior from homo-
geneous agents is appealing because any agent can replace the role
of another agent at test time. Finally, we propose ensemble training,
in which we utilize the evolved opponent strategies to train a single
policy for friendly agents. We were able to train a large number of
agents on a commodity laptop, which shows the scalability and effi-
ciency of our approach. The code and a video presentation are available
online (Code: https://github.com/Ankur-Deka/Emergent-Multiagent-
Strategies, Video: https://youtu.be/ltHgKYc0F-E).

Keywords: Multi-Agent Reinforcement Learning (MARL) · Graph
Neural Networks (GNNs) · Co-evolution

1 Introduction

Multi agent systems can play an important role in scenarios such as disaster
relief, defense against enemies and games. There have been studies on various
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Fig. 1. The FortAttack environment in which guards (green) need to protect the fort
(cyan semicircle at the top) from the attackers (red). The attackers win when any one
of them reaches the fort. Each agent can shoot a laser which can kill an opponent.

aspects of it including task assignment [16], resilience to failure [12], scalability [1]
and opponent modeling [23]. Multi agent systems become increasingly complex
in mixed cooperative-competitive scenarios where an agent has to cooperate with
other agents of the same team to jointly compete against the opposing team. It
becomes difficult to model behavior of an agent or a team by hand and learning
based methods are of particular appeal.

Our goal is to develop a learning based algorithm for decentralized control of
multi agent systems in mixed cooperative-competitive scenarios with the abil-
ity to handle a variable number of agents, as some robots may get damaged in
a real world scenario or some agents may get killed in a game. To be able to
handle a variable number of agents and to scale to many agents, we propose to
use a Graph Neural Networks (GNNs) based architecture to model inter-agent
interactions, similar to [1] and [3]. This approach relies on shared parameters
amongst all agents in a team which renders all of them homogeneous. We aim
to study if heterogeneous behavior can emerge out of such homogeneous agents.

Our contributions in this work are:

– We have developed a mixed cooperative-competitive multi agent environment
called FortAttack with simple rules yet room for complex multi agent behav-
ior.

– We show that using GNNs with a standard off the shelf reinforcement learning
algorithm can effectively model inter agent interactions in a competitive multi
agent setting.

– To train strong agents we need competitive opponents. Using an approach
inspired by self play, we are able to create an auto curriculum that generates
strong agents from scratch without using any expert knowledge. Strategies
naturally evolved as a winning strategy from one team created pressure for the
other team to be more competitive. We were able to achieve this by training
on a commodity laptop.

– We show that highly competitive heterogeneous behavior can naturally
emerge amongst homogeneous agents with symmetric reward structure
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(within the same team) when such behavior can lead to the team’s success.
Such behavior implicitly includes heterogeneous task allocation and complex
coordination within a team, none of which had to be explicitly crafted but
can be extremely beneficial for multi agent systems.

2 Related Work

2.1 Multi-agent Reinforcement Learning

The recent successes of reinforcement learning in games, [11,17] and robotics, [6,
15] have encouraged researchers to extend reinforcement learning to multi agent
settings.

There are three broad categories of approaches used, centralized, decentral-
ized and a mix of the two. Centralized approaches have a single reinforcement
learning agent for the entire team, which has global state information and selects
joint actions for the team. However, the joint state and action spaces grows expo-
nentially with the number of agents rendering centralized approaches difficult to
scale [5].

Independent Q-learning, [19,20] is a decentralized approach where each agent
learns separately with Q-learning, [22] and treats all other agents as parts of the
environment. Inter agent interactions are not explicitly modeled and performance
is generally sub-par.

Centralized learning with decentralized execution has gained attention
because it is reasonable to remove communication restrictions at training time.
Some approaches use a decentralized actor with a centralized critic, which is
accessible only at training time. MADDPG, [10] learns a centralized critic for
each agent and trains policies using DDPG, [9]. QMIX, [13] proposes a mono-
tonic decomposition of action value function. However, the use of centralized
critic requires that the number of agents be fixed in the environment.

GridNet, [7] addresses the issue of multiple and variable number of agents
without exponentially growing the policy representation by representing a pol-
icy with an encoder-decoder architecture with convolution layers. However, the
centralized execution realm renders it infeasible in many scenarios.

Graphs can naturally model multi agent systems with each node representing
an agent. [18] modeled inter agent interactions in multi agent teams using GNNs
which can be learnt through back propagation. [8] proposed to use attention
and [1] proposed to use an entity graph for augmenting environment information.
However, these settings don’t involve two opposing multi agent teams that both
evolve by learning.

[3] explored multi agent reinforcement learning for the game of hide and
seek. They find that increasingly complex behavior emerge out of simple rules of
the game over many episodes of interactions. However, they relied on extremely
heavy computations spanning over many millions of episodes of environment
exploration.

We draw inspiration from [1] and [3]. For each team we propose to have two
components within the graph, one to model the observations of the opponents
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and one to model the interactions with fellow team mates. Our work falls in the
paradigm of centralized training with decentralized execution. We were able to
train our agents in the FortAttack environment using the proposed approach on
a commodity laptop. We believe that the reasonable computational requirement
would encourage further research in the field of mixed cooperative-competitive
MARL.

2.2 Multi-agent Environments

Although there are many existing multi-agent environments, they suffer from
the following deficiencies:

– Multi-Agent Particle Environment (MAPE) [10] doesn’t consider competitive
scenarios (2 competiting teams).

– StarCraft II Learning Environment (SC2LE) [21] assumes a centralized con-
troller for all agents in a team which is impractical for real world scenarios.

– Starcraft Multi-Agent Challenge (SMAC) [14] doesn’t incorporate learning
based opponents.

– RoboSumo [2] Doesn’t scale to many agents (only contains 1 vs 1 scenarios).

Moreoever, SC2LE [21], SMAC [14] and SoboSumo [2] are computationally heavy
environments.

To overcome these deficiencies, we design a new light-weight (can run on
commodity laptop) mixed cooperative-competitive environment called FortAt-
tack (Fig. 1) which can handle (1) Large number of agents, (2) Decentralized
controllers, (3) Learning based opponents, (4) Variable number of agents within
a single episode and (5) Complex multi-agent strategies as is evident from our
results (Sect. 5.1).

3 Method

The agents in a multi-agent team can be treated as nodes of a graph to lever-
age the power of Graph Neural Networks (GNNs). GNNs form a deep-learning
architecture where the computations at the nodes and edges of the graph are
performed by neural networks (parameterized non-linear functions), [1]. Due to
the presence of graph structure and multiple neural networks, they are called
GNNs.

We describe our use of GNNs from the perspective of one team and use Xi

to denote the state of ith friendly agent in the team, which in our case is its
position, orientation and velocity. We use XOppj to denote the state of the jth

opponent in the opposing team. Let S = {1, 2, . . . , N1} denote the set of friendly
agents and SOpp = {N1 + 1, N1 + 2, . . . , N1 + N2} denote the set of opponents.
Note that a symmetric view can be presented from the perspective of the other
team.

In the following, we describe how agent 1 processes the observations of its
opponents and how it interacts with its teammates. Figure 2 shows this pictori-
ally for a 3 agents vs 3 agents scenario. All the other agents have a symmetric
representation of interactions.
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Fig. 2. Modeling of inter agent interactions with Graph Neural Networks (GNNs) from
the perspective of agent 1, in a 3 friendly agents vs 3 opponents scenario. Left: agent
1’s embedding, H0

1 is formed by taking into consideration the states of all opponents
through an attention layer. Right: agent 1’s embedding gets updated, (Hk

1 → Hk+1
1 )

by taking into consideration its team mates through an attention layer.

3.1 Modeling Observation of Opponents

Friendly agent 1 takes its state, X1 and passes it through a non-linear function,
fθa

to generate an embedding, h1. Similarly, it forms an embedding, hOppj from
each of its opponents with the function fθb

.

h1 = fθa
(X1) (1)

hOppj = fθb
(XOppj) ∀j ∈ SOpp (2)

Note that the opponents don’t share their information with the friendly agent
1. Friendly agent 1 merely makes its own observation of the opponents. It then
computes a dot product attention, ψ1j which describes how much attention it
pays to each of its opponents. The dimension of h1 and hOppj are d1 each. This
attention allows agent 1 to compute a joint embedding, e1 of all of its opponents.

ψ̂1j =
1
d1

< h1, hOppj > ∀j ∈ SOpp (3)

ψ1j =
exp(ψ̂1j)

∑
m∈SOpp

exp(ψ̂1m)
(4)

e1 =
∑

j∈SOpp

ψ1jhOppj (5)

In Eq. 3, <,> denotes vector dot product. Note that
∑

j∈SOpp
ψ1j = 1 which

ensures that the net attention paid by agent 1 to its opponents is fixed. Finally,
e1 is concatenated with h1 to form an agent embedding, H0

1 :

H0
1 = concatenate(h1, e1) (6)
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3.2 Modeling Interactions with Teammates

Agent 1 forms an embedding for each of its team mates with the non-linear
function, fθa

.

H0
i = fθa

(Xi) ∀i ∈ S, i �= 1 (7)

Dimension of Hk
i ,∀i ∈ S is d2. Agent 1 computes a dot product attention, φ1i

with all of its team mates and updates it’s embedding with a non-linear function,
fθc

.

φ̂1i =
1
d2

< Hk
1 ,Hk

i > ∀i ∈ S, i �= 1 (8)

φ1i =
exp(φ̂1i)

∑
m∈S,m �=1 exp(φ̂1m)

(9)

Ĥk+1
1 =

∑

i∈S,i�=1

φ1iH
k
i (10)

Hk+1
1 = fθc

(Ĥk+1
1 ) (11)

Equations, 8 to 11 can be run over multiple iterations for k = {0, 1, . . . ,K} to
allow information propagation to other agents if agents can perceive only its
local neighborhood similar to [1].

3.3 Policy

The final embedding of friendly agent 1, HK
1 is passed through a policy head. In

our experiments, we use a stochastic policy in discrete action space and hence
the policy head has a sigmoid activation which outputs a categorical distribution
specifying the probability of each action, αm.

π(αm|O1) = π′(αm|HK
1 ) = sigmoid(fθd

(HK
1 )) (12)

where, O1 = {Xi : i ∈ S} ∪ {XOppj : j ∈ SOpp}
Here, O1 is the observation of agent 1, which consists of its own state and the
states of all other agents that it observes. This corresponds to a fully connected
graph. We do this for simplicity. In practice, we could limit the observation space
of an agent within a fixed neighborhood around the agent similar to [1] and [3].

3.4 Scalability and Real World Applicability

Due to the use of GNNs, the learn-able parameters for a team are the shared
parameters, θa, θb, θc and θd of the functions, fθa

, fθb
, fθc

and fθd
, respectively

which we model with fully connected neural networks. Note that the number
of learn-able parameters is independent of the number of agents and hence can
scale to a large number of agents. This also allows us to handle a varying number
of agents as agents might get killed during an episode and makes our approach
applicable to real world scenarios where a robot may get damaged during a
mission.
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Table 1. Reward structure

Sl. No. Event Reward

1 Guard i leaves the fort Guard i gets -1 reward.

2 Guard i returns to the fort Guard i gets +1 reward.

3 Attacker j moves closer to the
fort

Attacker j gets small +ve
reward = 2[Dj(t − 1) − Dj(t)].
Where, Dj(t) = distance
between attacker and fort at
time t.

4 Attacker j moves away from the
fort

Attacker j gets small -ve reward
= −2[Dj(t − 1) − Dj(t)].

5 Guard i shoots attacker j with
laser

Guard i gets +3 reward and
attacker j gets -3 reward.

6 Attacker j shoots guard i with
laser

Guard i gets -3 reward and
attacker j gets +3 reward.

7 Agent i shoots laser but doesn’t
hit any opponent

Agent i gets low -ve reward
(-0.1 if guard, -1 if attacker).

8 All attackers are killed All alive guards get high +ve
reward (+10). Attacker(s) that
just got killed gets high -ve
(-10) reward.

9 Attacker j reaches the fort All alive guards high -ve reward.
Attacker j gets high +ve reward

3.5 Training

Our approach follows the paradigm of centralized training with decentralized
execution. During training, a single set of parameters are shared amongst team-
mates. We train our multi agent teams with Proximal Policy Optimization
(PPO), [15]. At every training step, a fixed number of interactions are collected
from the environment using the current policy for each agent and then each team
is trained separately using PPO.

The shared parameters naturally share experiences amongst teammates and
allow for training with fewer number of episodes. At test time, each agent main-
tains a copy of the parameters and can operate in decentralized fashion. We
trained our agents on a commodity laptop with i7 processor and GTX 1060
graphics card. Training took about 1–2 days without parallelizing the environ-
ment.

4 Environment

We design a mixed cooperative-competitive environment called Fortattack with
OpenAI Gym, [4] like interface. Figure 1 shows a rendering of our environment.
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Fig. 3. Average reward per agent per episode for the teams of attackers and guards as
training progresses. The reward plots have distinct extrema and corresponding snap-
shots of the environment are shown. The x-axis shows the number of steps of environ-
ment interaction. The reward is plotted after Gaussian smoothing.

The environment consists of a team of guards, shown in green and a team of
attackers, shown in red, that compete against each other. The attackers need to
reach the fort which is shown as a cyan semi-circle at the top. Each agent can
shoot a laser beam which can kill an opponent if it is within the beam window.

At the beginning of an episode, the guards are located randomly near the
fort and the attackers are spawned at random locations near the bottom of the
environment. The guards win if they manage to kill all attackers or manage to
keep them away for a fixed time interval which is the episode length. The guards
lose if even one attacker manages to reach the fort. The environment is built off
of Multi-Agent Particle Environment [10].

4.1 Observation Space

Each agent can observe all the other agents in the environment. Hence, the
observation space consists of states (positions, orientations and velocities) of
team mates and opponents. We assume full observability as the environment
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(a) Random exploration

(b) Laser flashing strategy of guards

(c) Sneaking strategy of attackers

(d) Spreading and flashing strategy of guards

(e) Deception strategy of attackers

(f) Smartly spreading strategy of guards

Fig. 4. Sample sequences for different strategies that evolved during training. Each
row represents one sequence and time moves from left to right.
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Fig. 5. Average reward per agent per episode for guards as ensemble training pro-
gresses. The reward is shown after Gaussian smoothing.

is small in size. This can possibly be extended to observability in the local
neighborhood such as in [1] and [3].

4.2 Action Space

At each time step, an agent can choose one of 7 actions, accelerate in ±x direc-
tion, accelerate in ±y direction, rotate clockwise/anti-clockwise by a fixed angle
or do nothing.

4.3 Reward Structure

Each agent gets a reward which has components of its individual and the team’s
performance as described in Table 1. The last two rows show the major reward
signals corresponding to winning and losing. The negative reward for wasting a
laser shot is higher in magnitude for attackers than for guards. Otherwise, we
observed that the attackers always managed to win. This reward structure can
also be attributed to the fact that attackers in a real world scenario would like
to sneak in and wouldn’t want to shoot too often and reveal themselves to the
guards.

5 Results

We show the results for the 5 guards vs 5 attackers scenario in the FortAttack
environment.

5.1 Evolution of Strategies

Figure 3 shows the reward plot for attackers and guards and snapshots of specific
checkpoints as training progresses. The reward for guards is roughly a mirror
image of the reward for attackers as victory for one team means defeat for the
other. The rewards oscillate with multiple local extrema, i.e. maxima for one
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team and a corresponding minima for the other. These extrema correspond to
increasingly complex strategies that evolve naturally - as one team gets better
at its task, it creates pressure for the other team, which in turn comes up with
a stronger and more complex strategic behavior.

1. Random behavior : At the beginning of training, agents randomly move around
and shoot in the wild. They explore trying to make sense of the FortAttack
environment and their goals in this world.

2. Flash laser : Attackers eventually learn to approach the fort and the guards
adopt a simple strategy to win. They all continuously flash their lasers cre-
ating a protection zone in front of the fort which kills any attacker that tries
to enter.

3. Sneak : As guards block entry from the front, attackers play smart. They
approach from all the directions, some of them get killed but one of them
manages to sneak in from the side.

4. Spread and flash: In response to the sneaking behavior, the guards learn to
spread out and kill all attackers before they can sneak in.

5. Deceive: To tackle the strong guards, the attackers come up with the strategy
of deception. Most of them move forward from the right while one holds back
on the left. The guards start shooting at the attackers on the right which
diverts their attention from the single attacker on the left. This attacker qui-
etly waits for the right moment to sneak in, bringing victory for the whole
team. Note that this strategy requires heterogeneous behavior amongst the
homogeneous agents, which naturally evolved without explicitly being encour-
aged to do so.

6. Spread smartly : In response to this, the guards learn to spread smartly, cov-
ering a wider region and killing attackers before they can sneak in.

5.2 Being Attentive

In each of the environment snapshots in Fig. 3 and Fig. 4, we visualize the atten-
tion paid by one alive guard to all the other agents. This guard has a dark green
dot at it’s center. All the other agents have yellow rings around them, with the
sizes of the rings being proportional to the attention values. Eg. in Fig. 4(e),
agent 1 initially paid roughly uniform and low attention to all attackers when
they were far away. Then, it started paying more attention to agent 8, which
was attacking aggressively from the right. Little did it know that it was being
deceived by the clever attackers. When agent 9 reached near the fort, agent 1
finally started paying more attention to the sneaky agent 9 but it was too late
and the attackers had successfully deceived it.

5.3 Ensemble Strategies

To train and generate strong agents, we first need strong opponents to train
against. The learnt strategies in Sect. 5.1 give us a natural way to generate
strategies from simple rules of the game. If we wish to get strong guards, we can
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train a single guard policy against all of the attacker strategies, by randomly
sampling one attacker strategy for each environment episode. Figure 5 shows
the reward for guards as training progresses. This time, the reward for guards
continually increases and doesn’t show an oscillating behavior.

6 Conclusions

In this work we were able to scale to multiple agents by modeling inter agent
interactions with a graph containing two attention layers. We studied the evo-
lution of complex multi agent strategies in a mixed cooperative-competitive
environment. In particular, we saw the natural emergence of deception strategy
which required heterogeneous behavior amongst homogeneous agents. If instead
we wanted to explicitly encode heterogeneous strategies, a simple extension of
our work would be to have different sets of policy parameters (fθd

) within the
same team, e.g. one set for aggressive guards and one set of defensive guards.
We believe that our study would inspire further work towards scaling multi
agent reinforcement learning to large number of agents in more complex mixed
cooperative-competitive scenarios.
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Abstract. Today, the creation of intelligent sensors became possible due to the
development of the hardware base, the use of small boards, where the processor,
memory, and network interfaces can be placed. Examples of such cards can be
Raspberry Pi, Arduino, and others. These devices can be used to connect various
sensors to them depending on the tasks. Today, there are many protocols for the
exchange of messages between such sender devices, which ultimately leads to the
creation of distributed networks with distributed functionality. Such systems can
be decision-making and are like swarm intelligence, where each device performs
its functions, but together they are a single system. This study will examine the
information security issues of such systems. An analysis of threats and vulnera-
bilities for intelligent sensor systems was carried out. Demonstrated an attack on
the secure ZigBee protocol, which is often used to create a network between smart
sensors. The use of lightweight cryptography to minimize risks is proposed.

Keywords: Internet of Things (IoT) · Cipher · Cryptography · LWC · SPECK ·
Tiny encryption algorithm

1 Introduction

Today, the range of devices and technologies that can be attributed to the systems of
the “Internet of Things” is actively expanding, first, these are systems such as: “Smart
Home”, “Smart City”, “Smart Greenhouses”, “Smart Farm”, “Smart Plant” Etc., that
is, such systems that can consist of sensors, cameras, actuators, in combination with
information and telecommunication technologies and control systems. The use of such
systems in various spheres of human life gives a positive economic effect and allows you
to receive additional benefits from various points of view. Such devices usually work in
a group and can use swarm intelligence to solve various problems. To solve problems
with the Internet of things devices, it is necessary to exchange information. The IoT is a
network of connected objects, each of which has a unique identity that can collect and
exchange data via the Internet with or without human participation [1]. The market now
includes many IoT devices and this means that there is a huge exchange of data between
them.

© Springer Nature Switzerland AG 2021
Y. Tan and Y. Shi (Eds.): ICSI 2021, LNCS 12689, pp. 26–37, 2021.
https://doi.org/10.1007/978-3-030-78743-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78743-1_3&domain=pdf
http://orcid.org/0000-0001-6127-4484
http://orcid.org/0000-0001-8117-9142
http://orcid.org/0000-0002-9730-8882
https://doi.org/10.1007/978-3-030-78743-1_3


Analysis of Security Problems 27

Experts predicted that by 2020 about 28 billion devices will be connected to the
Internet, with only a third of them being computers, smartphones and tables [1, 2].

The expansion of the Internet of Things is facilitated by the proliferation of wire-
less networks, the active transition to IPv6, the growing popularity of clouds and the
emergence of a group of technologies of machine-to-machine interaction (Machine to
Machine, M2M) [3]. The NIC (National Intelligence Council) report lists IoT as one
of six disruptive technologies. It is also noted that the ubiquitous and imperceptible
transformation of such common things as commercial furniture and paper documents
into Internet nodes for consumers, can significantly increase the risks in the field of
national information security [4]. The vision of the IoT is to build a smart environment
with interconnected elements that provide an autonomous service to users [5–7]. In other
words, the IoT is valuable for providing intelligent environments with a distinct power of
ambient intelligence and pervasive communication (this can also be called the pervasive
power of omnipresent computing) [8].

Confidentiality, integrity, and availability are three important concepts for securing
applications and services in intelligent IoT environments; thus, to solve these problems,
information security in the systems of the Internet of Things requires closer attention of
researchers [9]. For example, IoT smart homes face security and privacy issues that span
all levels of the IoT architecture [10] especially from an industrial point of view [11].
IoT devices are easily accessible and susceptible to many security attacks directly [12]
because they use sensitive data or manipulate variables in the physical environment,
making them a desirable target for attackers [13]. Based on this, it can be concluded
that Cybersecurity is a significant problem for IoT devices with requirements for con-
fidentiality, data integrity, authentication and authorization, availability, confidentiality,
and regulatory standards, as well as regular system updates. As with all areas of net-
work computing, security and privacy are fundamental requirements for a reliable IoT
system. Many of the principles that apply to critical enterprise security and safety sys-
tems are equally applicable to the security of the Internet of Things [14]. IoT security
encompasses many areas, such as creating access control policies, protecting keys using
hardware and software security mechanisms, installing key material during device pro-
duction, and preparing a new addition at a later stage [15]. In this scheme, it is possible
that cryptography will become one of the effective measures to ensure confidentiality,
integrity and authentication and authorization of data transmission through IoT devices
[16]. Cryptography can also be a solution to protect data stored or transmitted over a
network. However, established cryptographic solutions based on a typical information
system are not suitable for various IoT devices due to limited resources. A lighter ver-
sion of these solutions might solve this problem. Lightweight versions of computational
cryptography are known as lightweight cryptography (LWC).

2 Analysis of Information Security Problems of the Internet
of Things as a Group with Swarm Intelligence

The first problem can be formulated as follows. Due to the growing popularity of infor-
mation systems of the “Internet of Things” and the simultaneous increase in the number
of threats, vulnerabilities and security requirements, as well as the constantly increasing
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level of knowledge about such systems, it becomes necessary to create natural language
processing tools to create a knowledge base about threats and requirements for security
for the “Internet of Things”, as well as the use of intelligent technologies, expert systems
to improve the accuracy and speed of identification and minimize information security
risks of the “Internet of Things”.

The second problem is formulated as follows. Due to the wide variety of software
and hardware platforms, telecommunication equipment and communication standards
for creating the information system of the “Internet of Things”, and at the same time,
significant computing and power resources spent on scanning the information system
using standard tools, there is a problem of obtaining timely and reliable information
about the structural and functional characteristics of the “Internet of Things”.

Finally, the third problem that this project is aimed at is related to the need to improve
the reliability of wireless communication networks of the Internet of Things by ensuring
an adequate level of security by developing effective recommendations and information
security requirements for the current information system.

Many researchers in this area, argue that the implementation of the Internet of Things
without ensuring information security is unacceptable and will lead to significant neg-
ative consequences, as well as reduce the reliability and resiliency of the information
system. For the information system of the “Internet of Things” to function stably and
reliably, the user or the owner of the system must not only assess the possible damage
and information security risks, but also take actions to minimize the risks. At the same
time, users or owners usually want to avoid the additional costs and economic costs of
purchasing equipment and paying for the work of an information security expert and
often neglect the security system. It is important to note that in addition to the existing
problem of the growing popularity of the “Internet of Things” and the increase in the
number of threats to information security, there is another problem. The information
system of the “Internet of Things” has a fundamental difference from a typical infor-
mation system. This is expressed, first, in the fact that only information that is stored,
processed, etc. is considered as objects of protection of a typical information system.
in the information system, and a software and hardware complex, including technical
means (including workstations, industrial servers, telecommunications equipment, com-
munication channels, etc.). In the case of the “Internet of Things” information system, it
is also necessary to consider the entity controlled by the information system as an object
of protection. At the same time, violation of one of the properties of information security
in relation to the object (entity) controlled by the information system can lead to signif-
icant negative consequences (economic). The point is that if an attacker, for example,
attacks an intelligent sensor that regulates the pressure when the gas is supplied, then
this can lead to an explosion and human casualties, that is, the impact will be exerted on
the object and related entities (objects).

In addition, the information system of the “Internet of Things” is heterogeneous,
consists of many sensors that perform different functions. Sensors can be stationary and
mobile, and can be intelligent, some “Internet of Things” can have direct access to the
Internet thanks to mobile communication modules, “Internet of Things” can include
several different segments or be included in a segment of a typical information system.
All this imposes certain conditions on the protection system and on a set of measures
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to assess and minimize risks. This is also due to the presence of significant differences
between the structural and functional characteristics of a typical information system and
the information system “Internet of Things”.

The authors of the article [17] try to identify most of the known threats at different
levels of the Internet of Things (IoT) architecture with an emphasis on the possibil-
ity of carrying out attacks using malicious programs. The authors present a detailed
methodology for implementing attacks on the IoT, as well as a detailed scenario of a
distributed denial-of-service attack through an IoT botnet, followed by the necessary
measures to improve information security. The authors provide guidance on developing
an IoT security methodology based on best foreign industry practices. The methodology
includes a risk assessment, security measures that increase the confidentiality, integrity
and availability of information, and a method for calculating the impact of identified
risks. The authors also write that risk assessment and threat modeling is the first step
in developing a security policy for any organization. It is also important to assess the
risks for all processes, equipment - both hardware and software - at every level of the
IoT, from the stage of production, transportation, installation and commissioning to the
operation and management of the IoT system. The main purpose of this assessment is to
identify all security incidents that can occur in the organization and subsequently initiate
a risk treatment process to minimize the damage from such events. In addition, the risk
assessment does not consider the risks associated with an object that is “managed” by
the Internet of Things.

The authors of the article [18] offer a test bench that simulates the operation of the
“Internet of Things” system for conducting security analysis. The authors analyzed the
principles, basic architectures and material and technical base for building IoT systems
and developed a universal stand that simulates various technologies, presented a method
of security testing. At the same time, as part of the security analysis, the authors use
standard port scanning and vulnerability scan tools and offer scenarios for implementing
attacks. The authors argue that IoT devices can pose serious security and privacy risks
due to their range of functionality and the variety of processes involved in their operation,
including collecting, processing, storing, and transmitting data. In addition, these smart
devices are integrated into corporate networks, deployed in public places, located in
public, and can work continuously to collect information from the environment. The
authors of [19] propose a threat model obtained by analyzing IoT use cases from a
security point of view. This article recommends measures to help you keep your IoT
secure. The authors propose a method that enables case-based security analysis and
formulation of security and privacy properties for multi-user IoT systems. The threat
model presented by the authors is described in general terms and does not consider
the peculiarities of such systems. The authors provide attack analysis and security and
privacy issues for each device with case studies. However, the range of attacks that are
applicable to various components of the IoT architecture is not widely represented; there
is no methodology for conducting attacks or a description of the toolkit.

The Industrial Internet Consortium, currently implementing the OpenFog program
of the Object Management Group, Inc. (“OMG”) have developed a document describ-
ing a security model for the Internet of Things [20]. In April 2018, the Industry Internet
Consortium (IIC) published the first of two papers dealing with the IoT security maturity
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model. The first document, The IoT Security Maturity Model, contains the description
and intended use of the IoT, intended for stakeholders to understand the need and pur-
pose of the model. The second document, the practitioner’s guide, provides details of the
model and describes how it should be used. The IoT Security Maturity Model (SMM)
enables Internet of Things (IoT) providers to set security goals and invest in security
mechanisms that meet their requirements, without over-investing in unnecessary secu-
rity mechanisms. Security maturity is a measure of understanding the current level of
security, its need, benefits, and cost of support. SMM provides a conceptual frame-
work to help organizations select and implement appropriate security controls from a
variety of options. This helps an organization determine what their target security matu-
rity state should be and assess their current state. The National Institute of Standards
and Technology (NIST) presented the “Framework for Improving Critical Infrastructure
Cybersecurity” standard - a standard for improving the Cybersecurity of critical infor-
mation systems [21]. The document is divided into three parts: the core of the standard,
the implementation levels and the profiles of the standard. The underlying core of the
platform is a collection of Cybersecurity activities, outcomes and information guides
that are shared across sectors and critical infrastructure. Thus, cryptographic protection
methods can be applied to ensure security and minimize risks. In this case, the choice
of an acceptable algorithm becomes a separate problem. In this work, the analysis of
existing algorithms and their application to the Internet of Things will be carried out.

3 Exploitation Vulnerabilities

One of the popular solutions for creating a fully connected topology of the Internet of
Things, mobile roots or UAVs is the ZigBee network. ZigBee networks, unlike other
wireless data transmission networks, fully meet the following requirements:

1. Thanks to the mesh (mesh) network topology and the use of special routing algo-
rithms, the ZigBee network provides self-healing and guaranteed packet delivery in
cases of disconnection between individual nodes (obstacles), overload or failure of
an element;

2. The ZigBee specification provides cryptographic protection for transmitted data over
wireless channels and a flexible security policy;

3. ZigBee devices are characterized by low power consumption, especially end devices
for which a “sleep” mode is provided, which allows these devices to work for up to
three years on a single AA or even AAA battery;

4. ZigBee network is self-organizing, its structure is set by the parameters of the con-
figurator stack profile and is formed automatically by attaching (re-attaching) to the
network of its constituent devices, which ensures ease of deployment and ease of
scaling by simply attaching additional devices;

5. ZigBee devices are low power consumption.
6. Communication in the ZigBee network is carried out by sequential packet retrans-

mission from the source node to the destination node. The ZigBee network provides
several alternative routing algorithms, which are automatically selected.
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In order to monitor the ZigBee network, we applied the Wi-Fi network analysis
method. To do this, you need to use a network card that switches to the “Monitor”
mode and receives all traffic that passes through this network. For ZigBee, a CC2531
“stick” can be used as a network card, which is stitched to intercept protocols. Thus,
the equipment required for sniffing and traffic analysis is presented in the following
list: “sticks” ZigBee cc2531; CC-Debugger for firmware; firmware “stick” as a packet
interceptor; Wireshark packet analyzer; Utility for working with ZigBee interceptor and
packet translation in Wireshark “TiWsPc”; Encrypted data decoder built in Wireshark.

Therefore, the enemy intercepted the radio message and proceeded to analyze it, he
can assume that known types of communicationwith their protocols, for example,Wi-Fi,
MAVLink or ZigBee, were used to simplify control. Then, for each protocol, he uses a
typical traffic analyzer and sees the next packet dump. Thus, the adversary realized that
ZigBee communication was being used, but the intercepted information did not make
any sense for him, since he needed two network encryption keys and an optional one.
Accordingly, the adversary can find the network key by brute-force, knowing about the
structure of the ZigBee protocol and its vulnerabilities. The vulnerability of the protocol
is that the network key does not encrypt the entire packet, but only some of its bytes,
for example, the name of the transmitted data: telemetry or an optional key (Transport
key). Explanations in Fig. 1.

Fig. 1. Example of ZigBee vulnerability in open and closed text

After decryption, the “Command” network key will become “Transport Key”.
In stage 3, we defined the actions and the search for which data will give us complete

information about the network traffic. So, in order to readwhat kind of data is transmitted
over the network, you need a network key, if the enemy tries to pick it up, then we had
it. Wireshark has a built-in packet decoder, so you only need to specify the algorithm
and encryption keys in the parameters. Now, all that remains for us and the enemy is to
find the value of the optional key. One of the values of the packet fields, which is called
“Command Frame”, contains the key value (Fig. 2).

By adding, it by analogy with the network key in the Wireshark parameters, we and
the adversary will be able to read the decrypted bytes of the payload.
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Fig. 2. Found optional encryption key

4 Internet of Things and Lightweight Cryptography

Thus, themost common vulnerability due to which such systems are hacked is unreliable
keys and passwords. In addition, a common problem is the use of default passwords
and keys. Therefore, it is necessary to apply additional device protection schemes. It
should be borne in mind that encryption can be resource intensive. Therefore, this paper
proposes to evaluate several lightweight encryption algorithms. The main problems of
implementing classical cryptography in groups of intelligent sensors are as follows:
types of memory (registers, RAM, ROM); reduced computing power; small physical
area for implementation; low battery level (or no battery); real-time feedback [22]. Also,
IoT systems deal with a real-time application, where fast and accurate response with
significant security using available resources is a challenge [23]. In an environmentwhere
conventional cryptography standards are applied to IOT devices, their performance may
be unacceptable [24]. Threemain characteristics of lightweight cryptographic algorithms
and their proposals are listed in Table 1 [25].

Table 1. Characteristics of lightweight cryptographic algorithms

Characteristics What LWS can offer

Physical (Cost) Physical area Smaller block size
Smaller key size
Simple round logic
Simple key scheduling

Memory

Battery power

Performance Computing power

Security Minimum security
strength

Strong structure

Attack model

Side channel attack

The amount of memory is another important characteristic that characterizes the
size of the executable program. Power consumption - characterizes the required energy
required for the device to function.
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5 The Tiny Encryption Algorithm Cipher Description

Further The Tiny EncryptionAlgorithm (TEA)was presented in 1994 at the Fast Encryp-
tion Algorithms Conference in Leuven, Belgium. The authors of the algorithm are Roger
Needham and David Wheeler [26]. The advantage of the TEA cipher is its excellent
resistance to linear cryptanalysis. In addition, TEA is simple to implement in a forehead
programming language and can be optimized for 32-bitmicrocontrollers, since it is based
on xor, shift and sum operations modulo 232. Since the algorithm does not use lookup
tables and the round function is quite simple, the algorithm requires at least 16 cycles (32
rounds) to achieve effective diffusion, although complete diffusion is achieved already
in 6 cycles (12 rounds) [26].

First, a key of length 128 is divided into 4 equal parts - K [0], K [1], K [2] and K [3].
Thus, the round keys are generated. In odd rounds the keyss K [1] and K [2] are used,
and in even ones - K [2] and K [3]. The two rounds of the TEA cipher are depicted.
Actions used in the algorithm:

� – addition operation modulo 232,
⊕ – XOR operation,
>> and << – shifts to the right t and left,
δ – constant derived from the golden ratio:

δ =
(√

5 − 1
)

· 231 = 9e3779b916 = 265443576910.

In each round, a constant is multiplied by the number of cycles i to protect the
algorithm from round symmetry. A distinctive feature of the TEA crypto algorithm is its
size. The disadvantage of the algorithm is some slowness caused by the need to repeat
the Feistel cycle 32 times (this is necessary for careful “mixing of data” due to the lack
of table substitutions).

6 Speck Cipher Description

Speck is a family of simple block ciphers that were published by the US NSA in June
2013 [27]. The Speck cipher is of the ARX (add, rotate, xor) cipher type. This cipher is
optimized for software implementation for low-resource material base, for example, for
microcontrollers. The round function of the Speck cipher is shown in Fig. 3. To obtain
round keys, a similar scheme is used, only the round number is given in it as a key. This
approach allows you to reuse the code of the round function and gives you additional
flexibility—if you need to optimize the execution speed, you can count the round keys
in advance, and if you want to save memory, you can count them on the go.
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Fig. 3. Round Speck cipher function

Table 2 shows a comparison of the TEA and Speck ciphers.

Table 2. Comparison of tea and speck ciphers

Code Block size Key size Number of rounds

TEA 64 128 64

Speck 2 × 32 4 × 16 22

2 × 24 3 × 24 22

2 × 24 4 × 24 23

2 × 32 3 × 32 26

2 × 32 4 × 32 27

2 × 48 2 × 48 28

2 × 48 3 × 48 29

2 × 64 2 × 64 32

2 × 64 3 × 64 33

2 × 64 4 × 64 34

This table shows that the TEA cipher has a fixed block size, key and number of
blocks, while a Speck is a family of ciphers and can have a different block size, key and
number of blocks.
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7 Experimental Research of Encryption Algorithms

The Arduino Uno controller and the STM32F401CC microcontroller were chosen for
testing. Debugging of software implementations was performed in the AVR Studio 7
program and debugging of the STM32 microcontroller in the KEIL program uVision 5.

Arduino uno is based on the ATmega328P eight-bit controller [29]. STM32A401CC
- This is a 32-bit microcontroller based on the Arm core. The clock frequency of the
Arduino uno is 16 MHz, and that of the STM32 is 84 MHz. The Arduino’s RAM
and Flash memory are 2 and 32 KB, respectively. For STM32, these indicators are
64 and 256 KB, respectively. To test the TEA cipher, an implementation was taken
from an article by David Wheeler and Roger Needham. The encryption time for 64
blocks with a 128-bit key was 9.213 ms. The SRAM was occupied by 70 bytes. On the
STM32F401CC microcontroller, encryption took 6.738 µs. To test the Speck cipher,
a reference implementation was taken [30, 31]. It shows an example of encrypting a
128-bit message with a 128-bit key:

The encryption time for a 128 block with a 128-bit key was 18.447 ms. From SRAM
memory was allocated 98 bytes. On the STM32F401CC microcontroller, encryption
took 12.44 µs.
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8 Conclusion

Research has shown that smart sensor systems are vulnerable to attacks that involvewire-
less networks. One of the considered attacks is related to the interception and analysis of
key information in one of the standards, which is considered the most secure. Securing
swarm intelligence systems should ensure not only confidentiality, integrity, and avail-
ability, but also low resource utilization. The TEA and Speck encryption algorithmswere
implemented on the Arduino Uno controller and the STM32F401CC microcontroller.
Their implementation has shown that these ciphers are suitable for their use in differ-
ent smart sensor devices based on the efficiency and performance of these reference
algorithms. Further research may include implementing other ciphers across different
IoT device platforms, test different implementations on messages of different sizes, load
voltage testing for an IoT device.
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Abstract. The purpose of this paper is to synthesize a high-liftmechanism (HLM)
of a transportation aircraft. In the past still lack in studying to synthesize of the
HLM using a very recent technique. The device is an important mechanism to
generate an addition lift to the wing of aircraft in take-off and landing condition.
The crucial designing problem is to minimize the error between actual flap motion
and target points. The optimum target points are positions and angles of flap at
the take-off and landing condition. Designing constraints include the possibility
of four-bar mechanism to work well, limiting position and includes workplace
of mechanism. The optimizers are selected to tackle the problem is in a group
of metaheuristics (MHs). The results show the propose method and MHs can
synthesize the flap mechanism meet with the design targets.

Keywords: High-lift mechanism · Four-bar mechanism · Optimization
technique · Motion generation · Metaheuristics

1 Introduction

The modern transportation aircraft can carry high payload that depends on plane form
area and camber to develop lifting force. The high lift system (HLS) is one key of increas-
ing lift in the modern large transportation aircraft, which is included high lift devices
(HLD), support truss, drive mechanism or high lift mechanism (HLM), control system,
and so on. The HLD can produce the addition lift to the wing, it focuses on increasing
payload and increasing the performance of HLD and HLM. The system is very impor-
tant for aircraft performance in takeoff and landing [1]. In many decades, the researcher
tries to improve the performance of HLS, which expects to increase lift, reduce drag
and noise, and to reduce the error of HLM. The improvements dramatically increase
weight and operating cost [2]. The operating cost depends on complexity of mecha-
nism that effect on manufacturing cost, maintenance cost and reliability of mechanism.
Transportation flap normal can separate into plan flap, split flap, slotted flap, single-slot
and double-slotted Fowler flap [3], while the HLM are separated into dropped-hinge,
four-bar, link-track, and hooked-track [4]. Design the methodology of HLM aims to
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develop the designing process of mechanism synthesis. Traditional design process of
HLM separately aerodynamics shape of flap from the mechanism synthesis by the way
of finding optimum aerodynamic first and fit the mechanism for controlling is in the last
step [4]. The aerodynamic step is based on data collecting from tabular or experimental
and the mechanism synthesis is based on position parameters rather than the dimension
of mechanism. Later this technique has been improved in process of design by combine
both process to couple technique, which is performed the aerodynamic analysis of flap
and mechanism synthesis at the same time by technique of iteration design simulation
[2].The previous study still lacks in mechanism synthesis, which needs to improve HLM
error. In our present study expects to increase the performance of HLM synthesizing and
reducing HLM error.

From previous researches, there are any researches has been studied to synthesize the
four-bar HLM [5], which was studied with the motion generation synthesis of HLM and
penalty techniques. The study will be basic information for future research to study in
designing this kind of mechanism. Due to the robustness, derivative-free and simplicity
ofmeta-heuristics, thismakes them to bemore popular selection in the present for solving
four-bar linkage motion generation problem [6, 7]. The work collects the metaheuristics
(MHs) included the most popular and recently algorithm for solving the motion genera-
tion problem [7]. In their work presented the competition ofMHs performance in solving
the motion generation problem and also showed the TLBO outperformed the other MHs
[7]. The result can extend to the present work and combine with [5] for solving HLM
problem. The present work is different from previous research that solved the problem
with only the best used MHs. Some of the best algorithms are the differential evolution
(DE) [7], and teaching-learning based optimization (TLBO) [6]. As mention earlier, the
present study expects to synthesize of four-bar HLM in viewing of motion generation
synthesis using a penalty technique and MHs are optimizers.

The remaining of this paper is divided in four sections by starting from Sect. 2, the
details of high lift mechanism, while the high-lift mechanismmotion generation problem
is performed in Sect. 3. The design results are detailed in Sect. 4 and the conclusions
and discussion of the study are summarized in Sect. 5, respectively.

2 High-Lift Mechanism

High-lift mechanism attaches at trailing edge normally known as flap mechanism. A flap
is a movable piece, which control a mechanism, that composes of actuator and support
structure to produce addition lift to wing of aircraft. At the present, using mechanism
type forHLM is that the four-bar linkage type, which is designed for BoeingB767, B777,
and C-17. Due to advance of four-bar mechanism synthesis at present [5–7] causes our
study focuses on this kind of mechanism and the model is shown in Fig. 1. Four-bar
HLM is composed of four links, which has one frame, one crank, one rocker motion,
and one is coupler link. The motion of the last link is combined between translation and
rotation, causes this link usually attached with flap. The position of crank is installed at
the rear spar to ensure that it can sustain the addition load lift and it simply supplies the
input. All input motion drive with rotary actuators, and the driving actuator is mounted
to the rear spar of the wing.
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Fig. 1. Kinematic diagram of four-bar linkage for HLD and global coordinate system [5].

The occurred linkage needs only one input applying at link 1. The trigonometric
is used to analyze the position analysis of four-bar linkage. The relation is in form of
linkage lengths r1, r2, r3, and r4 and other parameters, which is proved in the previous
work [5–7].The coupler point (P) in the global coordinate in Fig. 2 is expressed as

xP = xO2 + r2 cos(θ2 + θ1) + L1 cos(φ0 + θ3 + θ1) (1.1)

yP = yO2 + r2 sin(θ2 + θ1) + L1 sin(φ0 + θ3 + θ1)

where xO2 and yO2 are the global coordinate positions of O2 [6]. The angle φ0 can
be obtained by considering the couple link BCP using law of cosine, which is expressed
as

φ0 = cos−1

[
L21 + r23 − L22

2L1r3

]
(1.2)

At input crank angle (θ2) the values of angles θ3, θ4, and � for link lengths r1, r2, r3,
and r4are determined as follows [7]:

z2 = r21 + r22 − 2r1r2 cos θ2, z2 = r23 + r24 − 2r3r4 cos γ

γ = cos−1

[
r23 + r24 − r21 + 2r1r2 cos θ2

2r3r4

]

γ = cos−1

[
r23 + r24 − z2

2r3r4

]
, α = cos−1

[
z2 − r23 + r24

2zr4

]
(1.3)
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β = cos−1

[
z2 + r21 − r22

2zr1

]
, θ3 = π − (α + β + γ )

θ4 = π − (α + β)

3 Optimization Problem and Constraint Handling

The conventional motion generation problem is different from the path generation prob-
lem as the desired angles of coupler link included in the objective function. The objective
function has two parts, the first part is the position error between the target points Pd(xd,
yd) and the actual points P(xp, yp) and the second part is the angular error between target
angles (θ3d) and actual angles (θ3p). The design variables in this problem are included r1,
r2, r3, r4, L1, L2, the coordinates ofO2 (xO2, yO2), and the angle of link 1(a frame) (θ1).
The motion generation problem in this research is called motion generation synthesis
without prescribed timing. The input set of θ2

i values also set as the design variables.
A highlight in this study is weighting factor w that is scaled the position and the angle
error in the objective function that is combined as one of design variables, which expects
to improve the previous cumbersome in finding the proper weighting factor by varying
the values [7]. Then, the optimization problem without prescribed timing is written as

Minf (x) = w
∑N

i=1

[(
xd,i − xp,i

)2 + (
yd,i − yp,i

)2] + (1 − w)
∑N

i=1

[(
θ3d,i − θ3p,i

)2] (2)

subject to

min(r1, r2, r3, r4) = crank(r2) (3)

2min(r1, r2, r3, r4) + 2max(r1, r2, r3, r4) < (r1, r2, r3, r4) (4)

θ12 < θ22 · · · < θN2 (5)

x1 ≤ x ≤ xu (6)

where x = {
r1, r2, r3, r4, L1, L2, θ0, xO2, yO2, θ i2, w

}T
,N is the number of points

on the prescribed or target curve, and xl and xu are lower and upper bounds of design
vector x, respectively. Furthermore, this synthesis problem can represent the behavior of
HLM by applying proper constraints.

The external penalty can handle the design constraints by adding the term of con-
straints to the objective function (2). The difficulty occurs due to the additional two
parts of penalty function value. The first part is assigned to control link lengths to meet
Grashof’s criterion (3–4), while the second part is assigned to ensure that input crank can
rotate with a part or complete revolution in either a clockwise or counterclockwise direc-
tion (5). The working process of penalty function is to add enough high value to modify
the objective function when some of constraints are violated. It promotes that adding
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value to the non-candidate solution and kicks it out of the design space; otherwise, the
constant is zero. The constraints can be induced and approached a feasible solution. The
proper adding value is rather than abstract causes this technique is inefficient for solving
above design problem. The unknowns θ2

i in (5) are removed and solved by another
technique that is proved to increase the performance [6, 7].The constraint (4) and (5)
are achieved, when the mechanism is a crank-rocker. The new idea has been tackled
both constraints in new way [6], which instead of the traditional penalty technique. The
process applies for solving a motion generation problem. At the present, the constraints
(5) can write in a common form as gi(x) ≤ g0,i.Then, a set of N input angle values (θ2)
is generated that are equally spaced from 0 to π radian. The higher intervals indicate
higher efficiency, however, it needs more time consuming. Then the positions of point
P corresponding to all targets are calculated, the objective function is

f (x) =
N∑
i=1

min
(
wd2

ij + (1 − w)θ2ij

)
(7)

where d2
ij = (

xd ,i − xP,j
)2 + (

yd ,i − yP,j
)2 and θ2ij = (

θ3d,i − θ3p,i
)2 for j = 1,…, N.

The details of this technique can be seen in [6, 7].
From the motion generation problem formulation is applied to HLM, when position

and angle of flap are known at each condition. The landing and take-off position of HLM
is shown in Table 1. In design HLM at least two positions should define. In this research,
the desired position and angular of HLM at both conditions are assigned following with
the previous study by Liu [2] as shown in Table 1.

Table 1. Desired position and angular of HLM at take-off and landing conditions.

Case Position (xi, yi)* 1.1173 Angle, δi(°)

1. Take-off (0.059, 0.0032), (0.0642, −0.0455) 0, 24.90

2. Landing (0.059, 0.0032), (0.0703, −0.0454) 0, 43.52

From Table 1, the design optimization problems can summarize as follow:
Design variables for x are

x =[
r1, r2, r3, r4, L1 , L2, xO2, yO2, θ1

]
Target points are showed in Table 1.
Limits of the variables:

0.01 ≤ r1 ≤ 0.3

0.01 ≤ r2, r3, r4 ≤ 0.5

−0.1 ≤ L1, L2 ≤ 0.2
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xO2 = 0

−0.05 ≤ yO2 ≤ 0.05

−60 ≤ θ1 ≤ −45

In order to solve the design problems, some of MHs are selected due to high per-
formance in solving the motion generation problem [5–7]. The used MHs are the dif-
ferential evolutionary (DE), the teaching-learning based optimization (TLBO) and the
self-adaptive population size teaching-learning based optimization (SAP-TLBO) [8].
All algorithms are coded in MATLAB commercial software. The population size is set
nP = 100 and the number of iterations is set at 500. To study statistical performance of
present technique, the number of running times of simulation is set at 30 times.

4 The Design Results

Table 2. The best design results of HLM

Parameter Case-1 Case-2

DE TLBO SAP-TLBO DE TLBO SAP-TLBO

r1 0.3000 0.3000 0.3000 0.2877 0.3000 0.2998

r2 0.0292 0.0100 0.0100 0.0100 0.0100 0.0100

r3 0.2634 0.0233 0.0233 0.0196 0.0231 0.0230

r4 0.4055 0.2944 0.2944 0.2856 0.2994 0.2991

L1 −0.0642 −0.0786 −0.0786 −0.0806 −0.0854 −0.0849

L2 0.1999 −0.0560 −0.0560 −0.0633 0.0636 −0.0627

x0 0 0 0 0 0 0

y0 −0.0500 −0.0424 −0.0423 −0.0408 −0.0500 −0.0489

θ1 −60.0000 −45.0551 −45.0053 −45.0000 −49.3926 −53.9316

w 0.5000 0.5000 0.5000 0.4999 0.5000 0.5000

Mean 0.023194 0.023221 0.023194 0.138108 0.138061 0.138115

Min 0.023188 0.02297 0.02297 0.137685 0.137642 0.137643

Max 0.023245 0.023425 0.023425 0.138634 0.138456 0.138438

Std 1.49E−05 7.21E−05 9.3E−05 0.000132 0.000243 0.00014

The design results of four-bar linkage synthesis for take-off and landing condition
are showed in Fig. 2 and Fig. 3. The optimum path of each case is showed in the same
figures. The descriptive statistics are mean, worst result (max), best result (min), and
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the standard deviation (std) of objective function values from 30 optimization runs that
are in Table 2. In Case-1 (Take-off condition), there are two target points and angles.
The result shows that SAP-TLBO and TLBO give the best min (error = 0.02297) while
the worst in this case is DE (error = 0.023188). The most consistent methods are SAP-
TLBO and DE based on mean and std. The result of Case-2 (Landing condition), there
are two target points, but different position and angle as compare with the Case-1. The
result shows that the recent case promotes SAP-TLBO and TLBO gives the best min
(error = 0.13764), while the worst case is DE. The most consistent method is TLBO
and DE based on mean and std.

(a) (b)

Fig. 2. (a) Optimum HLM for take-off condition (b) Optimum path HLM for take-off condition

(a) (b)       

Fig. 3. (a) Optimum HLM for landing condition (b) Optimum path HLM for landing condition.

Moreover, the results show that the propose techniques also promote the moderate
results in all cases due to its error are highly when compare with the previous study
with the traditional testing problems [5–7]. The optimum design variable of weighting
factor in both cases and all algorithms is w = 0.5, which is similar with our previous
work [6, 7] that the designer recommended. Additionally, if another objective is more
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important than other one, the value can recommend by the designer rather than using
the best compromise value from the simulation.

5 Conclusion and Discussion

This paper proposed the motion generation synthesis problems of high-lift mechanism.
It is an extension of the motion generation technique in our previous study to design the
high lift mechanism. The comparative results reveal that the employed meta-heuristics
can be used to design HLM problems successfully. Overall, TLBO and the improvement
of TLBO give the best solutions as well as the search consistency in both design cases.
DE gives moderate efficient for this kind of optimization design. However, it still needs
to improve the result with an efficient technique, which has been proved in performance
for the motion generation problem. Nevertheless, this is a basic study of traditional
technique for solving HLM motion generation problem without prescribed timing. The
future works would use other techniques to increase the performance of design problem.
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Abstract. The application of swarm aesthetic in music composition is not new.
Artistic swarm application has resulted in complex soundscapes andmusical com-
positions. However, sound composition using physical swarm agents has not been
extensively studied. Using an experimental approach, we create a series of sound
textures know as Liminal Tones (B/Rain Dream) based on swarming behaviours.
We study the influence of different materials and emergent patterns and evaluate
the acoustic properties of different materials such as wood, ceramic or granite,
and effect of imperfections of the physical agents on the overall aesthetic quality.
Finally, we consider the historical and theoretical foundation of swarm music, the
role of materiality and actions in sound, and challenge the traditional perception
of sound as an immaterial art form.

Keywords: Swarm aesthetic · Swarm intelligence · Sound objects · Random
Walk · Brownian Motion · Emergence · Chaos · Bristlebots

1 Introduction

Swarm systems inspired by swarm intelligence and natural ecosystems (e.g., social
insects) are a unique frontier for art. Many artists utilize swarm principles such as
indirect communication, self-organization and emergent behaviours to create musical
compositions, soundscapes and sonic environments. SWARMUSIC [3] is a system that
uses swarm behaviour to create music. It is an interactive music improvisation tool
with multiple swarms of particles as musical events that move in a virtual 3D space by
utilizing Boids flocking algorithm [24]. Bisig et al. [2] created a series of experimental
projects known as Interactive Swarm Orchestra (ISO) and Interactive Swarm Space
(ISS). The ISO system explores flocking algorithms to control sound synthesis and
sound spatialization. The ISS is a MIDI-based virtual orchestra involving meaningful
interactions between artificial swarms and composers to generate artistic expression.
Bisig et al. also have explored multi-modal feedback and audio-visual spatialization or
creative engagement using swarm techniques.

© Springer Nature Switzerland AG 2021
Y. Tan and Y. Shi (Eds.): ICSI 2021, LNCS 12689, pp. 46–57, 2021.
https://doi.org/10.1007/978-3-030-78743-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78743-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-78743-1_5


Liminal Tones: Swarm Aesthetics and Materiality in Sound Art 47

Expanding on previous work, Davis and Karamanlis [9] added a controllable leader
to typical Boids simulations for musical swarms. The leader agent lets the user directly
control the behaviour of the other agents and the overall movement of the flock. In a
different approach, Jones [18] introduced AtomSwarm. This is a framework for sound-
based performance that uses swarm dynamics with genetically-encoded behaviours,
artificial pheromones and imitations. The result is a complex sonic ecosystem capable
of sonic spatialization and self-organizing regulation. Flock to Music [6] is a real-time
improvisation tool that simulates the behaviour of theBoids as compositionswithmusical
parameters.

Despite the broad interest in swarm music, most experiments to date utilize artificial
swarms and software simulations. To our knowledge, there has been little exploration
of physical swarming agents. Blackwell [4] provides a comprehensive review of swarm
music.

Self-organization is a unique and complex collective behaviour common in swarms.
It results from simple and local interactions between agents (members of the group)
and emerges at the colony level. Self-organization of social insects usually happens via
stigmergy, an indirect communication strategy through the environment [16]. Stigmergy
results in a complex emerging intelligence at the colony level without the need for plan-
ning, control or direct communication between agents. However, with no prior knowl-
edge about the sources, systematic searches become less effective and social insects often
use other searching mechanisms known as random walk. There are several random walk
variants, including Stigmergic RandomWalk (SRW), Correlated RandomWalk (CRW)
andLévyWalk. RandomWalks are commonly used for artistic experiments and in swarm
robotics particularly if the robots have limited individual abilities (e.g., local sensing,
memory or processing power). Considering the limitation of our BBots, we have lever-
aged stigmergic foraging behaviours and variations of random walks to create sound
compositions.

Non-Human Sounds – Sound as Action. Using mechanical devices and computer-
controlled sound objects is not new in sound art. However, there is a new series of
work involving mechanical and glitch sounds. Such works have focused on exploring
repetitive sonic processes and events with mechatronic mediation. Mechanical/rhythmic
actions, sound experiences and the ontological properties of non-human sounds aremore
important than traditional interventions. The investigation of space as a compositional
element, modulated by movement, offers new idiosyncrasies and aesthetic potentials for
musical creation [7, 12].

Over the past two decades, robotic and mechatronic interventions have become
prominent aesthetic elements in the work of composers and sound artists. These impli-
cations include electro-acoustic experimentation, sonic environments, sound sculptures
and the use of drumming apparatuses. However, mechatronic systems used for musical
creations can have many different aesthetic roles. Some artists use motion, direction
and distance of sound as compositional means and sound spatialization. Composer and
sound artist Trimpin employs the visual, spatial and kinetic properties of sound in his
works (e.g., Conloninpurple, 1997; Sheng High, 2004). Other artists use them to evoke
memories and imaginary environments and to stimulate different emotions [11].
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Sound artists Peter Bosch and Simone Simons [5] explore the spatial characteristics
of sound in their kinetic sound project Cantan un Huevo (2000). They use glass bottles,
containers and metal springs as sound objects. The distribution of the sound sources in
the space is an integral part of their work and results in different acoustic experiences in
different parts of the space.

Other artists use similar sound objects distributed evenly across space in their work.
Pe Lang and Zimoun [22, 32] create sound sculptures and installations with rhythms
and flow, using basic mechanical components (as sound objects) in large numbers. In
their practice, together and individually, they create analog rhythms, textures and flow
to study the creation and degeneration of sonic spaces. Inspired by generative systems
and swarm behaviours, their works display simplicity and complexity. The emergent and
intricate behaviours of these sound objects (in sound and motion) appear to be organic
or alive and sound like “the acoustic hum of natural phenomena” [27].

Buildingonour previouswork [25] on swarming techniques and robotic interventions
in sound art, and inspired by Pe Lang and Zimoun’s artworks [22, 32] and Blackwell’s
SWARMUSIC [4], we introduce Liminal Tones (B/Rain Dream) as an experimental
sound art project/tool. Our goal is to demonstrate the importance of actions, materials
and acoustic media in sound texture, using multi-bodies (a swarm of physical agents)
and challenging the traditional perception of music as an immaterial art form.

Previouslyweused digitalmediation andPSO-PIDcontroller to derive themovement
of DC motors and generate sound, but here we use an analogue approach and swarming
BBots to generate sound textures and further investigate the influence of materiality
and robotic intervention to generate novel sound textures (acoustic aesthetics). So, we
present Liminal Tones (B/Rain Dream) and show the results and analyze the influence of
different materials on the aesthetic quality of sound textures in Sect. 2. Then, we follow
up with a discussion of the relationship between order, chaos and emergent behaviours
of Liminal Tones (B/Rain Dream) in Sect. 3. Finally, we explain the underlying concepts
of swarm aesthetics for musical creation and discuss our future plans in Sect. 4.

2 Methods

2.1 Concept

Liminal Tones (B/Rain Dream) is a series of sound textures made by a group (5–10) of
BBots (as sound objects) that move, twist and turn on the ground to generate sounds
(BBot is amodified version of vibration-drivenBristlebot [1, 15]with no brush). Inspired
by Pe Lang and Zimoun’s sound sculptures [22, 32], we used DC vibrator motors, wires
and electrical circuits to create the BBots and control their motion and sound. Liminal
Tones (B/Rain Dream) demonstrate collective behaviours while embracing randomness
and imperfections (due to battery degradation andDC perturbation). The resulting sound
textures are both organized and chaotic. Liminal Tones (B/Rain Dream) can be viewed
as an experimental tool for emergent behaviours and materiality in sound art [13] rather
than an artwork. Using different materials (as surface) and tuning the initial conditions
(placement, speed, direction), we were able to create different sound textures despite
the identical shape and properties of BBots. Listening to the textures, one can recognize
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rhythms such as the clicking of a drum or natural sounds (e.g., raindrops on the metal
roof). Audio samples can be found on our website [21].

2.2 Model

BBots (sound objects) exhibit complex movements similar to the stigmergic foraging
behaviour of ants, in two phases. First, sound objects demonstrate Lévy Walk with high
power and speed. Over time, the sound objects cycle to Brownian Motion as the battery
degrades (with lower speed).

Phase 1 – Lévy Walk. At the start each BBot move quickly with large step-size similar
to Lévy Walk motion – a modification of the standard random walk in which the step
size has a heavy-tailed distribution [31]:

P(s) = s−μ. (1)

where s is the step size with 1 < μ ≤ 3. With increasing values of μ the move-
ment becomes less super-diffusive (due to jumps with heavy-tail distribution) and more
Brownian. Individual objects with super-diffusive movement paths will appear to move
faster than those with normally diffusive (Brownian) or sub-diffusive movements [31].
Therefore, Lévy walks represent a spectrum of random walks, with ballistic motion at
one extreme (μ > 1) and Brownian Motion (μ � 1) at the other.

Formal Asymptotics. We used 5 BBots as sound objects with DC perturbation ranging
between 1.5–3V. BBots move with a random heading and a step length selected from a
power-law distribution with parameter μ. The periodic vibration of DC motors paired
with a friction mechanism lead to a propulsion interaction between the sound objects
and the environment, alternating between high friction in some parts and low friction
in others. BBots have a body with a rotational spring of stiffness k and are in frictional
contact with the surface without any legs.

The force (f�) resulted from the body mass oscillation and frequency � drives the
internal movement of the sound objects. The modulation of friction of BBots results
from the oscillations of the normal forces and leads to a stick-slip motion. DeSimone
and Tatone [10] modelled the tangential frictional force by:

F = −μNẋ. (2)

where N is the normal reaction force, ẋ is the velocity (denoted with a dot with
respect to time), and μ is a constant. For simplicity, we assume that rotations of the
BBots are not allowed and they are always in contact with the ground with two degree of
freedoms: horizontal movement and deviation φ from the rest angle α = 0. Therefore,
the motion equation is as follows [8]:

M ẍ = −μN (t)ẋ. (3)

M ÿ = N (t) − Mg + f�(t). (4)
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kϕ = N (t)L sin(α + ϕ) − μN (t)ẋ L cos(α + ϕ). (5)

where N is the normal reaction force (N = ∑m
i=1 Ni), andMg is the body mass. We

consider the following ansatz for the normal force:

N (t) = N ∗ + Ñ sin�t. (6)

N ∗ = Mg . (7)

N∼/N∧∗ = η � 1. (8)

where η is the ratio between the amplitude of a harmonic (Ñ ) and the average normal
force (N ∗) and usually smaller than 1. To normalize the dynamic variables, we consider
the following constants:

σ = sin(α). (9)

χ = cos(α). (10)

f�(t) = N ∗f (�t). (11)

� = √
(k/M)ω/Lχ. (12)

where f and ω are the normalized force and frequency. Applying all the definitions
above we can rewrite Eqs. (3) and (5) as the equivalent system in respect to dynamical
variables (θ,w).

θ = nτ
sin(α + θ)

σ
− ξnτ

⎛

⎝w + θ̇

·
cos(α + θ)

χ

⎞

⎠ cos(α + θ)/χ. (13)

w· = −λnτ
(
w + (

θ · (cos(α + θ))/χ
)·)

. (14)

where τ = �t, ξ = μN∗L2cosα�
k and λ = μN∗

M�
.

Phase 2 – Brownian Motion. After a few minutes, BBots move slowly with smaller
step sizes as the batteries degrade. In this phase each BBot acts as a particle with a
normalized step-size distribution similar to Brownian motion and constantly moves in
random directions.
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The Brownian motion is a complex random process with noise. There are different
methods to formulate the Brownian motion in terms of the evolution of a nonstationary
probability and here we use Langevin and Fokker-Plank equation [19, 23] to study
the evolution of the velocity distribution and interactions between the environment and
Brownian agents. The dynamics and speed fluctuation of the Brownian particle are
defined as:

x· = v. (15)

v̇ = −γ (x, v)v + F(t) + ξ(t). (16)

where F(t) represents a random external force, m and v the mass and the velocity of
the particle, ξ(t) is a Gaussian noise, α is the friction constant and γ = α

m .
For simplicity, we assume there is no external forces, and therefore F(t) = 0. The

Brownian particle with the state space (x, v) has a distribution probability ρ(x, v, t) as
follows [23]:

∂/∂t ρ(x, v, t) = −∇(ρ(x, v, t)
(
x·, v·). (17)

∂/∂t ρ(x, v, t) = −∂/∂x
(
ρx·) − ∂/∂v

(
ρv·). (18)

To simplify the equation, operators A and B are defined as:

A = v ∂/∂x − ∂/∂v (γ (x, v)v) − γ (x, v)v ∂/∂v. (19)

B = ξ(t)
∂

∂v
. (20)

Hence:

∂/∂t ρ(x, v, t) = −Aρ − Bρ. (21)

3 Results

In this section we present the initial results of Liminal Tones (B/Rain Dream) and step-
length distributions for each phase of the model scheme. We analyze samples taken
from different intervals and compare the sound quality of different motion (Lévy Walk
or Brownian) and the surface material in Fig. 1 and Fig. 2. First, we show examples
of movement trajectories of BBots of different surfaces (wood, ceramic, granite) and
the dependence of those trajectories on control parameters and DC motor
speeds. When μ > 1 and BBots have high turning angle and speed (interacting with
the environment), the motion is ballistic with long, straight movements and many short
steps as shown in Fig. 1. In contrast, when μ � 1 the motion is Brownian as shown in
Fig. 2.
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The movement trajectories (different μ) depends on the distribution of step lengths.
With smaller and fixed μ, the step-length distribution is more stable (Cauchy distribu-
tion). With random or higher μ values, the step-length distribution becomes Gaussian.
Moreover, the motions result from turning angles �θt over time (t). When the value of
�θt is close to zero for a long time, BBots move in a straight line. In contrast, when �θt
fluctuates dynamically, BBots twist and turn many times.

To evaluate the quality of the generated sound textures, we compare them to natural
ambient sounds with similar audio profiles. Usually, BBots generate rhythmic patterns
with high jumps between different frequencies. This would be similar to the rhythmic
pattern of heavy hail and the noisy profile and calming pattern of sleet, as illustrated in
Fig. 3. To qualitatively assess the role of materiality in sound, we compare the spectrum
of acoustic sound objects in relation to different materials, and their pitch and timbral
aesthetic for 12 sound textures [21] as shown in Fig. 4. Here, vertical lines represent
the rhythmic structures and horizontal lines represent the harmonic structures. For some
sound categories, the audio samples are noisy, meaning most frequencies are present.
Other categories have fewer frequencies and show step intervals and rhythmic cycles
which resulted from vibrating patterns, turn and twist of motors, or errors (on-off inter-
ruptions). The speeding patterns can also be identified where the sound amplitudes vary
due to power fluctuations of the batteries. Notably, each material shows different music
signatures. For example, wood resonates at higher frequencies while ceramics absorb
sounds and do not resonate as much (low, mid frequencies).

Fig. 1. Model scheme and examples of trajectories for 5 BBots and 10,000 steps with fixed step
distribution and high-speed during Phase 1 which follows a ballistic LévyWalk. Different colours
correspond to each BBot and its initial conditions (placement, speed, direction).When the value of
�θt is close to zero for a long time, the BBots move in a straight line with short steps in between.
(Color figure online)
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Fig. 2. Model scheme and examples of trajectories for 5 BBots and 10,000 steps. There is random
step distribution and low-speed movement during Phase 2, similar to Brownian Motion. The
internal dynamics x and y produce agentmovements in 2D space.Movement is produced by turning
angles �θt over time (t). The trajectory of each BBot in a 2D space is represented by different
colours corresponding to each BBot and its initial conditions (placement, speed, direction). (Color
figure online)

Fig. 3. Comparison of audio samples (left) with natural sounds (hail, rain, sleet). Examples were
selected to be roughly similar in sound textures. The top row shows the waveforms. Note that our
sample is more extremely periodic with high jumps compared to the other three. The bottom row
shows the spectrograms. Here, the vertical lines represent step intervals. Note the constant tones
around mid-levels in rain and the noisy profile of sleet sound.
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Fig. 4. Spectrograms of 12 sound samples (each ranging from 15–30 s). Note the constant noisy
profile of wood and the mid-level frequencies and orders of ceramics, and resonance of granite.
Some samples have different characteristics such as rhythmic patterns and high-low passes. Others
are noisy with a wide range of pitch and timbral qualities, which creates unique sound textures
[21].
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4 Discussion and Future Works

Swarm intelligence is one of the most beautiful and unusual phenomena in nature.
It is the product of the interaction between a group of decentralized agents and their
environment. Widely recognized examples of swarms include but are not limited to
bird flocking, bacterial growth, fish schooling, and the societal superorganisms of ant
colonies (i.e., foraging). Due to their aesthetic qualities, swarm systems inspired by
swarm intelligence and natural ecosystems present unique frontiers for art domains such
as visual art [17, 28] and sound composition [2, 3, 6].

Swarm aesthetics are mostly concerned with form, the collective patterns of artificial
swarm agents, and intuitive visual and sonic representations in digital forms. There is a
gap in the research and practice of using swarm techniques to create sounds mediated
by robotic actions and spatio-temporal processes resulting from: multiple interactions,
amplification of fluctuations, or randomness between physical agents (sound objects).
We propose Liminal Tones (B/Rain Dream) as a tool to create sounds from actions (of
multiple sound objects) and explore swarm aesthetics in sound.

4.1 Order and Chaos – Sound as Emergence

Chaos theory and the study of complex systems (nonlinear dynamics), provide a frame-
work for thinking about constant tensions and emergence from chaos and order. Deter-
ministic and dynamic systems regardless of their subject matter have universal charac-
teristics, including repetition, self-organization, emergence, feedback loop and unpre-
dictability. Chaos theory focuses on simple systems with unpredictable and emergent
behaviours. Complexity theory focuses on complex systems that have numerous inter-
acting parts which are often self-organized and unexpected. In such systems, emergent
patterns arise from simple rules, local interactions between the individual elements (or
agents) and adaptive behaviours.

Not surprisingly, many artists use multi-agent systems and emergence in music
improvisation, compositions and sound art. Despite the emergent behaviours of dynamic
systems, artists can control the musical outputs subject to the complexity of the rule set
and important variables. Manual control of interconnected systems such as music gener-
ative systems is almost impossible because each agents’ every movement is affected by
other agents. For more control, artists use simple computational models such as Cellular
Automaton [5, 14], swarming techniques [3, 17, 18, 28, 30] or abstract constraints [2, 4,
20, 22, 32].

Throughout the past decades of sound art, there have been a few artists who applied
emergence and chaos principles in their work without any digital mediation. Joe Jones,
and more recently Zimoun and Pe Lang [29], use simple elements such as motors, wires
and solenoids to create sound sculptures and installations. The rhythm and flow in these
sonic environments result from repetition, randomness and imperfections or glitches.
Zimoun and Pe Lang, together and individually, study the creation and degeneration
of patterns. Inspired by generative systems and swarm behaviours, their works display
both simplicity and complexity. Here complexity grows from simple rules with some
randomness and emphasizes their oppositional position of order and chaos [26].
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Inspired by current artistic applications and the rich aesthetic qualities of swarms,
we explore robotic interventions and the role of materiality in sound art to create novel
sound textures with different pitch and timbral qualities.

4.2 Future Works

WhileWhile experimenting with different setups for Liminal Tones (B/Rain Dream), we
tested the use of physical swarming bodies to create sound. To achieve different aesthetic
qualities, we explored chaotic and random behaviours, and embraced imperfections and
error (due to battery degradation and DC perturbation). Liminal Tones (B/Rain Dream)
that resulted are a critical reflection of a still-emergent field of work.

With respect to our future work, our plan is to investigate multi- swarms (with
different sound qualities) and large numbers of BBots (50 or more) to explore collective
behaviours, and swarmaestheticswithwide timbral and frequency range, andmechanical
tones.
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Abstract. The firefly algorithm (FA) is a swarm intelligence algorithm
that mimics the swarm behaviour of the firefly in nature. The idea is
simple, and FA is easy to realize. To improve its performance, a new
method to control the random factor in FA is proposed in this paper,
based on the design idea and mathematical model of FA and a sim-
ple experiment. Under the new method, the value of the random factor
decreases according to a geometric progression sequence. Twenty com-
mon ratios of geometric progression sequences are used to optimize nine
standard benchmark functions. The experimental results are analysed
by the ANOVA and step-up methods. The analysis shows that the per-
formance of FA improves under the new method to control the random
factor.

Keywords: Firefly algorithm · Random factor · Swarm intelligence

1 Introduction

Swarm intelligence algorithm is an optimization algorithm constructed by sim-
ulating the swarm behavior of animals, which is mainly reflected by the char-
acteristics of individuals in a group learning from each other and competing
to evolve. Typical examples are the ant colony algorithm and particle swarm
optimization (PSO), which have both been extensively researched in terms of
algorithm theory, improvement, and application, and greatly reflect the ability
of swarm intelligence to optimize solutions. Fireflies also have swarm behavior,
mainly to locate, attract, and warn each other, and to feed by fluorescence, and
the intensity of fluorescence and the distance between fireflies have a great influ-
ence on these characteristics. Yang proposed the firefly algorithm (FA) in 2009
after studying the swarm behavior of fireflies, whose luminescence intensity and
distance from each other determine their direction [1,2]. Yang showed through
numerical experiments that FA has better search performance than a genetic
or particle swarm optimization algorithm, and can better solve complex opti-
mization problems [1,3]. FA also has the characteristics of simplicity and ease of
c© Springer Nature Switzerland AG 2021
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implementation. Researchers have gradually improved FA and its applications
[4–10,17–31]. This paper points out the role of the random search term of the
algorithm in optimization by analyzing the design of FA and its mathematical
model and verifies the influence of the random factor in the random search term
on the convergence performance of the algorithm through a simple numerical
experiment. We propose a method to control the values of the random factor
based on a geometric sequence in order to improve the algorithm’s performance.
We optimize and solve nine standard benchmark functions for different com-
mon ratios of the geometric sequence, and statistically analyze the optimization
results, which show that the optimization performance of FA is improved with
the new control method for the random factor. A common ratio is derived to
optimize the overall performance of the algorithm. For comparison with the geo-
metric decreasing control method, we investigate methods to control the random
factor of FA by linearly and exponentially decreasing it. We also compare the
performance of the improved FA, PSO, and improved PSO.

2 Review of FA

2.1 Algorithm Idea

There are more than 2000 known species of fireflies, and many reflect swarm
behaviors through their own fluorescence. The two most basic behaviors are
attracting fireflies of the opposite sex in the same species group and attracting
and feeding on food; that is, the most basic swarm behaviors of fireflies are
closely related to their own fluorescence, and this understanding is important to
the construction of FA. The intensity of fluorescence decreases with the distance
between the light source and object. At the same time, when fluorescence is
transmitted in the air, its intensity is attenuated because it is absorbed by the air,
and the degree of attenuation is necessarily related to the absorption coefficient
of the air and the distance of transmission.

To design the group behavior of fireflies as a swarm intelligence algorithm
for the solution of optimization problems, the location of a firefly is considered
a feasible solution to the problem, and the fluorescence intensity of the fireflies
is considered as the value of the objective function. For convenience of the algo-
rithm design, the fireflies are considered homogeneous. Under this assumption,
the attraction relationship between them does not need to consider their gender.
The attraction between two fireflies is considered proportional to their fluores-
cence intensity. A firefly with lower fluorescence intensity will fly toward one with
higher intensity, which means the firefly with higher intensity is more attractive
to the firefly with lower intensity. The attraction behavior among fireflies cor-
responds to the convergence behavior of the algorithm, i.e., fireflies search for a
region with a better value of the objective function.

2.2 Model Analysis of FA

Based on the above analysis, to implement FA, it is first necessary to determine
a mathematical model between fluorescence intensity and distance. In the real
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world, the intensity of light decays with distance, so objects far from a light
source become darker. The intensity of light is inversely proportional to the
square of the distance between the object and the light source, so we can obtain
the following model:

I(r) = Is/r2 (1)

where r is the distance from the flashing firefly, Is is the fluorescence intensity
of the firefly at the source, and I is the fluorescence intensity at distance r.

Next, it is necessary to determine the model of fluorescence absorption and
attenuation during transmission in the medium. If the absorption coefficient of
fluorescence by the medium is γ, then at distance r, the fluorescence intensity
decays as

I(r) = Is · e−γr (2)

where r, Is and I have the same meaning as in Eq. (1).
Considering the combined effect on fluorescence intensity by distance and

absorption of the transmission medium, Eqs. (1) and (2) can be approximated
by combining them as

I(r) = Is · e−γr2
(3)

Next, the attraction model between fireflies must be determined. According to
the previous assumption, the degree of attraction between two fireflies is pro-
portional to their fluorescence intensity, so the attraction model can be defined
by Eq. (3) as

β(r) = β0 · e−γr2
(4)

where γ and r have their meanings in Eq. (3), β is the attraction between two
fireflies, and β0 is the attraction when the distance between two fireflies is zero,
i.e., their maximum attraction.

Based on the above three models, when the fluorescence intensity of firefly
i is lower than that of firefly j, then firefly i will be attracted to firefly j, i.e.,
firefly i will move toward firefly j so as to realize a position update,

xk
i (t + 1) = xk

i (t) + βij(t) · (xk
j (t) − xk

i (t))
+α(t) · (randk

ij(t) − 0.5) (5)

βij(t) = β0 · e−γr2
ij(t) (6)

rij(t) = ‖xj(t) − xi(t)‖ =

√
√
√
√

D∑

k =1

(xk
j (t) − xk

i (t))2 (7)

where xk
i (t) and xk

j (t) are the positions of fireflies i and j, respectively, in the
kth dimension of the tth iteration; rij(t) is the distance between fireflies i and j
in the tth iteration; D is the maximum dimension of the problem space; rand is
a random number uniformly distributed in [0, 1]; and α is a random factor. The
evolution equation of the firefly position consisting of Eqs. (5)–(7) is the FA.

The position update equation of the firefly can be divided into three parts,
where xk

i (t) is the flight inertia of the firefly itself; βij(t) · (xk
j (t) − xk

i (t)) is the
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motion of firefly i by the attraction of firefly j, which is equivalent to the conver-
gence behavior of the firefly in the evolutionary process; and α(t)·(randk

ij(t)−0.5)
is a random search term that is completely independent of fireflies i and j, by
which a random disturbance can be generated to make a firefly reach a new
search position.

Yang [1,3] proposed that when implementing and applying FA, β0 = 1; the
constant γ, where γ ∈ [0.01, 100], is generally set to 1; and the constant α, where
α ∈ [0, 1], is generally set to 0.5.

If γ = 0, i.e., the medium does not absorb the fluorescence intensity, and
the absorption coefficient β = β0 = 1, then the position update equation of the
firefly is

xk
i (t + 1) = xk

j (t) + α(t) · (randk
ij(t) − 0.5) (8)

If γ → ∞, i.e., the medium completely absorbs the fluorescence and the absorp-
tion coefficient β = 0, then the position update equation of the firefly is

xk
i (t + 1) = xk

i (t) + α(t) · (randk
ij(t) − 0.5) (9)

From equations (5), (8), and (9), we can see that the random search term is
an important component of the firefly position update regardless of whether the
fluorescence is absorbed, and the ability of the random search is affected by the
random factor α, so the study of the random factor can be used to improve the
FA’s search ability, which we do below. The algorithm flow of FA is shown in
Fig. 1.

3 Research on the Random Factor Control Method of FA

3.1 Problem Analysis

As discussed in Sect. 2.2, the selection and control method of the random factor
α in FA affects the optimization performance of the algorithm. The FA in the lit-
erature has a fixed value, but it varies. From Eqs. (5), (6), and (7), it can be seen
that at the early stage of the operation of the algorithm, the distance between
fireflies is large, and the attraction coefficient is small. At this point, the fireflies
are expected to be highly random, which can make the algorithm optimize in a
large search range; as the swarm evolves, the distance between fireflies gradually
decreases, and the attraction coefficient gradually increases, which enables the
algorithm to gradually converge, and the randomness of fireflies should also be
reduced at this point to speed up convergence and improve the accuracy of the
solution.

A two-dimensional multimodal function, whose mathematical expression is

y = −(e(−(x−4)2−(y−4)2) + e(−(x+4)2−(y−4)2)

+ 2 · e(−x2−(y+4)2) + 2 · e(−x2−y2))
(10)

is used to verify the above results. In the domain [−5, 5], it has two positions with
a global minimum of −2, at (0, 0) and (0, −4), and two with a local minimum
of −1, at (−4, 4) and (4, 4).
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We chose four ways to control the random factor α of FA. Two of these are to
fix the value of α at 0.5 and 0.05, which is consistent with most of the literature;
the other two are to set the values of α to 0.5 and 0.05, decreasing linearly with
the number of iterations to zero. The settings of the experiments are shown in
Table 1.

We recorded the positions of each firefly at the initialization, 20 iterations,
40 iterations, and the end of the algorithm, as shown in Figs. 2, 3, 4 and 5,
respectively, from which we can see that the random factor with decreasing
control can better control the convergence behavior of the algorithm.

Table 1. Parameter settings for the experiments on α

Population size 20 Control method 1 α = 0.5

Maximum iteration 50 Control method 2 α = 0.05

Maximum absorption coefficient β0 = 1 Control method 3 α = 0.5 → 0

Absorption coefficient λ = 1 Control method 4 α = 0.05 → 0

Fig. 1. α = 0.05, positions of the population on different iterations (a) t = 0 (b)
t = 20 (c) t = 40 (d) t = 50

Fig. 2. α = 0.05 → 0, positions of the population on different iterations (a) t = 0 (b)
t = 20 (c) t = 40 (d) t = 50
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Fig. 3. α = 0.5, positions of the population on different iterations (a) t = 0 (b)
t = 20 (c) t = 40 (d) t = 50

Fig. 4. α = 0.5 → 0, positions of the population on different iterations (a) t = 0 (b)
t = 20 (c) t = 40 (d) t = 50

3.2 New Control Method for the Random Factor

The analysis and experimental results in Sect. 3.1 show the effect of the decreas-
ing random factor α with iteration on the convergence process and accuracy of
the solution. Therefore, for the random factor, we propose a control method that
decreases geometrically, i.e.,

α(t + 1) = k · α(t), α(0) = 0.5 (11)

where t is the current number of iterations, and k is the common ratio. It is
found from a previous study that a k value in the interval [0.97, 0.998] can
be optimized for the standard benchmark function to obtain more reasonable
results. In this paper, the 20 sets of common ratios in Table 2 are used to
investigate the optimization performance of FA. The effect of different k values
on the random factor values depends on their rate of decrease. Figure 6 shows
the decreasing curves for four k values, and the rate of decrease of the random
factor decreases as k increases.
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Table 2. Values of k

0.97 0.98 0.99 0.9901 0.9902

0.9903 0.9904 0.9905 0.9906 0.9907

0.9908 0.9909 0.991 0.992 0.993

0.994 0.995 0.996 0.997 0.998

Fig. 5. Values of random factor on different values of k

4 Experimental Results

4.1 Experiment Design

Nine commonly used standard benchmark functions were used to analyze the
effect of the proposed control method on the optimization ability of FA, and
their mathematical expressions, search ranges, and global optimum values are
listed in Table 3. All the standard benchmark functions were tested using FA
and the improved FA with the proposed geometrically decreasing random factor.
Each algorithm was randomly run 100 times for each function. The dimension
of the benchmark function was 30, the population size of the algorithm was 20,
the maximum number of iterations was 3000, the maximum attraction of the
algorithm β0 = 1, and the absorption coefficient λ = 1. The optimal solution
obtained from each run was recorded, and the mean value of the optimal solutions
after 100 runs was obtained, which is presented in Table 4 together with the
standard variance statistics. The data in the first row corresponding to each
algorithm in Table 4 are the mean values of the optimal solutions, and the data
in the second row in parentheses are their standard variances.

Among them, yi = 1+ 1
4 (xi+1), u(xi, a, k,m) =

⎧

⎨

⎩

k(xi − a)m
xi > a

0 −a ≤ xi ≤ a
k(−xi − a)m

xi < −a
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Table 3. Nine benchmark functions

Functions Search

space

Global

optimum

f1(x) =
∑D

i =1 x2
i ±100 0

f2(x) =
∑D

i =1 (
i∑

j =1
xj)

2

±100 0

f3(x) =
∑D

i =1 [100(xi+1 − x2
i ) + (xi − 1)2] ±30 0

f4(x) =
∑D

i =1 −xi sin(
√|xi|) ±500 −418.98D

f5(x) =
∑D

i =1 [x2
i − 10 cos(2πxi) + 10] ±5.12 0

f6(x) = −20 exp(−0.2
√

( 1
D

∑D
i =1 x2

i ) − exp( 1
D

∑D
i =1 cos 2πxi) + 20 + e ±32 0

f7(x) = 1
4000

∑D
i =1 x2

i − ∏D
i =1 cos(

xi√
i
) + 1 ±600 0

f8(x) = π
D {10sin2(πy1) +

∑D−1
i =1 (yi − 1)2[1 + 10sin2(πyi+1)] + (yD − 1)2}

+
∑D

i =1 u(xi, 10, 100, 4) ±50 0

f9(x) = 0.1{sin2(3πx1) +
∑D−1

i =1
(xi − 1)2{1 + sin2(3πxi+1)}
+(xD − 1)2{1 + sin2(2πxD)} }

+
∑D

i =1 u(xi, 5, 100, 4) ±50 0

4.2 Results Analysis

To determine whether a significant difference exists in the optimization perfor-
mance of the algorithm’s random factors when different common ratios are used,
we first tested for a significant difference between the algorithm’s means for each
benchmark function using analysis of variance (ANOVA) at p < 0.05. The calcu-
lated F-values are given in the last row of Table 4. By querying the F-statistics
table and comparing them, it is clear that the algorithms differ significantly for
each benchmark function, indicating that the random factor of FA had an impact
on the performance of the algorithm after the new control method was adopted.
Therefore, it is necessary to further clarify the advantages and disadvantages of
the algorithms in terms of optimization performance at different common ratios.
The step-up method [11] was used to perform multiple comparisons to obtain the
priority relationship of the algorithm in each benchmark function. Specifically,
the algorithms were ranked in increasing order according to the mean values
in Table 4. The scoring of all the algorithms was set to 1; then the algorithms
were compared pairwise from the smallest two mean values, and if there was
a significant difference, the score of the algorithm with the larger mean value
was increased by 1. Otherwise, there was no change to the score, and the two
algorithms were included in the same group. After several pairwise comparisons,
the scoring results of each algorithm in each test function were obtained, and
the scoring results of each algorithm in each benchmark function were summed
to obtain the total score of each algorithm. The smaller the score the better the
overall optimization performance of the algorithm. The final scores are listed in
Table 5.

From the scores in Table 5, it can be seen that the optimization performance
of FA and improved FA showed significant differences in the optimal solution of
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Table 4. Experimental results for nine benchmark functions (average values and stan-
dard deviations)

f1 f2 f3 f4 f5 f6 f7 f8 f9

FA 3.10E−04 2.11E−02 59.87 −7977.64 64.26 4.17E−03 4.47E−03 1.04E−03 1.44E−03

(4.87E−05) (7.44E−03) (78.82) (728.52) (19.96) (2.91E−04) (6.02E−03) (1.04E−02) (3.72E−03)

k = 0.97 2.62E−75 3896.55 333.07 −7068.08 66.7 4.52E−02 1.38E−03 8.72E−03 3.50E−03

(5.30E−76) (1255.82) (606.02) (749.83) (21.45) (1.84E−01) (3.27E−03) (3.00E−02) (5.57E−03)

k = 0.98 1.07E−48 1667.73 126.76 −7425.57 74.02 1.86E−02 4.43E−03 1.04E−02 3.06E−03

(1.97E−49) (821.48) (240.61) (738.13) (21.55) (1.32E−01) (6.64E−03) (3.14E−02) (5.39E−03)

k = 0.99 2.33E−22 20.17 129.06 −7605.18 70.64 3.46E−12 3.55E−03 2.07E−03 1.98E−03

(3.40E−23) (22.47) (262.39) (704.26) (21.99) (3.62E−13) (6.04E−03) (1.47E−02) (4.26E−03)

k = 0.9901 4.09E−22 21.54 140.22 −7643.76 69.89 4.81E−12 3.84E−03 1.46E−24 2.64E−03

(6.96E−23) (28.59) (332.64) (633.46) (26.11) (4.53E−13) (5.81E−03) (3.65E−25) (4.74E−03)

k = 0.9902 7.68E−22 22.47 76.32 −7649.37 69.43 6.53E−12 2.37E−03 2.07E−03 1.52E−03

(1.42E−22) (36.26) (108.63) (727.43) (23.4) (4.92E−13) (4.53E−03) (1.47E−02) (4.36E−03)

k = 0.9903 1.44E−21 16.38 137.48 −7533.51 66.52 8.77E−12 2.42E−03 4.80E−24 2.64E−03

(2.41E−22) (26.59) (336.06) (745.52) (19.8) (8.83E−13) (4.55E−03) (9.78E−25) (4.74E−03)

k = 0.9904 2.52E−21 13.15 90.23 −7631.87 67.54 1.20E−11 3.06E−03 8.34E−24 1.74E−03

(5.08E−22) (16.42) (172.94) (673.97) (21.56) (1.17E−12) (4.99E−03) (2.07E−24) (4.55E−03)

k = 0.9905 4.80E−21 13.71 78.83 −7592.86 69.29 1.59E−11 4.93E−03 4.15E−03 2.64E−03

(8.16E−22) (18.54) (101.42) (721.86) (21.47) (1.27E−12) (5.52E−03) (2.05E−02) (4.74E−03)

k = 0.9906 8.38E−21 8.38 123.36 −7711.15 68.63 2.16E−11 4.93E−03 6.22E−03 2.20E−03

(1.62E−21) (14.77) (204.99) (700.13) (20.59) (1.64E−12) (5.52E−03) (2.49E−02) (4.44E−03)

k = 0.9907 1.51E−20 13.04 190.31 −7817.81 68.59 2.93E−11 3.45E−03 2.07E−03 2.84E−03

(2.16E−21) (20.29) (295.75) (826.79) (21.41) (2.62E−12) (5.95E−03) (1.47E−02) (5.28E−03)

k = 0.9908 2.91E−20 11.17 138.5 −7557.43 67.42 4.04E−11 4.04E−03 9.71E−23 2.60E−03

(4.19E−21) (22.65) (281.6) (702.82) (21.77) (2.94E−12) (5.58E−03) (2.44E−23) (5.56E−03)

k = 0.9909 5.36E−20 7.49 164.25 −7722.41 73.55 5.33E−11 2.46E−03 4.15E−03 2.20E−03

(9.68E−21) (11.88) (347.07) (828.57) (26.85) (4.32E−12) (4.37E−03) (2.05E−02) (4.44E−03)

k = 0.991 9.55E−20 7.09 128.84 -−.12 66.14 7.29E−11 3.74E−03 2.99E−22 2.86E−03

(1.56E−20) (12.71) (281.43) (773.43) (17.84) (5.75E−12) (6.14E−03) (5.58E−23) (4.87E−03)

k = 0.992 3.95E−17 1.08 126.75 −7581.21 65.85 1.49E−09 2.86E−03 2.07E−03 2.20E−03

(7.78E−18) (3.87) (171.99) (744.42) (22.37) (1.21E−10) (6.27E−03) (1.47E−02) (4.44E−03)

k = 0.993 1.60E−14 1.88E−02 108.23 −7765.53 60.63 2.92E−08 4.98E−03 5.03E−17 2.64E−03

(2.29E−15) (1.33E−01) (213.89) (704.13) (15.74) (2.87E−09) (6.28E−03) (8.75E−18) (4.74E−03)

k = 0.994 6.25E−12 1.07E−10 108.45 −7816.91 63.92 5.80E−07 3.45E−03 4.15E−03 1.98E−03

(1.11E−12) (3.48E−11) (198.8) (734.81) (21.34) (4.96E−08) (6.86E−03) (2.05E−02) (4.26E−03)

k = 0.995 2.44E−09 2.75E−08 45.33 −7759 65.17 1.17E−05 5.32E−03 2.07E−03 1.32E−03

(3.90E−10) (8.67E−09) (43.62) (818.12) (19.1) (8.15E−07) (6.65E−03) (1.47E−02) (3.61E−03)

k = 0.996 9.79E−07 8.35E−06 66.27 −7917.3 72.09 2.31E−04 3.06E−03 2.68E−09 4.40E−04

(1.37E−07) (2.88E−06) (84.41) (704.1) (20.07) (1.86E−05) (5.77E−03) (5.23E−10) (2.17E−03)

k = 0.997 3.77E−04 2.52E−03 42.62 −8257.41 63.8 4.58E−03 5.92E−03 1.02E−06 1.55E−03

(5.62E−05) (9.82E−04) (39.71) (729.71) (22.41) (3.70E−04) (7.92E−03) (1.70E−07) (3.85E−03)

k = 0.998 1.30E−01 6.73E−01 58.22 −8159.73 66.36 1.12E−01 3.51E−01 3.54E−04 7.61E−03

(1.81E−02) (1.78E−01) (61.42) (801.51) (19.91) (8.27E−03) (3.97E−02) (6.67E−05) (4.09E−03)

F 102988.23 15264.8 124.41 219.25 46.25 549.74 104578.97 70.29 176.32

f1, f2, f6, and f8, with the performance of improved FA better than that of FA. In
the optimal solution of other functions, the improved FA showed no improvement
for the solution of f3, and obtained better optimization results than FA for f4, f5,
f7, and f9. The improved FA had better optimization results than FA. Overall,
when the coefficients of the geometric sequence were 0.9902, 0.9903, and 0.9904,
the corresponding improved FA could achieve the best combined optimization
results among all nine functions. Therefore, the optimization performance of
FA with the decreasing geometric sequence was improved by the random factor
control method. The new control method used for the random factor of FA
only performs a simple constant multiplication operation on the random factor;
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Table 5. Ranking of FA and improved FA based on ANOVA

f1 f2 f3 f4 f5 f6 f7 f8 f9

FA 19 =4 =1 =3 =1 17 =12 =9 =2 68

k=0.97 1 21 21 21 =1 20 =1 =9 =2 97

k =0.98 2 20 =6 =12 =18 19 =12 =9 =2 100

k =0.99 3 17 =6 =12 18 1 =1 =9 =2 69

k=0.9901 4 18 =6 =12 =1 2 =12 1 =2 58

k =0.9902 5 19 =6 =3 =1 3 =1 =9 =2 49

k =0.9903 6 16 =6 =12 =1 4 =1 2 =2 50

k =0.9904 7 14 =6 =12 =1 5 =1 3 =2 51

k =0.9905 8 15 =6 =12 =1 6 =12 =9 =2 71

k =0.9906 9 11 =6 =3 =1 7 =12 =9 =2 60

k =0.9907 10 13 20 =3 =1 8 =1 =9 =2 67

k =0.9908 11 12 =6 =12 =1 9 =12 4 =2 69

k =0.9909 12 10 =6 =3 =18 10 =1 =9 =2 71

k =0.991 13 9 =6 =12 =1 11 =1 5 =2 60

k =0.992 14 8 =6 =12 =1 12 =1 =9 =2 65

k =0.993 15 4 =6 =3 =1 13 =12 6 =2 62

k =0.994 16 1 =6 =3 =1 14 =1 =9 =2 53

k =0.995 17 2 =1 =3 =1 15 =12 =9 =2 62

k =0.996 18 3 =1 =3 =18 16 =1 7 1 68

k =0.997 20 =4 =1 =1 =1 18 =12 8 =2 67

k =0.998 21 7 =1 =1 =1 21 21 =9 21 103

so, this improvement does not increase the computational complexity of the
algorithm.

4.3 Comparison with Other Decreasing Control Methods

We compare the optimization performance using linearly decreasing and expo-
nentially decreasing control methods with the control method using geometric
decreases in the previous section. The mathematical form of these two control
methods is

α(t) = (αmax − αmin) · (T − t)/T + αmin (12)

α(t) = αmin · (
αmax

αmin
)
(1/(1+10· t

T
))

(13)

where t is the current number of iterations, T is the maximum number of iter-
ations, αmax = 0.5, and αmin = 0. Figure 6 depicts the graphs of the three
control methods.

These two control methods were applied to FA, and the same parameters
as in Sect. 4.2 were used to optimally solve the nine benchmark functions. The
mean and standard deviation of the optimal solutions obtained after 100 random
runs are shown in Table 6, from which shows the improved FA with a common
ratio of 0.9902 achieves better optimization results than the other two control
methods for the six benchmark functions, and shows a stronger optimization
capability.
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Fig. 6. Different decreasing control methods of k

Table 6. Experimental results based on three different control methods

f1 f2 f3 f4 f5 f6 f7 f8 f9

k =0.9902 7.68E−22 22.47 76.32 −7649.37 69.43 6.53E−12 2.37E−03 2.07E−03 1.52E−03

(1.42E−22) (36.26) (108.63) (727.43) (23.4) (4.92E−13) (4.53E−03) (1.47E−02) (4.36E−03)

Eq. (12) 9.20E−04 2.66E−03 48.39 −7531.65 72.17 2.56E−02 6.53E−03 6.22E−03 1.79E−03

(1.03E−04) (6.27E−04) (67.12) (762.15) (21.87) (1.31E−01) (7.08E−03) (2.49E−02) (4.07E−03)

Eq. (13) 1.76E−01 1.45E+02 286.1 -7908.6 75.29 2.56E−01 3.77E−01 2.79E−03 4.19E−02

(5.46E−02) (4.91E+01) (551.3) (821.97) (22.42) (1.45E−01) (1.13E−01) (1.25E−03) (1.64E−02)

Table 7. Comparison among FA and PSO with variants

f1 f2 f3 f4 f5 f6 f7 f8 f9

FA with 7.68E−22 22.47 76.32 −7649.37 69.43 6.53E−12 2.37E−03 2.07E−03 1.52E−03

k = 0.9902 (1.42E−22) (36.26) (108.63) (727.43) (23.4) (4.92E−13) (4.53E−03) (1.47E−02) (4.36E−03)

FIPS 2.81E−46 10.9 39.76 −10445.25 54.96 2.27E−01 4.64E−03 3.94E−02 8.19E−02

(1.30E−45) (11.56) (41.32) (1038.95) (14.92) (4.68E−01) (1.12E−02) (7.52E−02) (5.10E−01)

GBBPSO 2.00E+02 13809.09 11515.32 −8796.74 110.83 7.67E+00 5.06E+00 6.43E−02 1.10E−01

(1.41E+03) (8198.37) (29305.68) (622.49) (36.46) (8.85E+00) (1.73E+01) (9.34E−02) (3.79E−01)

PSO CO 3.51E−38 0.05 27.78 −18485.21 68.57 2.78E+00 9.56E−02 9.12E−02 1.23E−01

(1.07E−37) (0.13) (28.35) (2797.71) (18.74) (1.28E+00) (2.44E−01) (1.21E−01) (5.26E−01)

PSO IN 1.96E−13 766.51 88.42 -33603.31 45.69 4.87E−02 1.83E−02 7.94E+01 6.15E−03

(3.47E−13) (1076) (92.11) (4117.75) (32.28) (2.48E−01) (2.76E−02) (5.61E+02) (1.04E−02)

PSO LB 8.23E−10 2084.05 78.01 −31596.47 49.45 2.80E−01 1.17E−02 1.91E−02 3.75E−03

(9.40E−10) (952.14) (52.5) (3970.77) (11.49) (6.16E−01) (1.59E−02) (4.56E−02) (9.32E−03)

SPSO 3.54E−26 41.51 37.4 −16766.27 63.96 1.69E−01 6.60E−03 2.90E−02 7.28E−02

(4.92E−26) (34.26) (30.56) (2386.1) (14.44) (4.45E−01) (1.02E−02) (5.94E−02) (5.09E−01)

Table 8. Ranking of FA and the other compared algorithms

f1 f2 f3 f4 f5 f6 f7 f8 f9 Total

FA with k =0.9902 4 3 4 7 4 1 =1 1 1 26

FIPS 1 2 3 5 3 4 =1 4 =3 26

GBBPSO 6 7 7 6 7 7 7 5 =3 55

PSO CO 2 1 1 3 4 6 6 6 =3 32

PSO IN 5 5 6 1 1 2 5 6 =3 34

PSO LB 6 6 5 2 1 5 4 2 2 33

SPSO 3 4 2 4 4 3 3 3 =3 29
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4.4 Performance Comparison with Other Swarm Intelligence
Algorithms

We compared FA with other PSO algorithms, including standard PSO (SPSO)
[12], PSO with inertia weight (PSO-In) [13], PSO with constriction factor (PSO-
Co) [14], Gaussian barE−bones PSO (GBBPSO) [15], PSO with lbest (PSO-
Lb) [16], and fully-informed PSO (FIPS) [16], for optimization performance.
These algorithms were also used to optimize the nine benchmark functions in
4.1, with the same experimental parameters as in Sect. 4.1. The experimental
results are given in Table 7. The performance of the seven algorithms was scored
and analyzed using the same statistical method as in Sect. 4.2, and the results
are presented in Table 8. Tables 7 and 8 show that the combined optimization
performance of the improved FA with a common ratio of 0.9902 is close to that of
the FIPS optimization algorithm, and it can achieve better optimization results
than several other algorithms.

5 Conclusion

We first analyzed the design idea and mathematical model of the firefly algo-
rithm. We pointed out that the random search term of the algorithm is an
important factor affecting optimization performance. Through numerical exper-
iments, we analyzed the relationship between the optimization performance of
an algorithm and the way the random factor takes values. Based on those results,
we designed a method to control the values of the random factor by geometri-
cally decreasing them. Using different common ratios for FA, we compared the
optimization performance of nine standard benchmark functions and analyzed
the optimization results by ANOVA and step-up statistical methods. The anal-
ysis results show that the improved FA has better optimization ability. We also
compared linearly and exponentially decreasing controlling values for the ran-
dom factor with geometrically decreasing it. The results of our numerical exper-
iments show that the geometric method achieved better optimization results in
most tested functions. The performance of the improved FA was compared with
that of the PSO and improved PSO algorithms, and the results show that the
improved FA was able to achieve better optimization results. In conclusion, the
proposed geometric decreasing of controlling values for the FA random factor
can improve the optimization effect of FA and is a feasible control method.
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Abstract. Nature-inspired metaheuristic optimization has been widely
used in many problems in industry and scientific investigations, but their
applications in designing selling scheme are rare because the solution
space in this kind of problems is usually high-dimensional, and their
constraints are sometimes cross-dimensional. Recently, the Swarm Intel-
ligence Based (SIB) method is proposed for problems in discrete domains,
and it is widely applied in many mathematical and statistical problems
that common metaheuristic methods seldom approach. In this work, we
introduce an extension of the SIB method that handles solutions with
many dimensions, or tensor solution in mathematics. We further speed
up our method by implementing our algorithm with the use of CPU par-
allelization. We then apply this extended framework to real applications
in designing selling scheme, showing that our proposed method helps to
increase the profit of a selling scheme compared to those suggested by
traditional methods.
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as a powerful tool for optimization problems that are usually extremely complex

This work is partially supported by the Academia Sinica grant number AS-TP-109-M07
and the Ministry of Science and Technology (Taiwan) grant numbers 107-2118-M-001-
011-MY3 and 109-2321-B-001-013.

c© Springer Nature Switzerland AG 2021
Y. Tan and Y. Shi (Eds.): ICSI 2021, LNCS 12689, pp. 72–82, 2021.
https://doi.org/10.1007/978-3-030-78743-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78743-1_7&domain=pdf
http://orcid.org/0000-0002-7417-8982
http://orcid.org/0000-0003-3423-991X
https://doi.org/10.1007/978-3-030-78743-1_7


Optimization via Swarm Intelligence in Designing Selling Scheme 73

and challenging in the real world. Swarm intelligence [2], which describes a col-
lective intelligent behavior of self-organized and decentralized systems, is a major
class of metaheuristics. Some well-known algorithms, such as Genetic Algorithms
(GA) [3], Artificial Bee Colony [4], Particle Swarm Optimization (PSO) [5], the
Swarm Intelligence Based (SIB) method [6], and many others, belong to this
algorithm family. Among all, PSO is widely used in engineering problems and
some scientific investigations in the past decades. It has been well-designed for
solving high-dimensional optimization problems in various fields. [7] pointed out
four distinctive features for the popularity of the use of PSO among engineers.
There are many versions and variants of PSO after its first introduction in [8],
we denote PSO as the traditional framework of PSO mentioned in [8] for the
rest of this paper unless specified.

Similar to many metaheuristics, PSO works well in a continuous domain as
its velocity and position are well-defined with physical meanings, but it may not
be the best candidate for problems with solutions in a non-continuous domain,
which is not necessarily a discrete domain but some domains with “holes”.
Such optimization methods are common in mathematics and statistics, espe-
cially when solutions are in the matrix form and full of categorical variables like
choices or symbols. Even though [7] and many others suggest to tackle thiese
discrete scenario via a simple round-off, it is not trivial to verify if the resulting
solution is truely optimal. This leads to an introduction of the Swarm Intelli-
gence Based (SIB) method proposed in [6] that works perfectly in a wide range of
discrete optimization problems, such as the constructions of optimal experimen-
tal designs [9], the uniform distribution of testing points [10], target localization
[11], supercomputing scheduling [12], hot spot determination [13], and many
others. Details will be briefly reviewed in the next section.

Traditionally, a solution can be just a zero-dimensional number, an one-
dimensional vector, or at most a two-dimensional matrix. A solution that has
dimensions more than two is rare because the search becomes difficult in a huge
solution domain, and the higher the dimensions, the larger the solution domain.
As science and technology have advanced, practitioners attempt to perform
complex optimization problems, and the computing power of searching high-
dimensional solutions is available in the era of artificial intelligence. Not only do
high-dimensional solutions test the feasibility of computation in both hardware
and software, but additional cross-dimensional constraints, like some interac-
tive quantities among several dimensions, create additional complexity in the
optimization procedure. If cross-dimensional constraints do not exist, one may
decompose the high-dimensional solution into layers of low-dimensional com-
ponents and optimizes them one-by-one, but the existence of cross-dimensional
quantities, which commonly exist in the real applications, break this layer inde-
pendency assumption.

A real example of complex optimization with high-dimensional solution space
exists in supply chain management, which was first termed in 1982 by Keith
Oliver, a consultant at Booz Allen Hamilton. Supply chain management is the
flow of goods and services management, and it includes all processes that trans-
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form raw materials into final products [14]. It can also be considered as the
connection of a business’s supply-side from suppliers to customers. Good supply
chain management helps a company gain a competitive advantage in the mar-
ketplace. Readers who are interested in the basics of supply chain management
are referred to [15] and [16]. It is of great interest to coordinate all parts of
a supply chain from supplying raw materials to delivering products under the
purpose of minimizing total costs and maximizing net profits in the process.
Surprisingly, many optimization problems in supply chain management employ
traditional methods like linear programming and others [17]. In the era of big
data and artificial intelligence, there are many advanced optimization techniques
that can greatly reduce the computational complexity and include many compli-
cated problem constraints into consideration. This growing gap of optimization
methods becomes an obstacle for researchers in supply chain management to
develop large-scale data analysis techniques for better optimization schemes like
the multi-channel selling scheme where products and services are sold and deliv-
ered to customers via different means.

In this work, we consider the optimization of the multi-channel selling scheme
via a modern optimization technique in swarm intelligence. In Sect. 2, we briefly
review optimization techniques in swarm intelligence. In Sect. 3, we implement
the swarm intelligence based method for the optimization of the multi-channel
selling scheme. Two real-life examples are used to demonstrate the efficiency
of the proposed optimization method in Sect. 4. Some concluding remarks are
stated in the last section.

2 A Brief Review of PSO and SIB

In this section, we review the basics of PSO and SIB, which are the two main
algorithms used in this work. Readers who are interested in the details and
theories of these algorithms are referred to [5] and [6].

Particle Swarm Optimization (PSO) Algorithm. Particle Swarm Opti-
mization (PSO) is one of the most representative swarm intelligence algorithms
in the past decades, and it has been widely applied in many industrial and sci-
entific optimization problems. It is popular because of its easy implementation,
and it is highly efficient in terms of memory and speed. In a PSO algorithm, we
first initialize a swarm or a number of random particles, each of which represents
a possible solution to the objective problem in the search space. The position
of a particle is expressed as a vector consisting of values in every dimension. In
addition to a position, each particle is given a velocity to determine its move-
ment. At the end of every iteration, the position of every particle is updated
based on its own velocity.

To make the swarm results in a good solution, an objective function has to
be defined for evaluating the performance of a solution. With this definition, we
are able to determine the Local Best (LB) particle and the Global Best (GB)
particle. LB is the best solution a particle has encountered so far, and GB is the
best one among all LB or the best solution that the whole swarm has encountered
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so far. In each iteration, each particle’s position is influenced by its LB and GB
position through its velocity, which can be expressed as the following equations:

vt+1
i ← αvt

i + b(x∗,t
i − xt

i) + c(x+,t
i − xt

i)

xt+1
i = xt

i + vt
i ,

where i denotes the number of the iteration, vi is the velocity of the particle,
alpha is the inertia weight, b is the weight given to the cognitive/individual
aspect, c is the weight given to the social aspect, xi is the particle’s position,
x∗
i is the LB position of the particle, and x+

i is the GB position of the swarm.
The determinations of b and c are generally user-defined or based on expert’s
experience.

Swarm Intelligence Based (SIB) Algorithm. Although PSO does not have
any assumptions for the objective function, the search space is assumed to be
continuous in the standard framework. There exist some variants of PSO to
modify non-continuous domains, such as a simple round-off of velocities or using
a probabilistic approach, but they may not be as good as in the Swarm Intelli-
gence Based (SIB) method, which can be viewed as a hybrid method that some
of SIB components can be viewed as a discretized version of PSO.

Similar to PSO, there is a swarm consists of several particles, LB particles,
and a GB particle in the SIB algorithm. The objective function is also defined
for evaluating the performance of particles. The main difference comes in the
velocity update process. Rather than a linear combination formula of inertia and
information from the two best particles in PSO, SIB extracts some important
information from LB and GB particles by “mixing” particle units in the MIX
operation. In addition, instead of only one choice of position updates in PSO,
SIB picks the best of the three candidates to update in the MOVE operation.
Below are the details of the two operations.

In the MIX operation, every particle has to be mixed with their own LB and
GB, respectively, which returns two new positions called mixwLB and mixwGB.
To mix a particle with a best particle, a given proportion, called qLB and qGB for
mixing with LB and GB respectively, of entries in the particle is modified based
on the corresponding values in the best particle. For example, we may simply
replace the entry with the value in the best particle, or we may choose a random
number in the range of two values to be the new value from the entry. Although
there are no theoretical derivations to set the optimal values of qLB and qGB , our
experience suggests setting qLB > qGB to avoid premature convergence towards
a relative good particle without an adequate exploration of the search space.

The MOVE operation is undertaken after all MIX operations are completed
in an iteration. The performances of mixwLB and mixwGB are compared with
the original position based on the objective function. If the best one among
these three positions is one of the mixwLB and mixwGB, then it will be the new
position of the particle. If none of the modified particles perform better than the
original particle, we randomly alter some units in the original particle to create
a new particle, so the particle can escape from the trap of a local optimum and
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explore unknown search space near original positions. The algorithm is ceased
at some pre-defined stopping criteria, such as reaching the assigned maximum
number of iterations or achieving convergence towards a pre-defined threshold
range of GB.

3 Method and Implementation

Multi-channel selling is a process of selling products on more than one sales chan-
nel. This sale strategy is popular in the E-commerce world nowadays, but the
optimization of such a sale strategy can be very complicated with the existence
of a middleman for product centralization between suppliers and customers. For
example, a selling scheme of farm products may involve products gathering to
a middleman company from multiple suppliers (farmers) and reselling to cus-
tomers from the middleman company. On the other hands, a direct sale skips
the middleman and connects the selling relationship between farmers and cus-
tomers. It is obvious that if a direct sale is considered, the multi-channel selling
scheme may not only increase the revenues of farmers and decrease the prices of
products sold to customers, but also simplifies the complexity of the optimization
and thus shortens the computational time.

Due to its high-dimensional and discrete natures of the selling scheme, we
choose to use the SIB algorithm to tackle this important supply chain man-
agement problem. We consider a scenario that there are M suppliers supplying
K types of products to N customers. The overall selling scheme is a three-
dimensional matrix or a tensor with dimensions N × K × M . Before we propose
the SIB algorithm for this problem, we state several underlying assumptions
behind this scenario. First, we assume that all products are delivered directly
from suppliers to customers, and there are no further complications on resale,
buy-back, or others. Second, we assume that the quantities of supply and demand
are known in prior. This assumption is possibly valid nowadays as the selling
information can be collected online and analyzed via big data analytics. Third,
we assume that every product has a constant price for customers and a constant
cost for buying from suppliers, and the transportation cost per mile for a specific
product is constant. This assumption makes the optimization simpler, and it is
not difficult to implement price and cost variations in the optimization.

Table 1. The SIB algorithm.

1: Initialize a swarm of particles.

2: Evaluate the objective function values of each particle.

3: Determine the Local Best (LB) and the Global Best (GB) for each particles.

4: while STOPPING CRITERIA NOT FULFILLED

5: Do MIX operation.

6: Do MOVE operation.

7: Update all LB particles and the GB particle.

8: Check the conditions of convergence.
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To implement the SIB method for the multi-channel selling scheme, we follow
the standard framework in [6] with pseudo-codes stated in Table 1. It consists of
an initialization part and an iteration part. In short, we first randomly generate
a set of different schemes that are feasible to exist under the constraints. By
evaluating the objective function values, we define the LB schemes as the initial
schemes and the GB scheme as the one with maximum profit. Then in the
iteration part, each scheme is mixed with its own LB scheme and the GB scheme
respectively and results in two mixed schemes (MIX operation). Two newly
created schemes are compared wth the original scheme in terms of profits, and
the particle is updated if the mixed scheme creates a higher profit (MOVE
operation), or a perturbed scheme from the original scheme is used for update.
Iteration contines until the pre-defined terminal criteria are fulfilled. The details
about the implementation of the operations and the strategies for preserving the
feasibility are specified as follows.

Initialization. We define a particle in SIB as a three-dimensional tensor X with
dimensions N × K × M for N customers, K product types, and M suppliers.
Each entry xnkm in X stands for the number of the kth product suggested to
be sold to the nth customer from the mth supplier. Each column with K entries
represents a selling scheme between a supplier and a customer, and each slice of
size M × K represents a selling scheme towards a specific customer of interest.
In a supply chain optimization problem, the objective function is generally the
profit that a selling scheme is able to earn. The profit is the difference between
sales and costs. To simplify our problems, we only consider the cost of packaging
from suppliers and the cost of delivery to customers as the only two costs in the
objective function, and the sale is simply product prices and quantities that a
customer purchases. Mathematically speaking, we have

Profit = Sale − Cost, (1)

where Cost = Σ(Delivery + Package) and Sale = Σ(Price × Quantity).
There are constraints in supply and demand in this problem, and we imple-

ment these constraints in the particle generation step. In specific, we generate
each column separately and combine these columns into a particle. To make
sure the availability of products in both supply and demand, we record the
remaining supply and demand after generating each slice of the particle. We
randomly choose integers from 0 to the minimum between the remaining supply
and demand to the available entry. In case of no remaining supply or demand,
the entry will set to be zero. Moreover, we shuffle the generating order in both
column level and slice level to increase variations among particles. Once the
particle initialization is done, then their objective function values are evaluated,
and the best particles are defined accordingly.

Iteration and Update. Every particle is mixed with its own LB and GB of the
swarm respectively in an iteration step and results in two outcomes denoted as
mixwLB and mixwGB. The MIX operation is done via mixing two particles in
a column-by-column fashion and shuffling the order of columns in each slice. We
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deal with a pair of columns in each MIX operation, one from the original particle
and another from either the LB or the GB particle. To ensure the availability
of output positions, we calculate the remaining demand and supply and update
them after every MIX operation of a pair of columns is completed. For each
pair of columns, we first identify entry indices that their values are larger in
the best particle, and both demand and supply constraints are still fulfilled. In
other words, we do not do anything if there are no remaining counts in the
demand or supply constraints. Then, we randomly choose a specific proportion
of those selected indices and replace values in the original particle with the values
corresponding best particle, where the proportion is equal to qLB or qGB ; we set
qLB to be 0.6 and qGB to be 0.4. Since we only select entries with larger values in
the best particle, the objective function values will only increase in this process,
and we determine to add this condition for achieving convergence faster.

After the MIX operation, we have three tensor particles: the original particle,
the mixwLB particle, and the mixwGB particle. The MOVE operation in this
algorithm is the same as the standard SIB algorithm. If either the mixwLB or
the mixwGB particle has a better objective function value, then the original
particle will be updated with a better choice. If the original particle still has
the best objective function value, we first count the number of elements that
corresponds to the non-zero demand in each column, then we randomly choose
half of them and assign new integers that are randomly generated from the range
between 0 and the minimum within the remaining demand and supply. This step
ensures that the particle is out of the local-attractive trap while fulfills demand
and supply constraints.

The procedure continues until the stopping criteria are reached. The criteria
can be the maximum number of iterations, the achievement of a pre-defined profit
value, or a convergence of a large proportion of tensor particles towards GB. Once
the procedure is completed, the GB particle is the outcome, which is the optimal
multi-channel selling scheme suggested by our proposed SIB algorithm.

Acceleration by CPU Parallelization. The computation among tensors is
time-consuming, so we use the CPU parallelization technique to accelerate the
whole process. Using the python package Multiprocessing, the data of the global
best particle is stored in the shared memory while pairs of particles and their
local best particles are stored in different CPUs. The MIX and MOVE operations
for every particle are run in different CPUs, and the new positions are compared
with the GB particle separately. If an output particle performs better than the
GB particle, we modify the GB particle in the shared memory. To keep the
process synchronous, Barriers are used to hold the complete sub-processes until
all particles are completed. Moreover, a Lock is used to protect a shared resource
from being modified by two or more concurrently running processes at the same
time to make sure that the correct information is recorded.

Since our SIB algorithm contains a lot of for-loop and basic numerical func-
tions, it is essential for the success of our program to implement efficiently.
Numba [18], which translates Python functions to optimize machine code at
runtime using the industry-stand LLVM compiler library, is a suitable choice for
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our SIB algorithm. Numba-compiled numerical algorithms in Python is claimed
to approach the speeds of C or FORTRAN. The source code of Numba can be
found in Github at github.com/numba/numba.

Numba translates Python functions to optimize machine code at runtime
using the industry-standard LLVM compiler library. Numba-compiled numerical
algorithms in Python can approach the speeds of C or FORTRAN. Our program
contains a lot of for-loop and basic numerical functions, which makes it suitable
for applying Numba.

4 Applications

In this section, we apply our SIB algorithm in two examples. The first example
is the real data from the layer industry in Taiwan with one dealer playing the
only supplier in the supply chain. We can neither find any data with multiple
suppliers (without dealer) nor find other data with a larger number of customers
and products, so we randomly generate data as an extended example with addi-
tional suppliers based on this real data in order to demonstrate the capability
of handling high-dimensional data of our SIB algorithm.

A Real Example in Layer Industry in Taiwan. In this example, we have
30 farmers, 82 customers, 78 products, and one dealer. We consider the dealer as
the only supplier in this supply chain. Our data consists of the supply amount
of each product, the cost of purchasing eggs from farmers, distances between
customers and the dealer, the transport cost per mile for each product, and
product prices that are different among customers due to quantities. To compare
the performance of the SIB method on this data, we implement the GA algorithm
and the PSO algorithm (with feasible initial particles, constrained velocities and
a random back strategy).

In the first experiment, the simulations are performed about 100 times for
each algorithm. The swarm size is set at 50 particles, and the stopping criterion is
fulfilled after 50 iterations. Figure 1 shows the boxplots of the profits of the final
GBs suggested by the algorithms. The SIB algorithm achieves a better position
and deviates in a smaller range than the other two algorithms. The profit of the
best selling scheme by the SIB algorithm is $2,071,885, and those of the PSO
and GA algorithms are only $ 1,629,555 and $1,622,400 respectively.

It is possible that the PSO and GA algorithms might not achieve their con-
vergence with small number of iterations, so we rerun the same experiemnts
for the PSO and the GA algorithms for 100 times with the stopping criterion
fulfilled after 1000 iterations. Figure 2 shows the profits of the selling scheme
suggested by the two algorithms, and we also plot the result of SIB algorithm
with 50 iterations for comparison. The highest final profits are $1,643,027 and
$1,712,644 suggested by the PSO and GA algorithms respectively. It is obvious
that even after 1000 iterations, the performance of the output selling schemes
are still underperformed by the one suggested by the SIB algorithm with less
iterations.
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Fig. 1. Final GBs after 50 iterations. Fig. 2. Final GBs after 1000 iterations.

Fig. 3. Profit trend of GA. Fig. 4. Profit trend of SIB.

An Example of Multi-channel Selling. The first example is not “multi-
channel” because there is only one dealer on the supply side of the selling scheme.
In addition, the numbers of customers and products are quite small when we
consider standard e-commerce. Therefore, we artificially generate extended data
based on the real data in the first example, with 1000 customers, 100 kinds
of products, and 100 different suppliers. We set the swarm size at 20, and the
maximum number of iterations are set at 100 steps. Since each particle in this
example is a tensor of size 1000 × 100 × 100, and the computation is time-
consuming, thus CPU parallelization is employed. As a comparison, the whole
procedure is completed in roughly an hour with CPU parallelization instead
of 20 h without CPU parallelization. In this case, we only compare the SIB
algorithm with the GA algorithm since the PSO algorithm cannot deal with
multi-supplier cases.

Figures 3 and 4 show how the profits of the multi-channel selling scheme are
improved through the iterations in the GA and SIB algorithms. We discard the
potential unfairness in this comparison by setting the initial swarm for both algo-
rithm the same. Notice that the range of the y-axises are different. The resulting
profits given by SIB algorithm is $437,947,645 and that of GA is $437,358,222
while the best selling scheme in the initial swarm can only earn $437,357,771.
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The significant increase in the profit from the initial swarm to the final swarm
shows that the SIB algorithm has greatly improved the multi-channel selling
scheme. In specific, it modifies the scheme by creating a better configuration
between the sellers and buyers, so that the selling scheme produces a very good
profit as a result.

5 Conclusion

In the era of big data and artificial intelligence, a multi-channel selling scheme
is an important advancement in supply chain management and e-commerce.
However, computations on the optimization of the multi-channel selling scheme
are infeasible if one employs traditional optimization techniques instead of par-
allelization. In this work, we propose the use of the SIB method to tackle this
highly computational intensive problem. We introduce the high-dimensional ten-
sor particle to be a solution particle in the SIB method with the consideration
of demand and supply constraints and a new MIX operation to handle the infor-
mation exchange between two particles with the preservation of the particle
validity under these constraints. The simulation shows that the SIB method
helps to increase the profits of these multi-channel selling schemes.

Extended from the current works, there are many practical considerations in
multi-channel selling that we simplified in our assumptions. Some of them are
easy to implement as additional constraints, and they can be handled similarly to
supply and demand constraints in our SIB method. If one considers the variations
of price and cost due to the change of demand and supply, which is valid in the
common sense of microeconomics, we may need advanced marketing models to
perform predictions prior to the optimization. If one considers any buy-back or
resale actions, we may need to consider the sale dynamics rather than a static
model.
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Abstract. Dragonfly Algorithm (DA) is a new intelligent algorithm based on
the theory of dragonfly foraging and evading predators. DA exhibits excellent
performance in solving multimodal continuous problems. To make DA work in
the binary spaces, this paper introduces an angle modulation mechanism on DA
(calledAMDA) to generate bit strings, that is, to give alternative solutions to binary
problems. Instead of running on the original high-dimensional binary spaces, the
original AMDA utilizes the four-dimensional trigonometric function. However,
the original AMDA has certain limitations, such as poor algorithm stability and
slow convergence speed. Therefore, an improved AMDA called IAMDA is pro-
posed. Based on the original generating function, a variable coefficient is added to
control the vertical displacement of the cosine function. In this paper, seven high-
dimensional zero-one knapsack problems are considered. Experimental results
prove that IAMDA has superior convergence speed and quality of solution as
compared to AMDA, BDA and BPSO.

Keywords: Angle modulation mechanism · Trigonometric generating function ·
Dragonfly algorithm · Binary optimization · 0–1 knapsack problem

1 Introduction

Over the years, more and more algorithms based on artificial intelligence, sociality
of biological swarms, or the laws of natural phenomena have emerged. Many com-
plex optimization problems are difficult to solve by traditional optimization algorithms,
and various studies have proved that nature-inspired optimization algorithms are good
alternative tools for solving complex computing problems. This type of optimization
algorithms can be roughly divided into the following five categories: (i) evolutionary
algorithms (EAs), (ii) swarm intelligence, (iii) simulated annealing [1], (iv) tabu search
[2, 3], and (v) neural networks. EAs includes genetic algorithms (GA) [4, 5], differential
evolution (DE) [6] and immune system [7]. Among these three algorithms, GA is based
on the concept of survival of the fittest mentioned in Darwin’s theory of evolution, GA
and DE can be considered as the most standard form of EAs. The swarm intelligence
algorithms such as classic particle swarm optimization (PSO) [8], bat algorithm (BA)
[9], artificial bee colony [10], ant colony algorithm [11], firefly algorithm [12], artificial
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fish-swarm algorithm [13] and fruit fly optimization algorithm [14]. These algorithms
mentioned above are based on social activities of birds, bats, honey bees, ants, fireflies,
fish and fruit flies, respectively. Intelligent optimization algorithms are technically ran-
dom search algorithms based on biological intelligence or physical phenomena, they
are far less perfect in theory than the traditional optimization algorithms at present, and
often fail to ensure the optimality of the solution. Considering the perspective of practical
applications, this type of budding algorithm generally does not require the continuity
and convexity of the objective function and constraints, and it also has excellent ability
to adapt to data uncertainty.

Dragonfly algorithm (DA) is a new type of swarm intelligence optimization algorithm
proposed by Seyedali Mirjalili [15] in 2015. Since the principle of DA is simple, easy
to implement, and possesses certain optimization capabilities, it has shown promising
results when applied to multi-objective optimization [15], image segmentation problem
[16], and parameter optimization of support vector machines [16]. And a binary version
of DA (BDA) was proposed by Mirjalili [15], which was successfully applied in the
feature selection problem [17]. Traditional binary algorithms were developed by using
transfer functions, which may be limited in applications for optimization problems,
owing to poor algorithm stability and slow convergence speed.

To avoid such problems, Zakaria et al. proposed an angle modulated bat algorithm
called AMBA in 2015 [18]. Inspired by AMBA, an angle modulated dragonfly algo-
rithm (AMDA) is proposed in this paper to make DA work more efficiently in binary-
valued optimization spaces, which can generate n-dimensional bit strings by apply-
ing a 4-dimensional trigonometric function. AMDA is observed to have better perfor-
mance as compared to BDA and BPSO. Nevertheless, the limitation of the original four-
dimensional trigonometric function is that there is no dynamically scalable parameter
for adjusting the vertical displacement of the cosine function. Accordingly, this limita-
tion may lead AMDA to produce a relatively large standard deviation when dealing with
some problems.

To mitigate the shortcomings and improve the performance of AMDA, this paper
proposes an improvedAMDA, called IAMDA.Basedon the original generating function,
a variable coefficient is added to control the vertical displacement of the cosine function
in the generating function. According to seven 0–1 knapsack problems, the experimental
results have proven that as compared to AMDA, BDA and BPSO, IAMDA performs
better in terms of optimization ability, convergence speed, stability and calculating time.

2 Dragonfly Algorithm

Every swarm in DA follows the principle of survival, and each dragonfly exhibits two
separate behaviors: looking for food and avoiding the enemies in the surrounding. The
positioning movement of dragonflies consists of the following five behaviors:

(1) Separation. The separation between two adjacent dragonflies is calculated as
follows:

Si= −
∑N

j=1
(Xi − Xj) (1)
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where Xi is the location of the i-th individual, Xj indicates the location of the j-th
neighboring individual, and N is the number of neighborhoods.

(2) Alignment. The alignment of dragonflies is calculated as follows:

Ai =
∑N

j=1 V j

N
(2)

where V j indicates the velocity of the j-th neighboring individual.
(3) Cohesion. The cohesion is derived as follows:

Ci =
∑N

j=1 Xj

N
− Xi (3)

where Xi is the location of the i-th individual, N represents the number of
neighboring individuals, and Xj shows the location of the j-th neighboring
individual.

(4) Attraction. The attraction toward the source of food is calculated as follows:

Fi = X+ − Xi (4)

where Xi is the location of the i-th individual, and X+ represents the location of the
food source.

(5) Distraction. The distraction from an enemy is derived as follows:

Ei = X− + Xi (5)

where Xi is the location of the i-th individual, and X− indicates the location of the
natural enemy.

To update the location of dragonflies in a search space and to simulate their move-
ments, two vectors are considered: step vector (ΔX) and position vector (X). The step
vector suggests the direction of the movement of dragonflies and can be formally defined
as follows:

�Xt+1
i = (sSi + aAi + cCi + f Fi + eEi) + w�Xt

i (6)

where s is the separation weight, Si is the separation of the i-th individual, a shows the
alignment weight, Ai indicates the alignment of i-th individual, c is the cohesion weight,
Ci indicates the cohesion of the i-th individual, f represents the food factor,Fi shows the
food source of the i-th individual, e indicates the enemy factor,Ei represents the position
of an enemy of the i-th individual, w represents the inertia weight, and t represents the
iteration count.

According to the calculation of the above step vector, the position vector can be
updated by using Eq. (7):

Xt+1
i = Xt

i + �Xt+1
i (7)

where t indicates the current iteration.
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3 Improved Angle Modulated Dragonfly Algorithm (IAMDA)

3.1 AMDA

In this paper, the AM technique is used for the homomorphic mapping of DA to convert
the complex binary optimization problem into a simpler continuous problem. And the
angle modulated dragonfly algorithm (AMDA) is derived the original DA that uses a
trigonometric function to generate bit strings. The trigonometric function comes from
angle modulation technology, which was firstly applied in signal processing [19]. The
value of trigonometric function can be calculated by the following formula:

g(x) = sin(2π(x − a) × b × cos(2π(x − a) × c)) + d (8)

where x represents a single real number element, which indicates evenly spaced
intervals, and a bit string value can be generated by Eq. (9), and the four parameters a, b,
c, and d are in [−1, 1] at initialization. The corresponding candidate binary solutions are
composed of these generated bit strings. If the output value g(x) is negative, the result
corresponding to the bit value is bit 0; otherwise, the result is bit 1. This mappingmethod
can be explained by the following formula:

g(x) =
{
0, g(x) ≤ 0
1, g(x) > 0

(9)

The main steps of AMDA are simplified as the pseudo-code shown in Algorithm 1.

Algorithm 1: Pseudo code of AMDA
Initialize the continuous algorithm DA in [-1,1]4

Initialize the dragonflies’ population Xi (i=1, 2, …, popsize)
Initialize the step vectors ΔXi (i=1, 2, …, popsize)
while the end condition is not satisfied

Calculate the objective values of all dragonflies
Update the food source and enemy
Update w, s, a, c, f, and e
Calculate S, A, C, F, and E using Eqs. (1) to (5)
Calculate the output value g(x) using Eq. (8) to generate bit strings
Update the position vectors using Eq. (9)

end while

Alg. 1. Pseudo-codes of AMDA. 

Return the best bit string as the solution;
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3.2 IAMDA

AMDA’s generating function is a combination of a sine wave and a cosine wave. The
parameter d can control the vertical displacement of the sine wave but the vertical
displacement of the cosine wave cannot be corrected, which results in a large variance
of the entire generating function value. This defect, coupled with a small initialization
range of DA, will encounter some difficulties while searching for a binary solution
consisting of the majority of bit 0 or bit 1.

To alleviate the problem of the inability to control the vertical displacement of
the cosine wave in the original AMDA generating function, this paper introduced an
improved AMDA, called IAMDA. The proposed IAMDA uses a variable coefficient
k to modify the generating function. which controls the degree of disturbance of the
generating function in the transformation space, and gives the following generating
function:

g(x) = sin(2π(x − a) × b × cos(2π(x − a) × c) + k) + d (10)

When the dragonfly individual is initialized in the dragonfly algorithm, the drag-
onflies are initialized randomly in the domain [−1, 1]5. Therefore, the five parameters
a, b, c, d, and k are also in [−1, 1] at initialization. Then, the standard DA is used for
evolving a quintuple that is composed of (a, b, c, d, k), and this leads the position of
each dragonfly to become a 5-dimensional vector. Therefore, the optimization procedure
only generates the tuple values, which are substituted back to the Eq. (10), bit strings
are generated.

The original generating function has one limitation, if the value of d is not large
enough, the generating function will always be above or below 0, which will make the
bit string only contain 0 or 1 bit. Hence, a variable parameter k is added to IAMDA to
generate a bit string composed of 0’s and 1’s. The effect of parameter k is to compen-
sate for the insufficient disturbance in trigonometric function as well as adjust vertical
displacement of cosine function. Compared with the original method, the advantage of
this improved method is that, even if the vertical displacement is not large enough, the
generating function can still lie in the region of 0 and 1. In this manner, it is easier to
generate solutions that are mostly 0’ s or 1’. Moreover, the displacement coefficient k
can increase the diversity of the solutions, so that IAMDA may achieve better solutions
in certain adverse problem situations.
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In order to demonstrate the mapping procedure, Fig. 1 shows the procedure of using
the improved trigonometric function to map a continuous 5-dimensional search space to
a discrete n-dimensional search space. The main process of IAMDA can be described
as the following pseudo-code given in Algorithm 2.

Algorithm 2: Pseudo code of IAMDA
Initialize the continuous algorithm DA in [-1,1]5

Initialize the dragonflies’ population Xi (i=1, 2, …, popsize)
Initialize the step vectors ΔXi (i=1, 2, …, popsize)
while the end condition is not satisfied

Calculate the objective values of all dragonflies
Update the food source and enemy
Update w, s, a, c, f, and e
Calculate S, A, C, F, and E using Eqs. (1) to (5)
Calculate the output value g(x) using Eq. (10) to generate bit 
strings
Update the position vectors using Eq. (9)

end while

Alg. 2. Pseudo-codes of IAMDA. 

Return the best bit string as the solution;

Fig. 1. The process of mapping a continuous 5-dimensional search space to a discrete n-
dimensional search space.
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4 Experimental Results and Discussion

In this paper, the population size of IAMDA, AMDA, BDA and BPSO is set to 30 and
the number of iterations is set to 500. To avoid the resulting bias caused by chance, the
algorithm runs independently on each function 30 times.

Table 1 represents k6–k12 [20], which are high-dimensional 0–1 knapsack problems,
after applying a random number generator. In the tables, ‘D’ indicates the dimension
of a knapsack problem, ‘C’ denotes the capacity of a knapsack, ‘Total values’ in Table
1 represents overall profits of all items. Table 2 shows the best, worst and average
solutions for 0–1 knapsack problems, besides, the average calculation time and the
standard deviation (SD) are also listed.

Table 1. Related parameters of seven randomly generated zero-one knapsack problems.

No. D C Total values

k6 200 1948.5 15132

k7 300 2793.5 22498

k8 500 4863.5 37519

k9 800 7440.5 59791

k10 1000 9543.5 75603

k11 1200 11267 90291

k12 1500 14335 111466

Table 2 indicates that IAMDA and AMDA can always find better results in less com-
puting time, suggesting the strong global optimization capabilities and computational
robustness of IAMDA and AMDA in discrete spaces. Besides, it can also be observed
that the higher the dimensionality of the 0–1 knapsack problem, the more obvious the
advantages of IAMDA and AMDA. Moreover, as compared to AMDA, the standard
deviation of IAMDA is much smaller, which suggests that in some cases, IAMDA is
more stable and effective than AMDA for solving the 0–1 knapsack problems.
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Table 2. Result comparisons between IAMDA, AMDA, BDA and BPSO on 0–1 knapsack
problems in various dimensions.

k11

k12

AMDA

BDA

BPSO

IAMDA

AMDA

BDA

BPSO

IAMDA

AMDA

BDA

BPSO

5.9566e+04

5.7356e+04

4.6572e+04

7.1022e+04

7.0417e+04

6.7241e+04

5.5506e+04

8.8872e+04

8.8691e+04

8.2644e+04

6.7097e+04

5.3099e+04

5.0011e+04

4.5209e+04

6.3479e+04

5.9200e+04

5.5492e+04

5.3168e+04

8.1067e+04

7.8917e+04

6.9772e+04

6.5470e+04

5.7783e+04

5.3727e+04

4.5749e+04

6.8977e+04

6.7161e+04

6.3396e+04

5.4227e+04

8.7179e+04

8.6422e+04

7.6970e+04

6.6496e+04

1.8917e+03

2.3538e+03

362.8049

1.9784e+03

3.0546e+03

3.0978e+03

552.3881

2.1245e+03

2.5499e+03

3.9042e+03

648.1773

2.5023

6.2211

2.6863

3.2814

3.0616

7.6517

3.0838

3.5053

3.3711

8.5147

3.7690

No. Alg. Best Worst Mean SD time

k6

k7

k8

k9

k10

IAMDA

AMDA

BDA

BPSO

IAMDA

AMDA

BDA

BPSO

IAMDA

AMDA

BDA

BPSO

IAMDA

AMDA

BDA

BPSO

IAMDA

1.3075e+04

1.2801e+04

1.2820e+04

1.1640e+04

1.8386e+04

1.8220e+04

1.7979e+04

1.6084e+04

3.1266e+04

3.0763e+04

2.9598e+04

2.5404e+04

4.7364e+04

4.7078e+04

4.5734e+04

3.8119e+04

5.9952e+04

1.2300e+04

1.1921e+04

1.1501e+04

1.0951e+04

1.6408e+04

1.6107e+04

1.6227e+04

1.5385e+04

2.8010e+04

2.7902e+04

2.6478e+04

2.3997e+04

4.1702e+04

4.0453e+04

4.1055e+04

3.6775e+04

5.5335e+04

1.2632e+03

1.2498e+03

1.2316e+03

1.1174e+06

1.7800e+04

1.7595e+04

1.7554e+04

1.5717e+04

3.0387e+04

3.0134e+04

2.8067e+04

2.4656e+04

4.5928e+04

4.5502e+04

4.2988e+04

3.7448e+04

5.8646e+04

207.7428

211.4083

315.2521

213.5035

413.3773

594.7544

370.3743

181.8523

713.8203

816.0871

848.2838

328.1345

1.4190e+03

1.6564e+03

1.2721e+03

355.7410

1.3125e+03

0.4770

0.4631

1.6793

0.6185

0.6500

0.6137

2.8821

0.8482

0.9952

0.9457

3.6978

1.3125

1.7125

1.7014

5.3235

2.0791

2.5047

Figure 2 indicates the average convergence curves of the four algorithms on the
selected large-scale problems in 30 independent runs. As denoted in the figure, (i) the
purple curve representing IAMDA is always on the top of the other curves and the
effect becomes more obvious with increasing the problem dimension; (ii) the red and
blue curves representing BDA and BPSO are slowly climbing, or even stagnating. In
other words, IMADA has the strongest convergence, while BDA and BPSO converge
prematurely to solve large-scale testing problems.



An Improved Dragonfly Algorithm 91

(a) k7 (b) k8

(c) k9 (d) k10

(e) k11 (f) k12

Fig. 2. Average convergence graphs of IAMDA, AMDA, BDA and BPSO on some selected
large-scale problems over 30 independent runs. (a) - k7. (b) - k8. (c) - k9. (d) - k10. (e) - k11. (f) -
k12.

It can be summarized from the above simulation results that when IAMDA solves
the 0–1 knapsack problems, it decreases the computational time while ensuring the
accuracy of the solution. IAMDA has a smaller variance than AMDA and the original
BDA, indicating better robustness of the IAMDA algorithm.

5 Conclusions

To make the dragonfly algorithm work efficiently in the binary space, this paper applies
an angle modulationmechanism to the dragonfly algorithm. The original AMDA applies
the four-dimensional trigonometric function instead of running on the high-dimensional
binary spaces. Hence, using AMDA can decrease the computational cost as compared
to BDA. However, AMDA also has some limitations, such as poor algorithm stability
and slow convergence speed.
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Todealwith the limitations and to improve the performanceofAMDA, this paper pro-
poses an improved angle modulated dragonfly algorithm (IAMDA)which runs on a con-
tinuous 5-parameter tuple through a five-dimensional trigonometric function. According
to high-dimensional zero-one knapsack problems, it can be concluded that IAMDA out-
performs AMDA, BDA and BPSO in terms of stability, convergence rate, quality of the
solution and computational time.
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Abstract. As a new bio-inspired algorithm, the Physarum-based algo-
rithm has shown great performance for solving complex computational
problems. More and more researchers try to use the algorithm to solve
some network optimization problems. Although the Physarum-based
algorithm can figure out these problems correctly and accurately, the
convergence speed of Physarum-based algorithm is relatively slow. This
is mainly because many linear equations have to be solved when applying
Physarum-based algorithm. Furthermore, many iterations are required
using Physarum-based algorithm for network optimization problems with
large number of nodes. With those observations in mind, two new meth-
ods are proposed to deal with these problems. By observing the traffic
network data, there are many redundant nodes, which don’t need to be
computed in practical applications. The calculation time of the algo-
rithm is reduced by avoiding these special nodes. The convergence speed
of Physarum-based algorithm can then be accelerated. Two real traffic
networks and eighteen random sparse connected graphs are used to verify
the performance of the proposed algorithm.

Keywords: Physarum-based algorithm · Network optimization ·
Redundant nodes · Traffic networks

1 Introduction

Physarum-based algorithm, as a bio-inspired algorithm, has caused widespread
concern. Physarum polycephalum is a multinucleated single-celled organism,
which shows high intelligent behavior in maze experiment. Physarum poly-
cephalum can spontaneously form a shortest protoplast tube connecting the
starting and exit nodes in the labyrinth tube. Tero [20] first proposed a mathe-
matical model for the adaptive dynamics of the transport network in an amoeba-
like organism with the Physarum. They used agar to make a labyrinth [17],
placing two food sources at the beginning and exit nodes of the labyrinth. If the
food source was placed in towns’ locations in Tokyo by the relative geographical
information, the road network was established by Physarum polycephalum had
a better performance than the real Tokyo railway transportation network [18].
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Most existing methods adopted by some researchers in the network opti-
mization problems. Here, several categories were proposed. Tero constructed
mathematical models with Poiseuille’s law and Kirchhoff’s Law to solve the
shortest path in the maze. In the perspective of non-traditional computer mod-
els, Adamatzky analyzed the foraging behavior of Physarum polycephalum [2]
and realized the Oregonator model by the BZ reaction. The multi-agent model
established by Jones had simulated the dynamic evolution process and charac-
teristics of Physarum polycephalum network [3,6–8]. In the cellular automata
model, Gunji modified the morphology of Physarum polycephalum [4,5]. In
addition, Pershin leveraged a new physical memristors [15] to model the learn-
ing behavior and explore the predictive ability to the periodic signal in the
Physarum polycephalum. Tsompanas designed the amoeba-like cellular automa-
ton (ALCA) of Physarum polycephalum with software and hardware methods,
and simulated Physarum polycephalum [21] to manufacture the railway net-
work in Tokyo. Tusda performed a Boolean gate as a biological device made of
slime mold Physarum polycephalum to achieve self-repairing computation [22].
Many scholars took the intelligent behavior of Physarum polycephalus as the
research object and established mathematical models, such as, the Oregon equa-
tion model, Agent-based bionic model, and positive feedback mechanism model
(hereinafter referred to as PMM). The PMM model first proposed by Tero was
widely developed since its excellent fault tolerance and performance. In the posi-
tive feedback mechanism of Physarum polycephalum, the intelligent behavior of
Physarum polycephalus was simulated by the combination of flow conservation
theory and Poiseuille formula. The PMM model was first applied to the maze
problem and a series of network problems, such as, fuzzy shortest path [25]
, multi-objective shortest path problem [14,26], 0–1 knapsack problem [24],
etc. Tero also described how the network of tubes expanded and contracted
depending on the flux of protoplasmic streaming, and reproduced experimen-
tal observations of the behavior of the organism [19]. This model constructed
a multi-object shortest path network with a great fault tolerance. In the com-
plex network problem, Zhang used the Physarum polycephalum algorithm to
calculate the centrality of the complex network [28]. In addition to solve the
shortest path problem, the Physarum algorithm can also figure out other NP-
hard problems, for instance, the classic TSP problem [9] and constrained shortest
path [23,27]. Of course, Physarum algorithms can not only solve NP-hard prob-
lems, but also optimize some existing algorithms. Especially, the positive feed-
back mechanism in the PMM model of physaum solver can optimize some heuris-
tic algorithms, such as, Ant Clony Optimization [12,16], genetic algorithm [11],
random walks [13], etc. Physarum algorithm can enhance the robustness of orig-
inal algorithm, accelerate the convergence speed of the original algorithm. In
the past decade, researches have shown that the physarum solver with good
performance to solve complex network problems, there are still some shortcom-
ings limiting the development of the algorithm. The shortcomings of Physarum
algorithm are mainly reflected in the following: when we utilize the physarum
algorithm to solve some NP-hard problems, we need to solve a large number of
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linear equations to obtain the pressure value of each node. While the problem
scale is large enough, each iteration requires a lot of calculation to solve those
linear equations and cost a lot of computing time. According to the standard
incomplete Cholesky conjugate gradient scheme [10], if the graph we need to
solve is sparse and undirect, the time complexity of the physarum algorithm is
O(n2), where n is the number of the nodes in the graph. As a result, the time
of the entire algorithm has been greatly increased when n is big enough. In this
paper, we propose two effective improvement methods to improve the calcula-
tion efficiency of Physarum algorithm, and increase the convergence speed for
the problems raised above. In order to verify the optimization of the algorithm,
we select two real traffic networks, and randomly generated eighteen sparse and
connected networks. After that, we employ the novel Physarum-based algorithm
and the traditional Physarum algorithm to detect the shortest path for the total
networks.

The rest of this paper is organized as follows. In the Sect. 2, we briefly intro-
duce the classical concepts and notations of the classic Physarum algorithm. In
the Sect. 3, we give a detailed overview and demonstration of our novel methods.
In the Sect. 4, we prove the feasibility of the proposed methods through specific
experiments. Finally, in the Sect. 5, we draw conclusions and some future works.

2 Classical Physarum Algorithm

In this section, we elaborate on the basic principles of the Physarum algorithm
and some basic notations. In addition, the shortest path convergence of the
physarum polycephalum are proposed and analysed.

2.1 Basic Notations

G(V,E) represents an undirected graph G and S = {s, va1, va2, va3, . . . , vak−1,
t} represents a series of nodes sequences on the path from node s to node t, and
all nodes are sorted in the order from s to t. Then the total length of this path

Table 1. Mathematical Notations.

Symbols Description Symbols Description

G Graph Dij Conductivity along edge eij

V Set of nodes in G Lij Length of edge eij

E Set of edges in G pi Pressure of node vi

s Starting node Qij Flux through edge eij

t Exit node Dnext Conductivity in the next time

S∗ The shortest path Ddiff Current conductivity gap

eij Edge between vi and vj Bi The degree of vi

S One path from s to t Dmin A predefined conductivity gap
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is
k−1∑

i=0

Lvaivai+1 , where va0 and vak denote the starting node s and exit node t.

In particular, the shortest path between s and t is represented by S∗. All the
mathematical notations used in the rest of this paper are summarized in Table 1.

2.2 Physarum Algorithm

In the labyrinth experiment [17], the phytoplasma tube of Physarun covers the
entire maze firstly. Then, the longer tube disappears. Finally, the protoplasm
tube converges to the shortest path. Tero analyzed the convergence process of
physarum in detail fistly. The radius of the protoplasmic pipeline and the flow in
the pipeline show a positive feedback relationship, that is, an increase in the flow
stimulate the increase in the radius of the pipeline, and an increase in the radius
of the pipeline also stimulate an increase in the flow in the pipeline. On this
basis, Tero used the Poiseuille equation to describe the relationship between the
pipe’s radius and the flux, and established a positive feedback mechanism based
on Kirchhoff’s law to modify the intelligent behavior presented by Physarum
polycephalum. Here, we briefly introduce the PMM.

In the Physarum algorithm, the flow in the protoplasmic tube roughly obeys
the Poiseuille flow, so the relationship among the flux Q and the conductivity
D and the pressure value p can be expressed as Eq.(1).

Qij =
πr4ij
8w

pi − pj
Lij

=
pi − pj

Lij
Dij (1)

where rij represents the radius of the tube between vi and vj , and the w repre-
sents the viscosity coefficient of flow. According to the above formula, it is shown
that the conductivity Dij is related to r and w. But w is the viscosity coefficient
of the fluid, which is only related to the fluid. So here, the value of w is a fixed
value, then Dij can be obtained only positively related to p and Qij . Considering
that the flow in the protoplasmic pipeline is regarded as a fluid, so the flow need
to follow the law of conservation of flow in the Physarum algorithm. Two nodes
as the starting node s and the exit node t are setted respectively. Then the flow
flows in from the starting node and flows out from the exit node, so the flow at
the starting node is set to −1 and the flow at the exit node is set to +1. The
flow at other nodes must match the flow conservation, so the flow in other nodes
is zero. The flow conservation of Physarum algorithm is described in Eq. (2):

∑

i�=j

=

⎧
⎪⎨

⎪⎩

−1, for i = s

0, for i �= i, j

+1, for i = j

(2)

In the initial stage of the algorithm, all edges have an initial conductivity
D = 1, and then the pressure value of the exit node is zero. Combining the
above Eq. (1) with Eq. (2), the pressure value pi of each node and the flow value
Qij of each edge are obtained. Next, the algorithm starts to iterate. According
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to the adaptive behavior of Physarum, the flow is the larger in the pipe, the
thicker the pipe become larger. On the contrary, the pipes gradually disappear
with smaller flow. Therefore, the conductivity Dij changes with the flow Qij .
In order to describe the adaptive behavior of Physarum, the following equation
is leveraged to establish an mathematical model to calculate the change of the
conductivity Dij during the convergence process of Physarum.

d

dt
Dij = f(|Qij |) − rDij (3)

In the above equation, r is the decay rate of the conductivity. Since the
conductivity of the pipelines increases with the increase of the flow, it is obvious
that the function f is a monotonically increasing continuous function. It means
and when the flow is zero, the conductivity is also zero. So the function satisfies
f(0) = 0. In order to simplify the calculation of the algorithm, Eq. (4) is ususlly
leveraged instead of Eq. (3).

d

dt
Dij = |Qij | − Dij (4)

3 Novel Physarum-Based Algorithm

The proposed Physarum Algorithm is summarized in the Sect. 3. First of all, we
initialize all pipelines. The initial conductivity of all the pipelines is set to 1,
and the flow of starting node is set to -1. What’s more, we set up a conductivity
differential Ddiff , a threshold value of the minimum conductivity Dmin and the
conductivity Dnext. When the conductivity of an edge is less than the threshold,
it basically means that the edge has no flux passing through. We can remove such
edge from the network. Furthermore, when the Ddiff between the conductivity
of a certain iteration and the previous iteration is less than an initial set value
Dmin, it means the iterative process of the algorithm is terminated and the
network is converged to the shortest path.

In the above section, we briefly introduce some basic principles of classical
Physaum algorithm. It can be shown that the essence of Physaum algorithm is
to continuously delete nodes and edges that not exist in the shortest path. In the
end, all the flow concentrates on the shortest path, so as to reach the purpose
of the algorithm: filtering the shortest path. In order to achieve this goal, we
need to delete these nodes and edges from algorithm to form the shortest path
quickly. A large quantity of experiments show that removing nodes ande edges
with too many iterations slowly is not enough efficiency.

As a result, the algorithm cannot achieve the desired effect to search the
shortest path. In order to accelerate the efficiency of eliminating redundant nodes
in the Physarum algorithm, two novel methods are proposed to accelerate the
convergence speed of physarum algorithm.

In the classical Physarum algorithm, those edges with conductivity below
a certain threshold are removed with continuous iteration. The above contents
are mentioned, the way to delete the nodes is obviously not enough efficiency. In
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Algorithm 1: Classical Physarum Algorithm
Input: G,s,t
Output: The shortest s − t path S∗

1 Ddiff ← ∞, Dmin ← 10−5, D ← 1, and itr ← 0;
2 while Ddiff ≥ Dmin do
3 itr ← itr + 1;
4 obtain node pressure p with Eq. (2);
5 update Q according to Eq.1;
6 calculate the new conductivity Dnext using Eq. (4);
7 Ddiff ← sum(|Dnext − D|);
8 D ← Dnext;

9 end
10 return S∗;

order to accelerate the convergence speed, we optimize the process to remove the
nodes and edges in the graphs and propose two methods. The first method can
quickly delete redundant edges to accelerate the convergence speed. The other
method can effectively reduce the computation of the algorithm. It can reduce
the each iterative time in the algorithm to enhance the performance.

3.1 Method 1: Quickly Removing Redundant Edges

To explain the proposed method, there is a special path in the original graph
or algorithm process, as shown in the Fig. 1(2) and Fig. 1(3). There are two
paths between va and vb, respectively, path 1 and path 2. And the lengths of
path 1 and path 2 are different. If va and vb are in the shortest path, then either
path 1 or path 2 must be in the shortest path. Obviously, we search the shortest

Fig. 1. (1) Variation of conductivity of non-redundant and redundant edges, Link 1 rep-
resent non-redundant edge, and others represent different redundant edges. (2) redun-
dant nodes and redundant edges in different networks.
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path between two nodes and delete the longer path 2 from the graph without
multiple iterations. We call the similar edge as a redundant edge. However, it is
important to notice that paths 1 and 2 are non-bifurcated paths. For example,
in the Fig. 1(4), there is two paths va vc vb and va vb between va and vb, but
vc in the path has additional path to vd. Therefore, edges such as eac and ecb
cannot be called redundant edges. In the example, on the path 1, there is only
one node vc between va and vb. There may be multiple such nodes between va
and vb. If none of these nodes has a bifurcation path, these edges are regarded
as redundant edges. In the method, those redundant edges are removed directly
from the graph. In order to illustrate the correctness of the redundant edges
deletion, we conduct several experiments to test the variables in the conductivity
of the redundant edges we need to delete in the classical Physarum algorithm.

The experimental results are shown in the Fig. 1(1), we can show that the
conductivity of the redundant edges continue to decrease, reach the thresholds
and these redundant edges are removed by the algorithm eventually. With the
variable rates in the conductivity become slower and slower as the process of the
algorithm, it leads to redundant edges staying in the network for long time. It
requires many iterations to delete those redundant edges, significantly affecting
the efficiency of the algorithm. Therefore, the running time are decreased greatly
by removing redundant edges in advance.

3.2 Method 2: Merging Redundant Nodes

The classical physarum algorithm needs to deal with a large number of lin-
ear equations to obtain pressure value of each node. If other factors remain
unchanged and the scale of the linear equation is smaller, the algorithm will
cost shorter running time. We hope to reduce the scale of the algorithm during
the process of the algorithm. So, a method is proposed to reduce the number of
nodes. In the Fig. 1(5), it is discovered that a lot of redundant nodes appear in
the graph while the redundant edges are deleted. At the beginning and running
stages of the algorithm, some edges gradually disappear in the iterative process,
and finally forming a path similar to the structure.

We can realize that the degree of vb and vc is two without additional branch in
the undirected graph. And the feature of vb and vc are retained. In next iteration,
instead of analysing of vb and vc, va vb vc vd are combined into an edge ead. And
Lad = Lab+Lbc+Lcd. In this way, we can greatly reduce the computation of the
algorithm to achieve the purpose of accelerating the algorithm in each iteration.
The novel physarum-based algorithm is described in the Algorithm 2 in details.

4 Computational Experiments

In this section, two real traffic networks and eighteen randomly generated graphs
are selected to examine the effects of proposed methods. We compare the experi-
omental result of the classical physarum algorithm (PA) with the proposed novel
physarum-based algorithm (NPA). All the computations are performed using the
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Algorithm 2: Novel Physarum-Based Solver
Input: G,s,t
Output: The shortest s − t path S∗

1 Ddiff ← ∞, Dmin ← 10−5, D ← 1, and itr ← 0;
2 while Ddiff ≥ Dmin do
3 if Bk = 2 and k �= s, t then
4 if eij exist and Lij > Lik + Ljk then
5 Delet eij ;
6 else
7 Delet ejk, eik;
8 Lij ← Ljk + Lik ;

9 end

10 end
11 itr ← itr + 1;
12 obtain node pressure p with Eq.(2);
13 update Q according to Eq.1;
14 calculate the new conductivity Dnext using Eq.(4);
15 Ddiff ← sum(|Dnext − D|);
16 D ← Dnext;

17 end
18 return S∗;

MATLAB 2016b in Windows 10 with an Inter Core I7-6700 CPU (3.40 GHz) and
16 GB of memory.

In the experiment, different starting and exit nodes are extracted in the same
graphs many times. The shortest path between two nodes has been tested at
least ten times and pick up the average results in total. In addition, we perform
the same training as above with the PA algorithm, and then make a detailed
comparison of the results. In the following, we respectively test the time required
by different algorithms to find the shortest path with the same starting node,
exit node and the iterations. In order to simulate the real traffic network, all
graphs are sparse and connected. The feature of sparse and normal graphs is
represented in Table 2 and Table 3.

Table 2. The feature of sparse graphs.

Items RG-1 RG-2 RG-3 RG-4 RG-5 RG-6 RG-7 RG-8 RG-9 RG-10

V 100 200 300 400 500 600 700 800 900 1000

E 255 542 788 1001 1341 1531 1780 2189 2357 2771

The results of the NPA and the PA algorithm in randomly generated graphs
are shown in Fig. 3. Among all the comparisons, NPA algorithm always takes
the shortest time to find the shortest path and spend the least iterations. More-
over, we can detect that the optimization effect of NPA is very well compared
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Table 3. The feature of normal graphs.

Items BRG-1 BRG-2 BRG-3 BRG-4 BRG-5 BRG-6 BRG-7 BRG-8

V 100 200 300 400 500 600 700 800

E 387 804 1229 1784 2261 2589 3681 4007

with PA, which greatly decrease the running time. Different with PA, the NPA
algorithm can be reduced by 10% running time in the normal graphs and can
even reach the highest reduction 90% in the sparse graphs. In addition, we anal-
ysis that average degree of network graph is the smaller and the optimization
effect is the better in the NPA algorithm, since the more redundant nodes can be
found in the sparse graphs. Even though the real traffic network exist without
high average degree, eight random graphs are utilized and the average degree
is in the interval of [4.0, 5.0] from some relative experiments. It can be shown
in Fig. 3 (normal) that the improvement of NPA has over 10% than the PA.
Therefore, the NPA algorithm proposed is more suitable to select the shortest
path of the network graphs with low average degree. Compared with PA, two
real traffic network graphs are leveraged in the NPA algorithm, such as, Berlin
Mitte Prenzlauerberg Friedrichshain Center Network (BMPF), Chicago Area
Transportation Network [1]. Here, the BMPF network contians 2184 edges and
975 nodes, especially, there is one isolated node (node 105). In Chicago area
transportation network, there are 933 nodes and 2950 edges. The starting and
exit nodes are selected randomly, and four different pairs of nodes are adopted
in two real traffic network graphs.

Table 4 reveals that the proposed NPA algorithm shows obvious advantages
that have the shorter running time and less iterations than PA in the real traffic
network graphs. Also, we can indicate that the change of the starting and exit

Fig. 2. Change in the number of redundant nodes over time.
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nodes for NPA has little effect on the running time. The overall number of
iterations and consuming time maintain stable basically. However, we discover
that the consuming time and the number of iterations have the connection in the
distance between two nodes in the PA. Therefore, NPA algorithm has excellent
robustness compared with PA.

Fig. 3. Performance of PA and NPA in sparse and normal graphs

Table 4. Performance comparison of PA and NPA in real traffic networks.

Items s t Iterations (PA) Time(s) (PA) Iterations (NPA) Time(s) (NPA)

BMPF 78 515 30 20.57 10 6.67

BMPF 1 900 11 12.61 10 6.18

BMPF 31 789 19 16.21 10 6.28

BMPF 50 511 14 13.91 10 6.07

Chicago 2 900 13 12.11 9 9.45

Chicago 5 614 11 11.92 9 9.53

Chicago 4 893 12 12.01 9 9.81

Chicago 200 900 25 14.82 9 9.93

5 Conclusions

In this paper, two novel optimization methods are combined with the PA, which
quickly remove redundant edges and merge redundant nodes. The performance
of the classical physarum algorithm is improved greatly by proposed methods.
The NPA can greatly reduce the number of iterations and the time required for
each iteration, and finally achieve the goal of optimizing the algorithm. Finally,
eighteen random graphs and two real traffic networks are leveraged in the exper-
iments. The experimental results are compared with PA, and the performance
of computation time is pretty great in the proposed methods.



104 D. Wang and Z. Zhang

In the future, the NPA algorithm can be further developed to some NP-hard
problems, such as, Steiner minimum tree problem, TSP problem, path opti-
mization problem, transportation problem, 0–1 backpack problem and so on. In
addition, we can analysis the Physarum algorithm combined with other opti-
mization algorithms. And the combined algorithm may combine the advantages
of different algorithms, while try to avoid some weakness, so as to solve some NP-
hard problems more efficiently. Of course, we can also devote to develop other
models of physarum polycephalum, such as the multi-agent model, ALCA and
Oregonator model, etc. So that the physarum can solve more NP-hard problems.
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Abstract. Traveling Salesman Problem (TSP) is one of the most classic com-
binatorial optimization problems. It can be widely applied in many real-world
applications. In this paper, we propose an efficient method via swarm intelligence
to handle the traveling salesman problem, which may not be suitable for the stan-
dard particle swarm optimization due to its domain’s discrete nature. Compared
to the classic Ant Colony Optimization method, the SIB method performs well
in terms of efficiency and accuracy in the TSP problem. For TSP with cities size
between 15 to 25, SIB has a significantly lower average executing time to obtain
an adequate solution with close distance.

Keywords: Traveling Salesman Problem · Swarm intelligence · Ant Colony
Optimization · Combinatorial optimization problems · Metaheuristic method

1 Introduction

With the rapidly-growing technological development and innovation nowadays, real-
world search and optimization problems in various sectors have become highly com-
plex. Many optimization problems belong to the category of combinatorial optimization
problems, which is nonlinear and usually consists of multi-objective scopes. Addressing
these problems through traditional methods is challenging since traditional methods are
mainly local search, problem-specific and difficult to solve nonlinear or discontinuity
problems, leading the range of solutions to be easily stuck in local regions. Moreover,
traditional methods mostly search through all possible solutions for a correct answer,
which leads to an exponential growth in the whole process time.

In order to tackle these challenges, recent research in solving combinatorial optimiza-
tion problems has been towardmetaheuristic methods. In contrast to traditional methods,
the metaheuristic methods result in an approximate global solution through processes
of group searching and information sharing to improve local candidate solutions. More-
over, most metaheuristic methods employ stochastic techniques to escape from the local
optima to avoid trapping [1]. Thus, for most modern combinatorial optimization prob-
lems that are intractable and with non-mathematically-defined objective functions, the
metaheuristic methods are suitable for building solution systems or algorithms within
an affordable execution time.
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Among all metaheuristic methods, the nature-inspired methods, especially methods
based on swarm intelligence [2], are popular. The main idea of swarm intelligence is
to mimic natural, physical or biological phenomena and immerse them to build opti-
mization procedures [3]. Decision making for solutions is generated by agents such as
ants or bees through interacting with other agents and updating local information among
their own community. Representative swarm intelligence-based algorithms include Ant
Colony Optimization (ACO) [4], Particle Swarm Optimization (PSO) [5], Artificial Bee
Colony (ABC) [6], and many others. In addition to these representative methods, the
number of new algorithms based on swarm intelligence, like Bat Algorithm (BA) [7],
Cuckoo Search (CS) [8], and others, have increased remarkably over the last decade.
They showed more supreme performance than the existing methods in the literature,
and they are effective for solving combinatorial optimization problems in various real-
world applications such as Traveling SalesmanProblem (TSP),Vehicle Routing Problem
(VRP), and integrated circuit design. Among these application areas, TSP is the most
studied one. Due to its NP-hard nature, it is viewed as a highlighted application of meta-
heuristic algorithms to show how they can be a powerful alternative solution. It can be
extensively applied to many practical applications in the industry.

In this paper, we propose a new optimization approach for the TSP problem, based
on swarm intelligence called the Swarm Intelligence Based (SIB) method, to find an
optimal route passing through a defined number of destinations. The SIB method was
first introduced by Phoa [9], which is widely considered as the discrete version of the
PSOwith some variants to tackle optimization problems with discrete solution domains.
The SIB method has demonstrated good performances for problems with discrete or
continuous domains in experimental designs [10, 11], target localization [12], scheduling
[13], and others. This paper is structured as follows: In Sect. 2, we propose a modified
framework of SIB for solving TSP. In Sect. 3, a test of SIB for TSP is presented for
practical data. We draw some concluding remarks in the last section.

2 The Swarm Intelligence Based Method for Solving TSP

The traveling salesman problem is to find the shortest distance route for individuals to
visit all target stations exactly once with returning to the starting station. It can be defined
by a graph G = (V ,E), where V = {1, 2, ...,N } is a group of nodes and E is a group of
edges. Each node represents a target station, and each edge represents the path between
station pairs if the path exists. Each edge (i, j) ∈ E is assigned a distance dij, which is
the distance between target stations i and j. The main goal is to find an order of target
stations in one route such that the total distance of the route is minimum.

The most representative metaheuristic methods for solving TSP include Simulated
Annealing (SA), Tabu Search (TS), Ant Colony Optimization (ACO), Particle Swarm
Optimization (PSO) and Genetic Algorithm (GA). Readers who are interested in the
introduction and implementation of these methods towards TSP are referred to [14–19].
In this paper, we describe how the SIB method is modified for implementing the TSP
problem.

A standard SIB method consists of three main parts: initialization, iteration and
output. After the initialization step for particle generations and parameter definitions,
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one enters an iterative process to improve the particle status according to the user-defined
objective function. This iterative process consists of two operators:MIX andMOVE.The
MIX operator can be viewed as an information exchange process between the current
particle and its (local or global) best particle. The process is similar to the crossover step
in the genetic algorithm. After the MIX operator is completed, three candidate particles,
including the current particle and two mixed particles with the local and global best
particles, are compared in the MOVE operator. The current particle is then updated to
the best of three if some components of the particle change, or several randomly chosen
components of the current particle are randomly assigned from the pool to create the
slight alteration. After the iteration process is done, the global best particle becomes the
solution of the problem suggested by the SIB method.

It is not trivial to directly implement the SIB method to the TSP problem. Table 1
shows the modified framework of SIB and some detailed descriptions are provided in
the rest of this section.

Table 1. The SIB algorithm

Input Distance matrix, number of particles N, number of iterations (N_loop), 
LBq and GBq .

Output The optimal GB particle
1: Randomly generate a set of N routes (particles) with m stations as initial 

particles
2: Evaluate value of objective function for each particle, i.e., the total dis-

tance of each route
3: Initialize LB for all routes
4: Initialize GB
5: For each N_loop
6: For each particle, perform MIX operation
7: For each particle, perform MOVE operation
8: Evaluate value of objective function for each particle
9: Update the LB for all particles
10: Update GB
11: end loop

2.1 Initialization Step

The initialization step can be viewed as the zeroth iteration of the SIB algorithm
procedure. Users are required to input initial parameters as follows:

1. Distance Matrix. The distance matrix shows the distance between pairs of target
stations.

2. Number of particles (N). The number of randomly generated particles in the SIB
algorithm. These particles represent the routes with stations in TSP. Note that the
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larger the N is, the smaller number of iterations are required to reach optimization,
but it requires more time to execute in each iteration. As a rule of thumb, if we set a
number of particles to be 100 as there are less than 11 stations in the TSP, we can get
an accurate result within few seconds. When the number of target stations reaches
20 or higher, we recommend N to be at least 200.

3. Number of iterations (N_loop). The number of iterations executed in the SIB algo-
rithm. The larger the N_loop is, the more accurate the value of an objective function
towards optimization, but it generally requires more time to execute. As a rule of
thumb, an accurate result can be obtained within a few seconds if N_loop is set to
be 100 and N is set to be 100 for a TSP with less than 11 stations. We recommend
to set N to be 300 if there are more than 25 stations in a TSP.

4. Number of discrete units being exchanged with LB and GB particles (qLBand qGB).
The SIB algorithm is expected to converge to optimal value by exchanging q units
with LB or GB consistently in every iteration. A large value of qLB or qGB will
accelerate particles towards the best particles with a probability of overlooking the
potentially good particles in between the current particle and the best particle. We
suggest that setting qLB = [m/3] or [m/4] and qGB = [m/2], respectively. Here [x]
refers to the rounded positive integer at least as large as x, m is the number of target
stations (Fig. 1).

Fig. 1. A set of particles with N size

We begin with randomly generating N tours as a set of N particles named “initial
particles”. Each tour is represented by a single particle, and there are m stations in one
single particle. A station is considered as a unit in a particle. Then we evaluate the value
of an objective function for each particle, i.e., the total distance for each tour from a
distance matrix. As a result, there will be N values of objective functions in one set
of particles. Then we can define the Local Best (LB) particle for each particle and the
Global Best (GB) particle for all particles according to these objective function values.
This ends the initialization step of the SIB algorithm.

2.2 Iteration Step

Wehave a set of initial particles, a set of initial LB particles, and aGB particle prior to the
iteration step. The goal of this iteration step is to obtain a particle with an approximate
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minimum value of an objective function after N_loop iteration. The resulting particle,
i.e., the GB particle, describes the best tour for m target stations suggested by the SIB
algorithm with an order and an approximate minimum value of objective function, or
the shortest distance of the suggested best tour.

Although the SIB algorithm is similar to the PSO, a fundamental difference between
two algorithms appears in the information sharing step. In PSO, the LB and GB infor-
mation are shared to the current particle via the velocity update formula, which can also
be considered as a weighted linear combination of the two best particles plus the inertia.
In contrast, the LB and GB particles are mixed with the current particle separately to
create two new particles in the MIX operation, and the MOVE operation serves as a
decision maker to pick the best of three. This difference helps the SIB to preserve the
information sharing and domain searching properties of the PSO but it can converge to
the optimum more efficiently.

Below is the detailed implementation of the MIX and MOVE operations in TSP.

2.2.1 MIX Operation

The MIX operation consists of mixing with LB and GB respectively (Fig. 2).

Fig. 2. MIX operation for LB for X1: This figure just shows one-time swapping - ori_U and
new_U will be swapped.

In the MIX operation with the LB, we change unit order based on the LB particle
information. Consider a candidate particle X from an initial particle set and its LB
particle. We first evaluate the distance value between two consecutive units in X. Then
we find a unit with the biggest value of a sum of distance values from its two adjacent
sides. We consider this unit too far from its two adjacent stations in that order and thus
we change its location. We denote this unit be ori_U and its location of this unit be
loc_U. We refer to the same loc_U location in its LB particle, and then find the unit on
loc_U, denoted as var_LB. Next, we go back to X and find the unit value equivalent
to var_LB in X denoted as new_U. Then, we proceed to swap the ori_U units and the
new_U unit in X. The same swap procedure is performed qLB times. We obtain a new
particle called mixwLB from the original X after this procedure is completed. Similar
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procedures are done in other particles X in the original particles set and we get a set of
mixwLB as the result of the MIX operation for LB.

We perform the same procedure for an initial particle to swap with a GB particle,
except only that we use qGB instead of qLB, and we find units in the loc_U location in
the GB particle instead of LB. After applying the MIX operations for LB and GB, we
obtain both mixwLB set for LB and mixwGB set for GB, which are the mixed particles
set based on LB information and GB information, respectively.

2.2.2 MOVE Operation

TheMOVEoperation comes after theMIXoperations.Weget three candidates,mixwLB,
mixwGB and X. The MOVE operation is a decision-making procedure to select the best
particle among all candidates with the optimal value of objective functions. First, we
compare the value of objective function among mixwLB, mixwGB and X. Then we
choose the best one with a minimum value of an objective function and replace X with
it. However, if bothmixwLB andmixwGB areworse thanX, two units of X are randomly
chosen and then swapped with each other as an update of X. We perform this random
swap several times to escape from the local optimum trap, but we suggest not to perform
these random swap more than qLB times.

2.2.3 Update Procedure

After each X has been updated from either mixwLB, mixwGB or a random swap of
X from the MOVE operation, we obtain a new set of particles. For each particle in the
set, we evaluate the value of an objective function again, and compare it with its LB’s
objective function value, and update LB if its objective function value is smaller than the
original LB’s. After all particles update their LB, we can get a newGB particle among all
update LB particles. After all current particles, all LB particles and the GB particle are
updated, the search continues to the next iteration in the same way until the pre-defined
N_loop is reached. The final GB particle and its objective function value are considered
as the outputs of the SIB algorithm.

3 Performance of SIB for TSP

3.1 Implementations

This experiment aims at determining an optimal tour that passes all cities and backs to
the original station using the proposed SIB algorithm and evaluate its performance. We
use the ACO algorithm as a method comparison to the SIB algorithm in a small city
size. We use data provided by a logistic company in our experiments as an input data
source, but one may use any types of address data for similar comparisons. We select the
number of cities ranging from 10 to 30. The data contains two columns: target station
name and its location. The location is in coordinate format for each station. Then we
obtain the distance between each pair of cities and get a distance matrix as input data
for the objection function calculating in SIB procedure.
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Both algorithms are executed 10 times and the average distance is served as the com-
parison metric. The parameters for both algorithms are listed in Table 2. We obtain the
average execution time and the average distance of the tour generated by each algorithm
for the specified number of cities. All implementations were executed on a MacBook
Pro with Intel Core i7 2.6 GHz.

Table 2. Iteration parameters set-up for both algorithms

Iteration parameters ACO SIB

10 cities ant = 30, N_loop = 200 particle = 100, n_loop = 200

15 cities ant = 30, N_loop = 200 particle = 100, n_loop = 200

20 cities ant = 30, N_loop = 200 particle = 200, n_loop = 200

25 cities ant = 30, N_loop = 300 particle = 200, n_loop = 300

30 cities ant = 30, N_loop = 300 particle = 300, n_loop = 300

3.2 Results

Figure 3 shows that the average executing times of both algorithms among 10 times
executions tested for 10 cities, 15 cities, 20 cities, 25 cities and 30 cities. The SIB
algorithm performs significantly efficient in terms of executing time in the tests of 15
cities, 20 cities and 25 cities. For example, for the testwith 25 cities, the average executing
time and average best distance for ACO is 15.6 s and 100 km, while it only needs 10.8
s for SIB to find an optimized solution of 104 km. Figure 4 shows the corresponding
distance. The total distances of the tests in 10 cities, 15 cities, 20 cities and 25 cities
are very close for both algorithms. However, in the test in TSP with 30 cities, the ACO
obtains a shorter distance then the SIB and the difference in average distance is about
10 km. Still, the SIB algorithm has the significant advantage of a short execution time to

Fig. 3. Average executing time comparison
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solve TSP, and it can obtain almost the same quality of solution in the problems under
25 cities and an adequately good solution in 30 cities.

Fig. 4. Average tour distance comparison

3.3 Discussion

From the previous section, we know the SIB algorithm has good performance for solving
a small number of destinations ranging from 10 to 25 destinations. We expect that
the SIB method for TSP can be efficiently find optimal solutions in various practical
fields of small-size TSP, which has a wide range of applications because a route with
less than 25 destinations is close to common practice in the real-world problems. If
the number of destinations exceed 25, conventional wisdom suggests to group these
destinations into clusters first before executing optimization for groups with smaller
number of destinations. This kind of TSP problem is called generalized TSP (GTSP)
and their framework usually comeswith a clustering stage of large number of destinations
and a TSP optimization of small number of destinations in a cluster. See [20, 21] for
details.

4 Conclusion

We present the SIB algorithm for addressing small-size Traveling Salesman Problem.
The experiment result shows that it works excellent with better efficiency than the tra-
ditional ACO method in a number of cities ranging from 15 to 25 cities. In reality, it is
seldom to schedule a daily route with more than 25 destinations due to the 24-h limit
and the driver’s working hours, so we expect the SIB algorithm for small size TSP can
be widely applied to solve various related problems efficiently and provide adequately
good solutions. We only propose the basic framework in this work and there are many
potential modifications to this framework to improve its practicality and feasibility.
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Abstract. Lion swarm optimization (LSO) is a swarm intelligence algo-
rithm that simulates lion king guarding, lioness hunting, and cub follow-
ing. However, there are problems that lions are easily out of bounds when
the range of activity is large and the position update formulas are not
universal, which affect the performance of LSO. Aiming at above prob-
lems, a swarm intelligence algorithm, lion swarm optimization by rein-
forcement pattern search (RPSLSO) is proposed. The algorithm is based
on the proposed modified lion swarm optimization (MLSO) and rein-
forcement pattern search (RPS) algorithm. The former solves above two
problems, and the latter enhances the local search capability of MLSO,
making the search more directional. In order to test the performance of
RPSLSO, RPSLSO was compared with MLSO, LSO and the other two
algorithms on the CEC2013 test function set. The experimental results
show that the performance of RPSLSO is better, and the modifications
to LSO and the proposed RPS in this paper are also effective.

Keywords: Modified lion swarm optimization · Reinforcement pattern
search · Q-learning · Pattern search

1 Introduction

Swarm intelligence algorithm is a kind of optimization algorithm by simulating
intelligent behaviors of biological population. Particle swarm optimization (PSO)
proposed by Kennedy in 1995 is a classic swarm intelligence algorithm [1]. Later,
swarm intelligence algorithms such as artificial fish swarm algorithm [2] and arti-
ficial bee colony algorithm [3] appeared one after another. In recent years, some
scholars have proposed swarm intelligence algorithms such as marine predators
algorithm [4] and artificial jellyfish search optimizer [5].

As animals at the top of the food chain, lions are inseparable from the intel-
ligent behaviors of lions such as cooperative hunting. At the same time, the
efficient hunting behavior of lions is worth learning. In recent years, some schol-
ars have proposed swarm intelligence algorithms based on the behaviors of lions
[6–10], with better results.

Lion swarm optimization (LSO) is a swarm intelligence algorithm proposed
by S. Liu in 2018 [11]. The algorithm simulates the intelligent behaviors of lion
c© Springer Nature Switzerland AG 2021
Y. Tan and Y. Shi (Eds.): ICSI 2021, LNCS 12689, pp. 119–129, 2021.
https://doi.org/10.1007/978-3-030-78743-1_11
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king guarding, lioness hunting, and cub following. The lion king guards territory
and possesses the priority of food, lionesses cooperate in hunting, and lion cubs
fall into eating, learning to hunt, and being expelled after entering adulthood.
LSO has a fast convergence speed, but there are problems that lions are easily
out of bounds when the range of activity is large and the position update for-
mulas are not universal. In response to above problems, a modified lion swarm
optimization(MLSO) is proposed in Sect. 2. In order to enhance the local search
capability of MLSO, the paper proposes a reinforcement pattern search (RPS)
algorithm in Sect. 3, which uses Q-learning to guide the pattern search to make
the local search more directional. In Sect. 4, the lion swarm optimization by
reinforcement pattern search (RPSLSO) is proposed. In order to verify the per-
formance of RPSLSO, the paper compares RPSLSO with MLSO, LSO, PSO,
and Gaussian bare bones particle swarm optimization (GBBPSO) [12] on the
CEC2013 test function set in terms of error and convergence curve in Sect. 5.
Experimental results show that RPSLSO performs better, and MLSO and RPS
are also effective.

2 Modified Lion Swarm Optimization

2.1 Lion Swarm Optimization

The locations of lion king, lioness and lion cub are updated as follows.
The lion king moves around the best food area to ensure his own privileges,

and the location is updated:

xk+1
i = gk

(
1 + γ‖pk

i − gk‖)
, (1)

where gk represents the optimal position of the k-th generation group, γ is a
standard normal random number, pk

i represents the historical optimal position
of the k-th generation of the i-th lion.

A lioness is also known as a hunting lion. It needs to cooperate with another
lioness to hunt, and the position is updated:

xk+1
i =

pk
i + pk

c

2
(1 + αfγ) , (2)

where pk
c is the historical optimal position of a lioness randomly selected in the

k-th generation. αf is defined as:

αf = step · exp

[

−30
(

t

T

)10
]

,

where
step = 0.1

(
high − low

)

indicates the maximum step size that the lion can move within the range of
activity. low and high are the minimum mean and maximum mean of each
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dimension in the range of lion activity space, respectively. T is the maximum
number of iterations, and t is the current number of iterations.

The position of lion cub is updated:

xk+1
i =

⎧
⎪⎨

⎪⎩

gk+pk
i

2 (1 + αcγ) , q ≤ 1
3

pk
m+pk

i

2 (1 + αcγ) , 1
3 ≤ q ≤ 2

3
ḡk+pk

i

2 (1 + αcγ) , 2
3 ≤ q < 1

, (3)

where pk
m is the k-th historical optimal position of lioness followed by lion cub.

q is a uniformly distributed random number. αc is a parameter that decreases
linearly with the number of iterations and it is defined as:

αc = step

(
T − t

T

)
,

gk = low + high − gk

is the i-th lion cub being driven away from the lion king.
LSO converges fast, but it is easy to fall into the local optimum, and the

local search ability is not strong enough.

2.2 Problems with LSO

Problem 1: In LSO, if the search range of the optimized problem is large, that is,
the range of the lion’s activity space is large, so that the step and the parameters
αf and αc in the early stage of the algorithm operation are relatively large.
Observing the update formula (2) and (3) of lionesses and cubs, we can find that
when the search range of the optimized problem is large, 1 + αfγ and 1 + αcγ
in parentheses will be very large, so the positions of lionesses and cubs will
frequently cross the boundary. After crossing the boundary, they are initialized
randomly, which makes the directionality and search efficiency of LSO worse,
and tends to be random. This problem can be summarized as lions are easily
out of bounds when the range of activity is large.

Problem 2: Suppose the minimum point of a test function is at the origin, that
is, all dimensions are 0. In the lioness’s update formula (2) and the cub’s update
formula (3), once 1+αfγ and 1+αcγ in parentheses are equal to 0 or approach
0, LSO will quickly approach the minimum point, and the fitness curve appears
as a jump. Taking into account the number of lions and the number of iterations,
the probability of the above occurrence is relatively high. In addition, LSO is
easy to fall into local optimum when the function with local minimum at the
origin is optimized by LSO. This problem can be summarized as non-universal
position update formulas.

It can be seen that the above two problems are caused by 1+αfγ and 1+αcγ
in parentheses, so we can start from here.
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2.3 Modifications to LSO

The original paper of LSO obtains the position update distribution of lion
through normal distribution sampling, and illustrates it with a one-dimensional
distribution. The location update distribution of the lion king is:

xi (t + 1) ∼ N
(
g, |pi − g|2

)
. (4)

The location update distribution of the lioness is:

xi (t + 1) ∼ N

(
pi + pc

2
, α2

f

)
. (5)

The location update distribution of the cub is:

xi (t + 1) ∼

⎧
⎪⎨

⎪⎩

N
(
g+pi

2 , α2
c

)
, q < 1

3

N
(
pi+pc

2 , α2
c

)
, 1

3 ≤ q < 2
3

N
(

g+pi

2 , α2
c

)
, 2

3 ≤ q < 1
. (6)

From above three normal distributions, we can see that the standard deviations
of the location update distribution of lion king, lioness and cub are |pi − g|, αf

and αc respectively, and the maximum values of the latter two are only 1/10 of
the lion’s range of activity, and the three distributions are not close to 0, which
better avoid the two problems mentioned in Sect. 2.2. Then we can redesign the
position update formula of the lion swarm according to the three distributions.
For the sake of simplification, let each dimension obey the above distribution,
as shown below.

Given X ∼ N (0, 1), then Y = μ + σX ∼ N
(
μ, σ2

)
.

According to (4), the position update formula of the lion king is rewritten
as:

xk+1
i = gk +

∣
∣pk

i − gk
∣
∣ � γ, (7)

where γ is a D-dimensional standard normal distribution random number vector,
� represents the Hardman product, and other symbols have the same meanings
as above.

According to (5), the update formula for lioness is rewritten as:

xk+1
i =

pk
i + pk

c

2
+ αfγ. (8)

According to (6), the position update formula of cub is rewritten as:

xk+1
i =

⎧
⎪⎨

⎪⎩

gk+pk
i

2 + αcγ, q ≤ 1
3

pk
m+pk

i

2 + αcγ, 1
3 ≤ q ≤ 2

3
ḡk+pk

i

2 + αcγ, 2
3 ≤ q < 1

. (9)

Through above modifications, MLSO is obtained. By comparing the position
update formulas in LSO, we can clearly see the differences between them.
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3 Reinforcement Pattern Search

In order to strengthen the local search ability of the lion king in MLSO, the time
complexity of the algorithm is required to increase slightly, which requires the
local search to be directional. For this reason, RPS is introduced, and the idea
of Q-learning is used in pattern search.

3.1 Pattern Search

The pattern search algorithm is an improved search method based on the coordi-
nate search method proposed by Hooke and Jeeves [13]. The algorithm includes
two important steps: axial search and pattern movement, which are performed
alternately to achieve the purpose of search. The pseudo code of the algorithm
is shown in Algorithm 1.

Algorithm 1. Pattern Search
1: Initialization: initial point x1, step δ, dimension D, acceleration factor α, deceler-

ation factor β, accuracy ε, orthonormal basis {ej , j = 1, 2, · · ·, D}, y1 = x1, k = 1,
j = 1;

2: while δ > ε do
3: for j ∈ [1, D] do
4: if f

(
yj + δej

)
< f

(
yj

)
then

5: yj+1 = yj + δej ;

6: else if f
(
yj − δej

)
< f

(
yj

)
then

7: yj+1 = yj − δej ;
8: else
9: yj+1 = yj ;

10: end if
11: end for
12: if f

(
yD+1

)
< f (xk) then

13: xk+1 = yD+1, y1 = xk+1 + α (xk+1 − xk);
14: else
15: δ = βδ, y1 = xk, xk+1 = xk;
16: end if
17: k = k + 1;
18: end while
19: Return the point x after the search.

3.2 Q-learning

The main components of reinforcement learning include a learning agent, an
environment, states, actions and rewards. Q-learning is a typical and commonly
used reinforcement learning algorithm [14]. Let S = [s1, s2, · · · , sn] be a set
of states of the learning agent, A = [a1, a2, · · · , an] be a set of actions that
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the learning agent can execute, rt+1 be the immediate reward acquired from
executing action a, γ be the discount factor within [0,1], α be the learning rate
within [0,1], Q (st, at) be the total cumulative reward that the learning agent
has gained at time t, then the updated Q value is:

Qt+1 (st, at) = Q (st, at) + α
[
rt+1 + γ max

a
Q (st+1, a) − Q (st, at)

]
. (10)

3.3 Reinforcement Pattern Search Algorithm

The RPS algorithm is shown in Algorithm2. Algorithm 2 performs a one-
dimensional pattern search according to the dimension selected by random or Q
table, and the Q table update formula is simplified by (10). Use the Q-learning
guidance mode to search for better directionality.

Algorithm 2. Reinforcement Pattern Search(RPS)
1: Initialization: initial point x1, step δ, dimension D, acceleration factor α, decel-

eration factor β, accuracy ε, K, p ∈ [0, 1], immediate reward r, learning rate αQ,
Q table Q = zeros (1, D), orthonormal basis {ej , j = 1, 2, · · ·, D}, y = x1, k = 1;

2: while δ > ε && k ≤ K do
3: if rand < p then //rand ∼ U (0, 1)
4: Random choose d ∈ [1, D];
5: else
6: Select the dimension d where Q (d) = max (Q);
7: end if

/*If the following two if conditions are out of bounds, initialize randomly*/
8: if f (y + δed) < f (y) then
9: y = y + δed, r = 1;

10: else if f (y − δed) < f (y) then
11: y = y − δed, r = 1;
12: else
13: r = −1;
14: end if
15: Q (d) = Q (d) + αQ (r − Q (d)); //Update Q table
16: if f (y) < f (xk) then

/*Initialize randomly if y (d) is out of bounds*/
17: xk+1 = y, y (d) = xk+1 (d) + α (xk+1 (d) − xk (d)), k = k + 1;
18: else
19: δ = βδ;
20: end if
21: end while
22: Return the point x after the search.
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4 Lion Swarm Optimization by Reinforcement Pattern
Search

In this paper, the proposed RPS algorithm (Algorithm2) is introduced into
MLSO, and the local search ability of MLSO is improved by strengthening the
local search ability of lion king. The proposed RPSLSO is shown in Algorithm3.

Algorithm 3 . Lion Swarm Optimization by Reinforcement Pattern Search
(RPSLSO)
1: Initialization: the number of lions N , the maximum number of iterations T , the

proportion of adult lions;
2: Initialize the position of the lion swarm randomly, and calculate the fitness;
3: Get the historical optimal position pBest and historical optimal value pV alue of

each lion;
4: Obtain the historical optimal position gBest and the optimal value gV alue of the

lion swarm;
5: t = 1;
6: while t < T do
7: Compute the Q learning rate αQ = 1 − 0.9 t

T
;

8: Update the position of the lioness by (8);
9: Assign gk to the lion king, and use Algorithm 2 on the lion king;

10: Update the position of the cub by (9);
11: for i ∈ [1, N ] do
12: if fitness(i) < pV alue(i) then
13: pV alue(i) = fitness(i);
14: pBest(i) = lion(i);
15: end if
16: if pV alue(i) < gV alue then
17: gV alue = pV alue(i);
18: gBest = pBest(i);
19: end if
20: end for
21: t = t + 1;
22: end while
23: Return gBest and gV alue.

5 Experiment and Analysis

In order to verify the performance of the RPSLSO proposed in this paper, includ-
ing the modifications to LSO and the proposed RPS, the proposed algorithm is
compared with MLSO, LSO and PSO. In addition, the original LSO paper men-
tioned that the basic update method of the algorithm comes from GBBPSO, so
GBBPSO is also added to the comparison.
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5.1 Experimental Setup

The CEC2013 test function set [15] is selected as the experimental test function,
which includes 5 unimodal functions, 15 multimodal functions and 8 composi-
tion functions, a total of 28 test functions, which are rich in types and widely
used. The domain of each dimension of 28 functions is [−100, 100], and function
dimension is set to 30.

The experiment was carried out on the Matlab2019a platform of Windows10.
The population size of the five algorithms is set to 100, and the number of
iterations is set to 5000. In the PSO algorithm, the acceleration constant c1 =
c2 = 2, and the inertia weight ω linearly decreases from 0.9 to 0.4. The proportion
factors of adult lions in the three lion swarm optimization algorithms are all 0.2.
In the RPSLSO, the acceleration factor α = 1, the deceleration factor β = 0.5,
the accuracy ε = 10−6, the number of searches K = 10, and the initial step size
δ = 1. Each algorithm runs independently 30 times to obtain the errors of 30
results, then the mean error is calculated.

5.2 Comparison of Experimental Results

The average error of each algorithm is shown in Table 1. Sort the error of each
algorithm under each test function from small to large, then give an evaluation
of 1 to 5 respectively, and give the same evaluation if the error is the same, and
finally accumulate the evaluations of all test functions to get Rank. The smaller
the Rank value, the smaller the mean error on the 28 test functions, and the
better the result.

From the Rank value in Table 1, it can be seen that the proposed RPSLSO
has the best result on the CEC2013 function set, followed by MLSO, the result
of LSO is the worst, and PSO and GBBPSO are in the middle. It shows that
RPSLSO and MLSO are better than the other three algorithms, which proves
that the modifications to LSO in this paper is effective, and RPSLSO is bet-
ter than MLSO, which proves that RPS is also effective. The above conclusions
can also be seen from the number of functions that achieve the smallest error
in several algorithms. RPSLSO has the smallest error on 15 functions, which
is more than half of the total number of functions. MLSO performs best on 7
functions, four of which are combination functions. PSO and GBBPSO perform
best on 6 and 4 functions respectively. The error of LSO is the smallest on only
one function. Dividing Table 1 into three parts: unimodal functions, multimodal
functions, and combination functions, RPSLSO performs best on unimodal func-
tions and slightly worse on multimodal functions, but it is also better than the
other four. RPSLSO is slightly worse than MLSO in combination functions. This
may be due to the slightly higher complexity of the combination functions, which
weakens the local search ability of RPS.

In order to compare the performance of the five algorithms intuitively, select
F2, F6, F16, F27 among the 28 test functions, and draw the logarithmic error
curves of five algorithms as shown in Fig. 1. F2 is an unimodal function, F6 and
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F16 are multimodal functions, F27 is a combination function. All three func-
tions are selected. It can be seen from Fig. 1 that RPSLSO converges fast on
F2, F6 and F16 functions, with relatively small errors. It shows that RPSLSO
has more advantages when optimizing unimodal functions and multimodal func-
tions. RPSLSO and MLSO have similar curves on F27. Although the initial
convergence speed is not as good as GBBPSO, the final error is smaller than
GBBPSO, and GBBPSO quickly stagnated. Although MLSO performs generally
on unimodal and multimodal functions, slightly better than PSO, it performs
better on combination functions, which can also be seen from Table 1.

Table 1. Mean errors of five algorithms.

Function RPSLSO MLSO LSO PSO GBBPSO

F1 0.00E+00 2.27E−13 5.78E+03 2.27E−13 0.00E+00

F2 1.68E+05 6.35E+06 1.11E+08 9.66E+06 1.73E+06

F3 3.39E+06 5.72E+06 3.79E+10 7.45E+07 4.37E+07

F4 2.89E+03 1.36E+04 4.09E+04 3.46E+03 4.97E+03

F5 1.53E−06 3.91E−02 1.69E+03 3.41E−13 2.27E−13

F6 8.42E+00 3.54E+01 4.29E+02 6.54E+01 3.48E+01

F7 5.09E+00 5.85E+00 1.63E+02 3.00E+01 7.26E+01

F8 2.09E+01 2.09E+01 2.09E+01 2.09E+01 2.10E+01

F9 1.11E+01 1.24E+01 3.85E+01 2.18E+01 2.60E+01

F10 2.08E−01 2.79E−01 9.25E+02 1.63E−01 1.73E−01

F11 2.68E+01 1.57E+01 2.72E+02 1.54E+01 4.19E+01

F12 2.45E+01 1.76E+01 2.94E+02 8.07E+01 9.94E+01

F13 5.10E+01 4.05E+01 2.74E+02 1.42E+02 1.82E+02

F14 4.56E+03 6.17E+03 7.49E+03 7.20E+02 6.76E+02

F15 4.50E+03 5.28E+03 7.30E+03 6.47E+03 5.06E+03

F16 1.61E+00 2.35E+00 2.34E+00 2.15E+00 2.34E+00

F17 1.01E+02 1.78E+02 3.34E+02 5.01E+01 6.95E+01

F18 1.16E+02 1.86E+02 3.16E+02 2.29E+02 1.59E+02

F19 6.07E+00 5.80E+00 8.22E+02 2.70E+00 3.87E+00

F20 1.05E+01 1.14E+01 1.30E+01 1.35E+01 1.12E+01

F21 3.33E+02 3.04E+02 1.75E+03 2.93E+02 2.99E+02

F22 3.98E+03 3.38E+03 7.73E+03 8.12E+02 6.75E+02

F23 4.59E+03 3.61E+03 7.79E+03 6.74E+03 4.94E+03

F24 2.04E+02 2.04E+02 3.06E+02 2.66E+02 2.65E+02

F25 2.19E+02 2.07E+02 3.25E+02 2.84E+02 2.91E+02

F26 2.21E+02 2.00E+02 2.05E+02 3.37E+02 2.46E+02

F27 3.43E+02 3.45E+02 1.17E+03 8.82E+02 9.57E+02

F28 2.80E+02 3.00E+02 2.41E+03 4.03E+02 3.00E+02

Rank 56 73 132 80 77

In short, RPSLSO has better optimization performance and higher conver-
gence accuracy than the other four algorithms. The performance of MLSO is
also much better than LSO. It proves that both the modifications to LSO and
the proposed RPS are more effective, which improve the performance of LSO.
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Fig. 1. Logarithmic error curves of five algorithms.

6 Conclusion

This paper proposes a lion swarm optimization by reinforcement pattern search
(RPSLSO). Firstly, a modified lion swarm optimization (MLSO) is proposed,
which solves the problems of the basic lion swarm optimization (LSO) that
lions are easily out of bounds when the range of activity is large and the posi-
tion update formulas are not universal. Secondly, based on the pattern search
algorithm and Q-learning algorithm, a new local search algorithm-reinforcement
pattern search (RPS) algorithm is proposed. The advantages are that the local
search is more directional and the time complexity is slightly increased. Finally,
RPSLSO is proposed based on MLSO and RPS. In order to test the perfor-
mance of RPSLSO, the CEC2013 test function set was used to compare RPSLSO
with MLSO, LSO, particle swarm optimization and Gaussian bare bones particle
swarm optimization. Comparing the mean error and convergence curve of each
algorithm, it is found that RPSLSO has the best performance, higher accuracy,
and faster convergence speed. The performance of MLSO is also much better
than LSO, and MLSO and RPS are both effective.
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Abstract. Aiming at the shortcomings of fuzzy C-means (FCM) clus-
tering algorithm that it is easy to fall into local minima and sensitive
to initial values and noisy data, this paper proposes a fuzzy clustering
algorithm based on improved lion swarm optimization algorithm. Aiming
at the problem that lion swarm optimization (LSO) algorithm is easy to
fall into the local optimum, this paper improves lion swarm optimiza-
tion algorithm by introducing sin cos algorithm and elite opposition-
based learning. In addition, the introduction of a supervision mechanism
enhances the lions’ ability to jump out of local optimum and improves
the local search ability of lion swarm optimization algorithm. The opti-
mal solution obtained by improved lion swarm optimization algorithm
is used as the initial clustering center of FCM algorithm, then FCM
algorithm is run to obtain the global optimal solution, which effectively
overcomes the shortcomings of FCM algorithm. The experimental results
show that, compared with original FCM clustering algorithm, FCM clus-
tering algorithm based on improved lion swarm optimization algorithm
has improved the algorithm’s optimization ability and has better clus-
tering results.

Keywords: Fuzzy C-mean clustering · Lion swarm optimization
algorithm · Sin cos algorithm · Data mining

1 Introduction

Cluster analysis is an important part of data mining technology. It can discover
new and meaningful data distribution patterns from potential data. Clustering is
to group data according to its own characteristics. The important feature is that
things are clustered, that is, the larger the gap between different groups of data,
the more obvious, the better, and the data in each group should be as similar as
possible, and the smaller the gap, the better. Therefore, the boundaries of differ-
ent categories are clear. But in the real world, there are many practical problems
c© Springer Nature Switzerland AG 2021
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without strict attributes. Therefore, people have proposed a soft division of the
objects to be processed. The fuzzy set theory proposed by L.A. Zedeh provides
a powerful analysis tool for soft partitions. The use of fuzzy methods to deal
with clustering problems is called fuzzy clustering. The fuzzy C-means (FCM,
where C represents the number of clustering categories) clustering algorithm was
established by Dunn [1] and Bezdek [2]. In summary, there are mainly the fol-
lowing aspects: (1) The number of initial centers needs to be given in advance,
and there are no guidelines to follow; (2) Only clumpy clusters can be identified,
irregular clusters and ribbon clusters cannot be identified, and they are sensitive
to noise in many cases; (3) Sensitive to the initial clustering center, it is easy to
fall into the local optimum, it is difficult to obtain the global optimum, or the
entire clustering process takes a long time to converge to the global optimum,
which affects the clustering effect.

In recent years, many documents have proposed improved methods for prob-
lem (3), which can be summarized as: combining the improvement of genetic
algorithm, the improvement of cuckoo optimization algorithm, the improvement
of bat algorithm, etc., such as fuzzy clustering based on improved genetic algo-
rithm [3], fuzzy clustering based on cuckoo optimization algorithm [4], fuzzy
clustering based on bat algorithm [5]. These algorithms use different methods to
improve FCM algorithm, and improve the performance of the FCM algorithm
to a certain extent. With the advent of the intelligent era, swarm intelligence
algorithm is an important branch of intelligent optimization methods. Because
of its distributed, self-organizing, cooperative, robust and easy to implement,
swarm intelligence algorithm has good performance in many optimization prob-
lems. The commonly used algorithms include ABC [6], AFSA [7], IA [8], PSO [9]
and LSO [10] algorithm, etc. This paper introduces improved lion swarm opti-
mization (ILSO) algorithm into FCM algorithm to improve FCM algorithm’s
shortcomings that it is easy to fall into the local optimum and sensitive to the
initial clustering center. Tested on a classic data set, the experimental results
show that this improvement is effective.

2 The Basic Theory

2.1 Fuzzy C-Mean Clustering

The fuzzy C-means clustering algorithm is an iterative optimization algorithm,
which can be described as minimizing the exponential function. Suppose set
X = {x1, x2, ..., xn} is a finite data set on the feature space Rn, then X is divided
into c categories (2 ≤ c ≤ n), and suppose cluster centers c is V = {v1, v2, ..., vn}.
n × c-dimensional matrix U = (uij) , uij ∈ [0, 1] represents the membership
matrix of each sample, where: i = 1, 2, ...n; j = 1, 2, ...c.

The objective function of FCM algorithm is as follows, the minimum value
is obtained under the constraints of formula (2):

JFCM (U, V ) =
n∑

i=1

c∑

j=1

um
ij‖xi − vj‖ 2

, (1)
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c∑

j=1

uij = 1, uij ∈ [0, 1] . (2)

Applying Lagrangian multiplication and combining the constraints of formula
(2) to derive formula (1), we get:

vj =

∑n
i=1 um

ijxi∑n
i=1 um

ij

, (3)

uij =
1

∑c
k=1

[ ‖x
i
− vj‖2

‖xi− vk‖2

] 2
m−1

, (4)

where: m is a fuzzy weighted index, and a suitable m value has the effects of
suppressing noise and smoothing the membership function, but how to optimize
the parameter m is still lacking theoretical guidance.

FCM algorithm obtains fuzzy clustering of the data set by iterative opti-
mization of the objective function. The objective function is decreasing in the
iterative process. This method depends to a large extent on the selection of
the initial clustering center. The unreasonable selection of the central matrix
will cause false clustering, increase the complexity of the system and reduce the
efficiency of the algorithm. The pseudo code of FCM algorithm is as follows:

Algorithm 1. FCM
1: Input: The number of clusters c and the data set.
2: Out: The cluster center set vj minimizes JFCM (U, V ).
3: According to the number of clusters c, randomly give the cluster center V0 =

(v1, v2, ..., vc) and the termination error ε, and set the current iteration number as
t = 0.

4: Find the membership matrix Ut according to formula (3).
5: According to formula (4), find the cluster center Vt+1 of the next iteration.
6: If ‖U t+1 − U t‖ < ε, end the iteration, otherwise set t = t + 1 and return to 4.

2.2 Lion Swarm Optimization Algorithm

According to a certain proportion, lion group is divided into three categories:
lion king, lioness and cub. The lion king is responsible for the distribution of
food, the protection of territory and the protection of the cub. The lioness is
mainly responsible for hunting and taking care of the cub. Update the lioness
position according to formula (5).

xt+1
i =

pti + ptc
2

(1 + αfγ) , αf = step · exp
[
−30

(
t

T

)]10

, (5)
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where pti is the i lioness of the t generation. ptc is the lioness randomly selected
from the t generation of lioness. γ is the random number generated by normal
distribution. αf is perturbation factor. step is the step size of the lioness. T is
the population iteration number. t is the current iteration number.

The activities of cub are mainly divided into three situations: when they are
hungry, they eat close to the lion king; when they are full, they learn to hunt
with the lioness; when they grow up, they will be driven out of the group by the
lion king and come back to challenge the status of the lion king after growing
up. Update the cub position according to formula (6).

xt+1
i =

⎧
⎪⎨

⎪⎩

gt+pt
i

2 (1 + αcγ) , q ≤ 1
3

pt
m+pt

i

2 (1 + αcγ) , 1
3 ≤ q ≤ 2

3
ḡt+pt

i

2 (1 + αcγ) , 2
3 ≤ q < 1

, (6)

where gt is the global optimal lion of the generation. ptm is the history optimal
position of lioness. αc is perturbation factor. ḡt is the position far away from the
lion king.

2.3 Sin Cos Algorithm

Sin cos algorithm (SCA) [11] is optimized by using the oscillation characteristics
of sine function and cosine function. Its advantages are good convergence and
easy implementation.

[min] f (x) = min f (x1, x2, ..., xn)
s.t Li ≤ Xi ≤ Ui, i = 1, 2, ..., n

, (7)

where Xi is the i-th variable to be optimized, Li and Ui are the upper and lower
boundaries of Xi, respectively.

SCA first randomly generates N search individuals, calculates the fitness of
each individual according to the fitness function, and records the individual with
the best fitness as the optimal individual X∗. The individual position update
formula in the optimization process is:

Xt+1
i =

{
Xt

i + r1 sin (r2) |r3X∗
i − Xt

i | , r4 < 0.5
Xt

i + r1 cos (r2) |r3X∗
i − Xt

i | , r4 ≥ 0.5 , (8)

r1 = a

(
1 − t

tmax

)
. (9)

Among them, Xt
i is the position of the i-th individual in the t-th generation

population, X∗
i is the current optimal individual position. a is a constant greater

than 1, and is assigned a value of 2 in this article, t is the number of previous
iterations and tmax is the maximum number of iterations. r2 ∈ (0, 2π) is a random
number subject to uniform distribution, r3 ∈ (0, 2) is a random number subject
to uniform distribution, r4 ∈ (0, 1) is a random number subject to uniform
distribution.
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2.4 Elite Opposition-Based Learning

Opposition-Based Learning (OBL) is a new strategy that has emerged in the
field of computational intelligence in recent years. Studies have shown that the
probability that the reverse solution is closer to the global optimal solution is
50% higher than the current solution. This strategy can effectively enhance the
diversity of the population and prevent the algorithm from falling into local
optimums. Elite Opposition-Based Learning (EOBL) [12] is proposed for the
problem that the reverse learning strategy is not necessarily easier to find the
global optimal solution than the current search space. This strategy uses dom-
inant individuals to construct the reverse population, in order to increase the
diversity of the population.

Assuming that Xi = (xi1, xi2, ..., xiD) is an ordinary particle, and the corre-
sponding extreme is the elite particle Xe

i = (xe
i1, x

e
i2, ..., x

e
iD), the elite reverse

solution can be defined as:

Xe
i = μ (daj + dbj) − xe

ij , (10)

where xe
ij ∈ [aj , bj ] , k ∈ (0, 1) are random numbers that obey a normal distri-

bution, and [daj , dbj ] is the dynamic boundary of the j-th dimensional search
space, which can be calculated according to formula (11):

daj = min (xij) , dbj = max (xij) . (11)

Using dynamic boundaries to replace the fixed boundaries of the search space can
accumulate search experience, so that the generated inverse solution is located
in the gradually reduced search space and accelerate the algorithm convergence.
When the generated reverse solution lies outside the boundary, use a randomly
generated method to reset. As shown in formula (12):

Xe
i = rand (daj , dbj) . (12)

3 The Improved Lion Swarm Optimization Algorithm

3.1 The Improved Lion Swarm Optimization Algorithm

The improvement of lion swarm optimization is to update the positions of lioness
and cub.

Improvement of Lioness Position Updating Method. For the location
update method of lioness, introduce the sine part of sin cos optimization algo-
rithm. Update the position of the lioness according to formula (13).

Xt+1
i = Xt

i + r1 sin (r2)
(
r3g

t − Xt
i

)
(13)
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Improvement of Position Updating Method for Cub. For the position
update mode of cub, introduce sin cos optimization algorithm. Update the posi-
tion of the cub according to formula (14).

if r5 < 0.5
if r4 < 0.5

Xt+1
i = Xt

i + r1 sin (r2) (r3gt − Xt
i )

else
Xt+1

i = Xt
i + r1 cos (r2) (r3gt − Xt

i )
else

if r4 < 0.5
Xt+1

i = Xt
i + r1 sin (r2) (r3ptm − Xt

i )
else

Xt+1
i = Xt

i + r1 cos (r2) (r3ptm − Xt
i )

(14)

The Introduction of Supervision Mechanism. In the iterative process,
when the difference between the two adjacent global optimal values is less than
the set threshold, the algorithm falls into the local optimum. At this time, a
Gaussian random walk strategy is used to generate new individuals to help the
algorithm jump out of the local optimum. The position generating formula is as
follows:

Xt+1
i = Gaussian

(
Xt

i , σ
)
, (15)

σ = cos
(

π
t

2tmax

)(
Xt

i − X∗
r (t)

)
, (16)

where X∗
r is a random individual in the discoverer population. The cosine func-

tion is used to adjust the step size. As the number of iterations increases, the
disturbance is gradually reduced, which is beneficial to balance the algorithm’s
global and local search capabilities.

3.2 Algorithm Process

The pseudo code of improved lion swarm optimization algorithm is in Algo-
rithm2.

3.3 Performance Comparison and Analysis

Four benchmark functions are selected to test the performance of the algorithm.
Rosenbrock

f (x) =
d−1∑

i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]

Shifted-Rastrigin

f (x) = 10d +
d∑

i=1

[
(xi − 2)2 − 10 cos (2π (xi − 2))

]
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Algorithm 2. Improved Lion Swarm Optimization
1: Input: N,D,T,epsilon
2: Out: Optimal Solution
3: Initialization and generate an elite opposition-based lion group. Calculate the fit-

ness values of all lions and distribute the male lion, lioness and cubs in proportion.
4: while the iteration is not termination do
5: Update position of the male lion, lioness and cubs and generate an elite

opposition-based lion group.
6: Calculate the fitness values of all lions, distribute the male lion, lioness and

cubs in proportion and record the optimal fitness value of this iteration.
7: if difference between the optimal values of two adjacent iterations<epsilon then
8: Implementation monitoring mechanism.
9: end if

10: end while

Levy

f (x) = sin2 (πw1) +

d−1∑

i=1

(wi − 1)2
[
1 + 10 sin2 (πwi − 1)

]
+ (wd − 1)

[
1 + sin2 (2πwd)

]

where wi = 1 +
xi − 1

4
for all i = 1, 2, ..., d

Shifted-Sphere

f (x) =
d∑

i=1

(xi − 2)2

PSO, LSO and ILSO algorithms are used to verify the four test functions. The
parameters are set as follows: population size N = 50, function dimension D =
40, maximum iteration number T = 6000. PSO takes inertia weight w = 0.8 and
learning factor c1 = c2 = 1.5. Each algorithm runs independently for 30 times.
From (a), (b), (c) and (d) in Fig. 1, it can be seen that the optimization result
of ILSO algorithm has higher solution accuracy than PSO and LSO algorithm,
and the fitness value decreases and converges faster.

4 Experimental Results and Analysis

4.1 FCM Algorithm Based on ILSO Algorithm

Suppose the sample space X = {x1, x2, ..., xn}, where xi is a d-dimensional vec-
tor. A lion in LSO algorithm represents a cluster center set V = {v1, v2, ..., vc},
where vj is a vector of the same dimension as xi. For the evaluation of each solu-
tion (clustering center) in the lion group, define an individual fitness function:

fiti =
1

[1 + JFCM (U, V )]
. (17)
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Fig. 1. Evolution curves of different test functions.

Among them: JFCM (U, V ) is the objective function defined in formula (1), the
better the clustering effect, the smaller the JFCM (U, V ), the higher the fiti.

The main idea of ILSO-FCM algorithm is: first use ILSO algorithm to obtain
the optimal solution (clustering center) as the initial clustering center of FCM
algorithm, then use FCM algorithm to optimize the initial clustering center, and
finally find the optimal solution. The algorithm is a fast clustering algorithm, so
the algorithm has good time performance and shortens the convergence time of
FCM algorithm.

4.2 Database

The experimental data uses Ecoli data set [13,14] in UCI standard database,
which describes the use of amino acid sequences in cell location sites to classify
Ecoli proteins, that is, the chemical composition of the protein before folding to
predict how the protein interacts with the cell Combine. The data set consists
of 336 Ecoli protein data, each of which is described using 7 input variables
calculated from the amino acid sequence of the protein, and is divided into 8
categories in total.

4.3 Experimental Results and Analysis

In order to verify the effectiveness and feasibility of ILSO-FCM algorithm, FCM,
LSO-FCM and ILSO-FCM algorithm were used to cluster Ecoli data set, and
minimum allowable error in each algorithm ε = 10−3, fuzzy weighting index m =
2. The parameters of LSO-FCM and ILSO-FCM algorithm are set as: population
size N = 20, maximum number of iterations T = 200, function dimension D =
7 × 30. Run the three algorithms respectively and the experimental results are
shown in the Fig. 2.
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From Fig. 2, it can be seen that optimal clustering results of ILSO-FCM
algorithm are better than FCM and LSO-FCM algorithm. It can be seen from
Table 1 that the average correct rate of ILSO-FCM algorithm is higher than the
other two algorithms. Therefore, it is concluded that the final optimization result
of ILSO algorithm is better than the other two algorithms, and ILSO algorithm
converges faster and has higher accuracy.
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Fig. 2. FCM comparison of LSO-FCM and ILSO-FCM.

Table 1. Average accuracy rate(%) of FCM, LSO-FCM and ILSO-FCM.

Algorithm [13] data [14] data

FCM 80.01 52.70

LSO-FCM 80.74 52.70

ILSO-FCM 82.10 54.49

5 Conclusion

This paper introduces sin cos algorithm and elite opposition-based learning to
improve lion swarm optimization algorithm and obtains improved lion swarm
optimization algorithm, which improves local and global optimization capabil-
ities. In the function test, the optimization result of ILSO algorithm is better
than that of PSO and LSO algorithms, which reflects the superiority of ILSO
algorithm in the optimization result. The ILSO algorithm is combined with
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FCM algorithm then obtain ILSO-FCM algorithm, which not only overcomes
the shortcoming of FCM algorithm that is easy to fall into the local optimal solu-
tion, but also makes up for the shortcoming of FCM algorithm that is sensitive
to initial values and noisy data. Experiments show that ILSO-FCM algorithm
has strong global search capabilities, and it is less sensitive to the initial values
and significantly improves the clustering effect.
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Abstract. With the global development of the third industrial revolu-
tion, intelligent manufacturing has received attention from many coun-
tries and regions since it was first proposed. In the next ten years,
intelligent manufacturing has become an important factor in determin-
ing international status, and it is imminent for traditional manufactur-
ing to switch to intelligent manufacturing. Flexible job-shop scheduling
is a key research problem in the field of intelligent manufacturing. In
this paper, we uses a novel swarm intelligence optimization algorithm-
Sparrow Search Algorithm to solve the problem of the longest process-
ing time of workshop scheduling. The experimental results show that
compared with other advanced meta-heuristic algorithms, the Sparrow
Search Algorithm (SSA) can not only achieve ideal optimization accuracy
in the test function, but also can achieve acceleration effects and solving
capabilities that other algorithms do not have in actual shop scheduling
problems.

Keywords: Sparrow search algorithm · Flexible job shop scheduling
problem · Makespan · Global convergence

1 Introduction

JSP is not only a difficult problem in the field of manufacturing, but also a
key issue [1]. It is a key link that affects the production efficiency of manufac-
turing enterprises or production units. The production of a product requires a
series of key links such as raw material collection, transportation, processing,
and packaging. Today’s workshop scheduling problem is not only limited to the
processing link, but also permeates other production links [2]. Moreover, with the
improvement of production efficiency requirements and the continuous progress
of production levels, many machines can be set to process multiple types of
workpieces, which makes the production process extremely rich in scheduling
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margin, that is, flexibility [3]. This gives rise to a new problem that needs to
be solved urgently: flexible job shop scheduling. Compared with the traditional
inflexible workshop scheduling problem, FJSP is more complicated and diffi-
cult to obtain a better solution because it adds an additional machine selection
problem [4]. Therefore, in FJSP, there are two problems we need to solve, one
is operation sequence problem that is also exist in the JSP, another is machine
selection problem that is additional compared to FJSP machine selection prob-
lem is more difficult to solve compared to JSP in the case of the controlled vari-
able method. In other words, the complexity of we solve the machine selection
problem when the operation sequence is determined is bigger than we solve the
operation sequence problem when machine selection is determined [4]. Because
for the machine selection problem, the operation of the job can be processed on
many machines (usually greater than two or three machines) in the most scenes.
FJSP is different from most conventional optimization problems, In the FJSP,
the process of optimizing is not inherited, in other words, The optimal solution
obtained in the previous iteration has no decisive guiding significance for the
next solution process as local optimal solutions are irregularly distributed in the
search space. People have also tried different types of algorithms to solve FJSP
problems that main includes two categories: exact and approximate algorithms.
About the exact algorithm, it is more expensively spend time but more precise,
most of which are formulated by integer linear programming (ILP) or mixed ILP
(MILP) models [5].

About the approximate algorithm, Meta-heuristic algorithm is a major solver
for FJSP that is design by summarizing the habits and behavior characteristics
of creatures in nature compared to exact algorithm, Meta-heuristic algorithm is
more random and uncertain when solving problems, and has the ability to jump
out of local optimal solutions [6]. Therefore, in view of the characteristics of the
FJSP problem, the meta-heuristic algorithm is a more suitable and convenient
method compared to other types of algorithms [7]. Although emerging artifi-
cial intelligence algorithms such as deep learning or reinforcement learning have
achieved rapid development, as far as FJSP is concerned, this machine learn-
ing method is still not suitable, because in FJSP, the top 20% of the scheduling
scheme will directly affect The last 80% of the scheduling results. However, there
are many types of meta-heuristics. Each meta-heuristic has its own character-
istics in its search capabilities and search process. As one of the meta-heuristic
algorithms, the sparrow search algorithm is a new swarm intelligence algorithm
that was just proposed this year [8–10]. The sparrow search algorithm has a fast
solution response capability, and the solution mechanism is simple and clear.
Compared with most meta-heuristic algorithms, each iteration of SSA saves
more time, This is particularly critical for time-critical FJSP problems. More-
over, its solving ability and final optimization effect are not inferior to most
other algorithms, so this paper intends to use SSA to solve some actual FJSP.
In order to test the performance of the SSA algorithm, we introduced six other
algorithms as comparison algorithms, they are DA cfPSO, Jaya, SCA,SSA,DE
[11–16]. The remaining structure of the article is arranged as follows: firstly,
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introduce the characteristics of FJSP, including its classification, constraints,
and solution goals in Sect. 2. Next, the principles and mathematical formulas
of the algorithm we used are discussed in Sect. 3. Thirdly, show the experiment
results (that includes actual FJSP and test functions) and make the correspond-
ing discussions in the Sect. 4. Finally, Sect. 5 concludes the paper.

2 Problem Formulation

FJSP is a scheduling and planning problem that mainly occur in manufacture
field, a N × M can be described as: there are N jobs (each job contains sev-
eral operations) and M machines [5,17]. In a job shop, our task is to arrange
the machining machines of each operation of each job reasonably to best meet
our expected requirements [18,19]. The different operation of different job own
unique processing information. In other words, the set of optional machines and
correspond process time of each operation is independent. For example, in the
Fig. 1, operation O11 can be processed on the Machine M1 and M3. operation
O12 can be processed on the Machine M1 and M2 yet.

2.1 T-FJSP and P-FJSP

Mentioned in the previous chapter, Compared with JSP, FJSP additionally
added the “machine selection” problem, that breaking the constraint that one
machine can only process one process. The job has a margin of choice when
choosing a processing machine, that is, flexibility. In many literatures, flexibility
is defined as the number of machines that can be selected for each of each job
on average, as shown in the equation below:

flexibility =

∑i=n
i=1

∑j=m
j=1 m sij

n ∗ m
(1)

In the Eq. (1), n represents the number of jobs, m represents the number of
operations, m sij represents the number of available machines of the operation
j of the job i. To illustrate the calculation process of flexibility more vividly,
we introduce a actual workshop problem. There are 3 jobs and 3 machines in
a workshop, each jobs has 2 operation The detailed processing information is
shown in the following table: so the flexibility can be calculated as:

flexibility =
2 + 2 + 1 + 2 + 2 + 1

2 ∗ 3
= 1.6667 machines/operation

Flexibility directly reflects the margin of machine selection. Although it is
numerically continuous, FJSP can be divided into two main types according
to the problem-solving needs,that is total FJSP (T-FJSP) and partial FJSP
(P-FJSP). T-FJSP has the highest flexibility, each operation of each job can
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Fig. 1. The 3 × 6 scale FJSP

be processed on all machines, P-FJSP has general flexibility, each operation
of each job can be processed on partial machines. In order to elaborate the
relationship between T-FJSP and P-FJSP, we introduce a actual 3 × 6 FJSP
and corresponding detail of production are shwon in the below table:

Fig. 2. The 3 × 6 scale T-FJSP

Figure 2 and Fig. 3 both show the actual processing information of the actual
jobshop, but differently, each operation of each job can be processed on all
machines in Fig. 2 and this situation belong to T-TJSP, each operation of each
job can be processed on partial machines in Fig. 3 and this situation belong to
P-TJSP.

2.2 The Relationship Between JSP and FJSP

According to the difference of resources constraints, FJSP can be divided into
two categories: P-FJSP and T-FJSP [20]. In order to describe the differences
between them, a 3 × 6 FJSP is introduced in detail in the Fig. 1.

In the Fig. 1, xi denotes the ith job, ∀i ∈ [1, 3]; xyij denotes the jth operation
of ith job, ∀j ∈ [1, 3]; zk denotes the k machine, ∀k ∈ [1, 6], zk ∈ Z. Assume
Zij denotes the optional machine set for operation xyij , the difference can be
summarized as follows:
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Fig. 3. The 3 × 6 scale P-FJSP

Fig. 4. The 3 × 6 scale FJSP

• case one that each operation xyij of each xi can be processed by all the
machines, which represents Zij = Z, is called total FJSP.

• case two that each operation xyij of each xi can be processed by partial
machines, which represents Zij ∈ Z, is called partial FJSP (Fig. 4).

2.3 Symbol Definition and Description

Before describing the mathematical model of FJSP, defining some symbols and
instructions is necessary, which are showed:

n: the number of job
�: the set of all jobs, � = {Di|i = 1, 2, ..., n}

Di: the ith job
m: the number of machine
℘: the set of all machines, ℘ = {Ek|k = 1, 2, ...,m}

Ek: the kth machine
Fij : the jth operation of Di

Ni: the operation number of Di

mij : the optional machine number of Fij
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℘ij : the optional machine set of Fij

wijk: the processing time of Fij on Ek

bijk: the beginning time of Fij on Ek

fijk: the finishing time of Fij on Ek

Fi: the completion time of Di

Cmax: the maximum completion time of all jobs
bij : the beginning time of Fij

fij : the finish time of Fij

2.4 The Mathematical Model of FJSP

The mathematical model can generally be boiled down to a set of constraints and
objective functions, In the FJSP, constraints affect the selection rule of machines
for corresponding operation, it can been described as follow:

(1) Pre-booking or cancellation is not allowed during processing, and it is not
allowed to cancel during processing

bijk + wijk = fijk (2)

(2) When time is 0, all jobs can be processed and all machines are optional.

bijk ≥ 0 (3)

fijk ≥ 0 (4)

(3) Operations of the same job exist sequence:

fij ≤ bi(j+1) (5)

where ∀i ∈ [1, n], ∀j ∈ [1, Ni − 1]
(4) Only one machine can be selected for each operation:

m∑

k=1

xijk = 1 (6)

where ∀i ∈ [1, n], ∀j ∈ [1, Ni], ∀k ∈ [1,m]
(5) Each machine can only process one operation at a time:

fij ≤ bi′j′ (7)

where xijk = 1, xi′j′k = 1, yijk = r, yi′j′k = r + 1, ∀i ∈ [1, n], ∀j ∈ [1, Ni].

There are many kinds of objective functions of FJSP, that mainly include
maximum completion time, maximum machine load, processing cost. But
because the maximum completion time can best represent the company’s bene-
fit, many documents regard the maximum completion time as the main goal of
the research. Similarly, In this paper, maximum completion time is also used for
testing algorithm performance, the following is the objective function of algo-
rithm:

minCmax = min(
n

max
i=1

Fi) (8)
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3 Sparrow Search Algorithm

In recent years, with the development of swarm intelligence algorithms, meta-
heuristic algorithm has become a hot research method to solve FJSP. As one of
the meta-heuristic algorithm, SSA is proposed by researcher Jiankai Xue et al.
in 2020. Practice and simulation have proved that SSA has fast iteration speed
and good search ability, and can achieve better solution effects than most other
algorithms. Let us describe the details of SSA below.

3.1 Biological Basis

The selection effect of nature gives animals the reason for survival, as a species
in the biological kingdom, sparrows are distributed all over the world. Sparrows
live in groups, their life behaviors are carried out by group activities, and they
are a common group living animal. In the entire group of sparrows, there are
mainly two identities, one is the producer, also called the explorer; the other is
the scrounger, also called the follower. The producer is responsible for finding
food in the population and providing foraging areas and directions for the entire
sparrow population, while the scrounger uses the discoverer to obtain food. In
order to obtain food, sparrows can usually forage for food using two behavioral
strategies: producer and scrounger. Individuals in the population will monitor
the behavior of other individuals in the population, and the attackers in the pop-
ulation will compete with high-intake companions for food resources to increase
their predation rate. In addition, when sparrow populations are aware of danger,
they will act against predation.

The foraging process of sparrows is very similar to the algorithmic optimiza-
tion process, by summarizing the behavioral characteristics of sparrow foraging,
Jiankai Xue et al. proposed the sparrow search algorithm in 2020. In order to
verify the effectiveness of the algorithm, the author of the algorithm uses the
Sphere function and Rosenbrock function to verify SSA, experiments prove that
the SSA algorithm has fast convergence speed and search accuracy, and is a
scientifically advanced meta-inspired swarm intelligence algorithm.

3.2 Algorithm Description of SSA

Similar to smart algorithms in many groups, the location update strategy of the
SSA group is always carried out in steps. The producer is responsible for finding
food for the entire sparrow population and providing directions for all those who
join, Therefore, the producer can obtain a larger foraging search range than the
joiner. The location update strategy of producer is as follows:

Xt+1
ij =

{
Xt

i,j ∗ exp( −i
a∗itermax

) if P2 < ST

Xt
i,j + Q ∗ L if P2 ≥ ST

(9)

In the above equation, a ∗ itermax represents the maximum number of itera-
tions, i represents the ith dimension, Q describes a normal distributed random
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number, L represents a d-dimension vector for which each element inside is 1(d
represents the dimension of solution), P2 is the random number range in the
[0, 1], ST denotes the warning value that is setted generally to the random num-
ber range in [0.5, 1].

When P2 < ST , which denotes there is no danger around, the producer car-
ried out the fast and extensive search activity. In contrast, if P2 ≥ ST , producers
are aware of the dangers of the surrounding environment and flee quickly and
search for the next foraging place.

Different scroungers perform different actions according to their own charac-
teristics. The location update strategy of all scroungers is shown in the following
equation:

Xt+1
i,j =

{
Q ∗ exp

(
Xt

worst−Xt
i,j

i2

)
otherwise

Xt+1
p +

∣
∣Xt

i,j − Xt+1
p

∣
∣ ∗ A+ ∗ L if i < n/2

(10)

Where XP is the optimal position occupied by the producer. Xt
worst repre-

sents the global worst solution under current iteration conditions, A signifies a
matrix of 1 ∗ d for which each element inside is randomly assigned 1 or −1 (d
represents the dimension of solution), and A+ = AT ∗ (A ∗ AT )−1.

When i < n/2, each scrounger has a higher fitness value and they will com-
pete with followers for food. Otherwise, it suggests that the ith scrounger with
the worse fitness value is most likely to be starving.

Among the whole sparrow group, there are always some sparrows in danger
zone and those sparrows will quickly move toward the safe area to get a better
position when they are aware of danger. while the sparrow in a safe zone will
do a random walk strategy to prey efficiently. the mathematical model can be
expressed as follows:

Xt+1
i,j =

⎧
⎨

⎩

Xt
best + β ∗ ∣

∣Xt
i,j − Xt

best

∣
∣ if fi > fg

Xt
i,j + K ∗

( |Xt
i,j−Xt

worst|
(fi−fw)+ε

)

if fi = fg
(11)

where Xbest is the current global optimal location, Xworst is the current global
worst solution location. β is a step size control parameter that is setted to a
normal distribution of random numbers with a mean value of 0 and a variance
of 1. K represents a random number between 0 and 1.fi represents the fitness
value of the present sparrow, fg and fw are the current global best and worst
fitness values, ε is the smallest constant so as to avoid zero-division-error.

When fi > fg that indicates the current sparrow in a relatively dangerous
position in the entire sparrow group, Xbest represents the location of the centre
of the population and is safe around it. Otherwise, which indicates the sparrow
in the middle of the population, are aware of the danger and need to move closer
to the others. K denotes the direction in which the sparrow moves and is also
the step size control coefficient.

Through the above sparrow behavior analysis and specific algorithm descrip-
tion, the pseudo code of SSA can be summarized as shown in Fig. 5, and the
algorithm flow chart of SSA is shown in Fig. 6.
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Fig. 5. The flowchart of the SSA

4 Validation and Comparison

In this paper, in order to verify the effectiveness of the algorithm and further test
the performance of the algorithm, we introduced several simple test functions
and use SSA algorithm to solve. The information of these functions is shown in
the Fig. 7.
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Fig. 6. The flowchart of the SSA

We introduce 6 other algorithms to compare with SSA, they are DA, cfPSO,
Jaya, SSA, SCA, DE, The convergence curves of the optimization process of
unimodal function and multimodal function are shown in the Fig. 8 and Fig. 9
respectively.

The iterative convergence curve is the average result obtained after running
ten times, so this comparative analysis of the results is very representative. The
six functions are divided into two types, which respectively test the exploration
and exploitation capabilities of SSA. Experiments show that SSA has good con-
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Fig. 7. The details of the test function
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Fig. 8. The convergence curves of unimodal functions

0 0.5 1 1.5 2.0 2.5 3.0

FES ×10 5

2.902

2.904

2.906

2.908

2.91

2.912

2.914

2.916

lo
g1

0(
M

ea
n 

Fi
tn

es
s)

Rotated_Ackleys_Function

DA
cfPSO
Jaya
SCA
SSA
DE
SSANEW

(a) Ackley’s Function

0 0.5 1 1.5 2.0 2.5 3.0

FES ×10 5

4.02

4.03

4.04

4.05

4.06

4.07

4.08

4.09

lo
g1

0(
M

ea
n 

Fi
tn

es
s)

Schwefels_Function

DA
cfPSO
Jaya
SCA
SSA
DE
SSANEW

(b) Schwefel’s Function

0 0.5 1 1.5 2.0 2.5 3.0

FES ×10 5

4.03

4.04

4.05

4.06

4.07

4.08

4.09

lo
g1

0(
M

ea
n 

Fi
tn

es
s)

Rotated_Schwefels_Function

DA
cfPSO
Jaya
SCA
SSA
DE
SSANEW

(c) Rotated Schwefel’s Func-
tion

Fig. 9. The convergence curves of multimodal functions

vergence ability and global optimization ability. Therefore, after comprehensive
consideration, in the seven algorithms of the appeal, through the test of the test
function, it can be concluded that SSA can achieve the best optimization effect.

In this paper, the objective function aims of FJSP to minimize the total
processing time, where several famous benchmark data set is selected to evaluate
the optimization ability of SSA. These algorithms are compared on ten medium
and ten small size benchmarks. The algorithm terminates when the number of
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iteration reaches to the maximum generation count. Corresponding parameters
of algorithms in the experiment are shown in Table 1.

Table 1. The parameters settings of optimization algorithms

Parameters Value

Size of population 200

Total generation number 200

P2 of SSANEW (warning value) P2 ∈ [0, 1]

ST of SSANEW (safety value) ST ∈ [0.5, 1]

C1 of cfPSO (individual learning factor) 2

C2 of cfPSO (society learning factor) 2

W of cfPSO (inertia weight) 0.9 − iter ∗ ((0.9 − 0.4)/Max iter)

S1 of SSA (exploration coefficient) 2e−( 4l
L

)2

r1 of SCA (Balance parameter) r1 = a − t ∗ a
T

r of DA (radius of ne) (ub − lb) ∗ (1/4 + (iter/Max iter) ∗ 2))

s of DA (separation weight) 0.1

a of DA (alignment weight) 0.1

c of DA (cohesion weight) 0.7

f of DA (food factor) 1

e of DA (enemy factor) 1

w of DA (inertia weight) 0.9 − iter ∗ ((0.9 − 0.4)/Max iter)

The FJSP experimental results of the comparison of the seven algorithms are
placed in Table 2. The data with * indicates the optimal result, MFJS indicates
the medium-scale FJSP, and SFJS indicates the small-scale FJSP. Since the
difficulty of solving SFJS is relatively small, the optimization results of the seven
algorithms are comparable, among which DA, Jaya, DE, and SSANEW can reach
the complete optimal. In MFJS, SSANEW can achieve the best on nine scales of
FJSP, and Jaya can achieve the best on MFJS08. Therefore, it can be seen from
the experimental results that in practical applications, the application ability of
SSANEW is stronger and more stable.

Figure 10 and Fig. 11 illustrate the Gantt charts of the optimal solution
obtained by SSA algorithm on problem MFSJ02 and MFSJ10 respectively, it
can conclude that for MFJS02, the shortest processing time obtained by SSA is
446 and for MFSJ10, the shortest processing time obtained by SSA is 1340, the
result is better than other compared algorithms.
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Fig. 10. Gantt chart of MFSJ01 Fig. 11. Gantt chart of MFSJ10

Table 2. The statistical results obtained by algorithms

Algorithms MFJS01 MFJS02 MFJS03 MFJS04 MFJS05 MFJS06

DA 469* 456 517 650 610 722

Jaya 469* 465 533 656 662 728

SSA 469* 507 610 745 707 870

cfPSO 477 530 599 638 662 897

DE 469* 457 520 627 612 725

SCA 469* 512 614 745 701 872

SSANEW 469* 446* 491* 581* 519* 642*

Algorithms MFJS07 MFJS08 MFJS09 MFJS10 SFJS01 SFJS02

DA 1080 1122 1262 1513 66* 107*

Jaya 1081 1064* 1296 1520 66* 107*

SSA 1190 1342 1406 1737 66* 107*

dfPSO 1186 1194 1368 1739 66* 107*

DE 1088 1099 1352 1536 66* 107*

SCA 1152 1366 1401 1710 66* 107*

SSANEW 910* 1159 1167* 1340* 66* 107*

Algorithms SFJS03 SFJS04 SFJS05 SFJS06 SFJS07 SFJS08

DA 221* 355* 119* 320* 397* 253*

Jaya 221* 355* 119* 320* 397* 253*

SSA 221* 355* 119* 320* 397* 253*

cfPSO 221* 355* 119* 320* 397* 266

DE 221* 355* 119* 320* 397* 253*

SCA 221* 355* 119* 320* 397* 253*

SSANEW 221* 355* 119* 320* 397* 253*

Algorithms SFJS09 SFJS10 Best num

DA 210* 533* 11

Jaya 210* 533* 12

SSA 215 533* 10

cfPSO 227 533* 08

DE 210* 533* 11

SCA 215 533* 10

SSANEW 215* 533* 19*
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5 Conclusion

SSA is a swarm intelligence optimization algorithm, which is mainly inspired
by the foraging behavior and anti-predation behavior of sparrows. SSA has not
been put forward for a long time, it has a good potential for mining, and is
suitable for a variety of application scenarios, such as path planning, image pro-
cessing, and numerical optimization. A large number of literature experiments
have proved that SSA has good convergence speed and convergence accuracy.
Therefore, this paper uses SSA to solve FJSP. In order to prove the optimization
effect of SSA, six test functions will be used to verify the performance indicators
of the algorithm and compare with the six meta-heuristic algorithms. The exper-
imental results show the excellent optimization ability of SSA. Finally, we use
the SSA algorithm to get the result of FJSP. The experimental results prove that
the optimization result of SSA is much better than other compared algorithms.
On the basis of the excellent exploration and exploitation ability of SSA, the
improved SSA will show superior optimization ability, and the future research
will combine the advantages of various algorithms to solve different problems in
accordance with different conditions to achieve better optimization result.
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Abstract. We choose the well-known evolution strategy (ES) in the evo-
lutionary computation (EC) community to solve the large-scale schedul-
ing problem provided by Alibaba cloud services. Since the problem is
accompanied by multiple strong constraints, we design two additional
strategies for improving the search efficiency with a given limited com-
putational cost. Compared with widely used numerical benchmark test
suits, this problem arises from the requirements of real-world applications
and has strict constraints that cannot be violated, such as processing
time, response timeout, load balance, and so on. The main contribution
of this paper is to establish a bridge between EC algorithms and the
characteristics of real-world problems so that EC algorithms can solve
real-world problems more effectively and smoothly. Based on the diffi-
culties encountered in the experiment, we summarize some of our expe-
riences and insights, and hope that they may bring new enlightenment
to the latecomers.

Keywords: Evolutionary computation · Evolution strategy ·
Scheduling optimization · Large-scale optimization

1 Introduction

Optimization has always been a hot topic, and practitioners are committed to
reducing consumption costs while obtaining higher returns. With the continuous
growth of customers’ personalized demand and the advent of the era of big data,
real-world applications arising from industry have become quite complicated, so
that many traditional optimization methods, such as linear programming [1] and
nonlinear programming [2], are difficult to deal with these emerging large-scale
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optimization problems. As a new branch of finding the global optimal solution,
evolutionary computation (EC) algorithms have attracted extensive attention
[3] and solved many industrial problems successfully [4] thanks to their various
advantages, such as robustness, parallelism, and usability.

EC algorithms have similar optimization framework and usually maintain a
population composed of multiple individuals (candidate solutions). They borrow
the idea of survival of the fittest to improve the quality of individuals and grad-
ually converge to the global optimum. Since the pioneering genetic algorithm [5]
started the upsurge of heuristic optimization, various novel EC algorithms have
been proposed after decades of development [6]. Among them, many powerful
EC algorithms have received lots of attention, e.g. evolution strategy (ES) [7],
particle swarm optimization (PSO) [8], differential evolution (DE) [9] and others
[10,11]. Besides, many researchers also focus on how to introduce new strategies
into existing EC algorithms to further improve their performance [12,13]. For
example, some use the model of fitness landscape to reduce the number of fit-
ness evaluations [14] and accelerate EC search [15,16]. Owing to their continuous
contribution, EC algorithms show excellent performance on various optimization
problems, e.g., multimodal optimization [17], multi-objective optimization [18],
and constrained optimization [19].

The main objective of this paper is to establish a bridge between EC algo-
rithms and the characteristics of real-world problems so that EC algorithms can
solve real-world problems more effectively and smoothly. Specifically, we try to
analyze the match between the EC algorithms’ performance and the problem
characteristics by using the competition problem derived from real application
scenarios, so as to take them away from the laboratory and better serve the
industry.

Following this introductory Section, the Tianchi service scheduling problem
is described in Sect. 2, and we present our proposal comprehensively in Sect. 3.
The parameter configuration of our proposal used in the competition is given
in Sect. 4. Although the results submitted to the organizer are not public, we
still give a detailed analysis of our proposal and offer several potential topics in
Sect. 5, and Sect. 6 summarizes our work.

2 Tianchi Service Scheduling Problem

As one of the most important global cloud service providers, Alibaba cloud pro-
vides full-cycle technical services for numerous enterprises, government agencies
and developers. Every day, a large number of new technical problems (tasks)
from customers are submitted to the service system and need to be assigned
to technical experts for processing. Due to the rapid increase in demand, tra-
ditional rule-based scheduling schemes cannot meet the growing demand and
may cause some new contradictions, such as uneven dispatch and continuous
dispatch. Thus, it is necessary to rely on new scheduling algorithms that can
meet the large-scale needs of customers and balance various factors well [20].
This is also why the competition is held.
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Before explaining the competition problem, we first give some definitions to
avoid confusion in the subsequent description.

Task: a task refers to a problem to be solved raised by a customer. The system
will produce a task when the customer submits a problem to the cloud service
system.

Expert: the person who handles the tasks produced by the system.
Problem classification: the category of a problem is specified by a customer

when submitting the task.
Skill set: the corresponding relationship between the time required to solve

different problem classification and the experts.

The competition problem can be described as follows. There are I experts and
J tasks, each task belongs to only one problem classification and each expert has
his own dedicated skill set to show his field of expertise. All unfinished tasks are
needed to be assigned to experts and must meet the constraints mentioned below.
The organizer (Alibaba cloud service) uses three factors, i.e., (1) average response
timeout M̄ , (2) average processing efficiency R̄, and (3) standard deviation of
experts’ working time σL, to evaluate the submitted solutions. Here, the Eq. (1)
is used to calculate the score of a submitted solution in the preliminary stage.
The higher the score, the better the performance.

score =
c × R̄

a × M̄ + b × σL
(1)

where a, b, and c are constants, and they are set to 3, 2, and 3000, respectively.
When a task is submitted to the system, the timestamp is marked as the

generation time. The period from the generation time of a task to the first
processed timestamp is called the response time, and the period from the start
timestamp of processing to the end timestamp of the processing is called the
processing time. To ensure the customers’ service experience, each task has a
maximum response time limit T , that is, a task needs to be processed within the
time T after it is generated, otherwise it will be regarded as a service response
timeout. Besides, the processing time for an expert to complete a task depends
on his skill set, i.e., the processing time of an expert for different tasks is different.

A task that is being processed but not completed can be reassigned to another
expert, but the total number of task transfer is no more than five. Once a task is
transferred, the task must stay at least one time unit (one minute) in the assigned
expert, i.e., a task can only be assigned once within a minute, and the previous
processing progress is cleared and needs to start all over again. Naturally, a
completed task will not be reassigned again regardless of whether the maximum
number of allocations is reached. Besides, each expert is not allowed to handle
more than 3 tasks at the same time, and assumes that each task will be processed
immediately after it is assigned to an expert.

3 Proposed Solution

Although a variety of powerful EC algorithms have been proposed, we choose
ES as the baseline algorithm on account of the better local search ability, and
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propose two mutation methods to further customize our proposal. Besides, we
also design corresponding mechanisms to deal with the above constraints so that
our proposal can match the nature of the problem well.

The conventional ES algorithm mainly consists of mutation and selection
operations. The mutation operation uses normally distributed random vectors
to perturb μ parent individuals and then generate new λ offspring individuals.
Based on the fitness rankings, top μ individuals are selected to the next gener-
ation from λ offspring individuals or the mixed group of μ parent individuals
and λ offspring individuals. The above two operations are repeated to gradually
optimize candidate solutions until a termination condition is satisfied. Although
a large number of literatures show that the conventional ES plays an important
role in real number optimization, the competition problem can be classified as
a large-scale discrete problem. We thus propose the following two new muta-
tion methods to replace the original mutation operation, but retain the original
greedy selection operation.

Random variation: randomly select k genes and change their values.
Random exchange: randomly select k genes and exchange their values.

where k is a predetermined constant to determine the number of modified genes.
Figure 1 is an example to show the process of the proposed two mutations.

Fig. 1. Subgraphs (a) and (b) show the process of random variation and random
exchange, respectively. The red parts indicate where the genes have changed. (Color
figure online)

We virtualize a real expert into three fictitious experts to solve the constraint
that an expert cannot handle more than three tasks at the same time. Figure 2
shows the effect of virtualization experts. Three virtual experts have exactly
the same skill set as the original real expert before virtualization, but can only
handle one task instead of multiple tasks at the same time. In other words, we
transform the original constraint into whether there are free virtual experts to
accept tasks.

Since a task can be transferred up to five times between different experts, we
use the back-to-front order to assign virtual experts for handling tasks. Specif-
ically, we first decide the last expert to complete the task, and then determine
whether it is necessary to assign other experts to take over the task in turn
from back to front. Suppose that the assigned sequence of experts dealing with
a given task is A, B, and C, which means that the task is handled by three
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Fig. 2. A real expert is virtualized as three virtual experts, and all tasks are handled
by virtual experts instead of real experts.

experts in total and experts A and C are the last and the first to deal with the
task respectively. First, expert C handles the task but does not complete it, the
task is then taken over by expert B. Similarly, expert B also does not complete
the task and transfers it to expert A. Finally, expert A successfully completes
the task, and the task is no longer assigned. Although we use a back-to-front
allocation method, the actual processing order of tasks is the opposite of the
allocation order. Besides, the task transfer is not mandatory, and no more than
5 transfers are allowed.

4 Experimental Evaluation

The organizer provides different data set in the preliminary and semifinal, how-
ever, only the data set for the preliminary round can be accessed freely, and
another undisclosed data set is used in the semifinal. Unfortunately, we cannot
know the implementation details of the other competitors, and only know the
ranking information of the submitted results. Here, we give a brief introduction
to the data set used in the preliminary round. The total number of tasks is 8840,
but there are only 107 types of tasks, i.e., a task belongs to only one task type,
but a task type may contain multiple different tasks. Compared to the number
of tasks, the number of experts is very small and set to 133. We thus can say
that the competition problem can be regarded as a large-scale discrete NP-hard
problem.

Based on the characteristics of the competition problem, an individual (can-
didate solution) is encoded into the structure shown in Fig. 3, which contains 5J
genes. The first J genes represent the sequence of experts who finally completed
tasks, and the following four J genes indicate the order of experts who take over
transferred tasks according to the back-to-front configuration method. Since the
organizer only allows the proposed algorithm to run for four hours and output
the optimal solution found, we thus use a two-stage search strategy to deter-
mine the sequence of experts to handle tasks. Specifically, we first optimize the
experts who are most suitable to handle tasks in the first two hours based on
the three factors mentioned above, and then optimize whether tasks need to be
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Fig. 3. The data structure of an individual. The first J genes record experts who finally
completed tasks, and following 4J genes record the sequence of experts who take over
tasks accord to the back-to-front order assignment. Only when tasks are transferred,
the following 4J genes will be configured.

transferred in the remaining time to get a better score. Based on the perspective
of calculating cost and keeping feasible solutions, we only use one individual and
set the number of mutated genes, k, to 100.

5 Discussions

We start the discussion by analyzing the new benefits of our proposal. Since the
competition problem is a large-scale discrete problem with strong constraints,
we choose the conventional ES as the baseline algorithm since it has strong
local search ability, and customize two new mutation methods to better solve
to the competition problem. Generally, changing too many genes at once may
easily destroy the feasibility of individuals. We thus set the number of mutated
genes, k, to a smaller number to maintain the feasibility as much as possible and
gradually improve the quality of individuals.

Since constraint processing can improve search efficiency significantly and
avoid invalid search in infeasible areas, we design two strategies, i.e., virtualiza-
tion experts and back-to-front configuration, to deal with constraints. The first
strategy, virtualization experts, can simplify the original constraint but keep the
exactly same restriction effect. In other words, the constraint is transformed into
whether there are available virtual experts to handle tasks, which can reduce the
cost of detecting constraint violations and improve operational efficiency.

The other strategies, back-to-front configuration, is to emphasize different
optimization indicators at different stages. Here, we are first committed to
improving the efficiency of task processing, that is, let suitable experts finish
the task as much as possible in the first two hours, then determine whether to
add experts between task generation and final processing time to trigger task
transfer in the remaining optimization time, which aims to reduce the response
time and balance the working time of experts. Fortunately, our proposal won
the 16th place among all 1382 participants.

Next, we would like to discuss the potential of our proposal. Not limited to
the ES selected as baseline algorithm, we can also choose other EC algorithms
to combine our proposed strategies without drastically changing their original
optimization framework. As a first attempt, we fixed all the parameters in the
entire search process instead of adjusting them dynamically. Actually, we firmly
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believe that the same problem may have different characteristics in different
optimization periods, and the search strategy should be changed accordingly.
Thus, how to use the information collected in evolution to tune parameters in
real-time may be a topic worthy of further study.

Different from manually constructed benchmark functions, real-world prob-
lems often have various inviolable constraints, and usually cannot use a large
number of fitness evaluations to optimize the problem. How to use a small
amount of fitness evaluations to obtain satisfactory feasible solutions is an urgent
problem that needs to be solved. Since every fitness evaluation may consume high
computational costs, we should make full use of the existing individuals even if
their fitness is poor. Thus, another potential topic is how to efficiently guide the
subsequent search using existing information.

Finally, we want to give some insights about the practicality of EC algo-
rithms. As stated by the no free lunch theorem, no one algorithm can be applied
to all problems well. However, once we know the characteristics of the problem
to be optimized, we can customize EC algorithms so that they can show stronger
performance on the problem. We thus believe that establishing the connection
between EC algorithms and real-world problems will be an important means to
promote the practicality of EC algorithms.

6 Conclusion

We designed two constraint processing strategies and customized the ES algo-
rithm to solve the competition problem provided by Alibaba Cloud. Although
our proposal has achieved good results according to the submitted ranking, there
is still much room to further improve our proposal.

In future work, we will try to use historical information to extract the char-
acteristics of real-world problems, and use them to improve the performance of
EC algorithms.
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Abstract. In today’s intelligent warehouses, automated guided vehicles
(AGVs) are widely used, and their scheduling efficiency is crucial to the
overall performance of warehouse business. However, AGV scheduling is
a complex problem, especially when there are a large number of tasks
to be undertaken by multiple AGVs in a large warehouse. In this paper,
we present a problem of scheduling multiple AGVs for order picking in
intelligent warehouse, the aim of which is to minimize the latest comple-
tion time of all orders. After testing a variety of algorithms, we propose
a hybrid water wave optimization (WWO) and tabu search (TS) algo-
rithm for efficiently solving the problem. We test the algorithm on a set
of problem instances with different sizes, and the results show that the
proposed algorithm exhibits significant performance advantages over a
number of popular intelligent optimization algorithms.

Keywords: Automated Guided Vehicle (AGV) · Intelligent
scheduling · Water Wave Optimization (WWO) · Tabu Search (TS) ·
Routing

1 Introduction

In today’s supply chains, order picking is a key operation that accounts for about
55% to 75% of the total warehouse operational cost [1]. That is why more and
more warehouses employ intelligent picking and delivery machines, particularly
automated guided vehicles (AGVs), to improve their operational efficiencies.
AGVs are self-propelled, driver-less vehicles that can pick goods from shelves
and transport goods to the designated locations. Compared to traditional goods
handling systems, AGVs have many advantages such as better controllability,
flexibility, and accuracies. However, with the increase of the number of picking
orders, scheduling multiple AGVs to handle these orders is a complex problem.
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In this paper, we present an AGV scheduling problem, which is to allocate
order picking tasks to AGVs and route each AGV, such that the maximum com-
pletion time among all AGVs is minimized. After testing a variety of optimization
algorithms, we propose a hybrid intelligent algorithm, which adapts water wave
optimization (WWO) [18] for task allocation and employs tabu search (TS) [3]
for routing each AGV. We test the algorithm on a set of problem instances, and
the results show that the proposed algorithm exhibits significant performance
advantages over a number of popular intelligent optimization algorithms.

2 Related Work

With the increasing usage of AGVs in logistics, AGV scheduling and routing
problems have attracted much attention in recent years. Qiu et al. [8] proposed
a particle swarm optimization (PSO) algorithm to solve a heterogeneous AGV
routing problem considering energy consumption. Pinkam et al. [6] presented a
greedy method to find the optimal route for AGV, where Dijkstrg’s algorithm
is used to plan the path and avoid obstacles, and local search is introduced
to find nearby target items. Zhang et al. [17] proposed a collision free path
planning method, using an improved Dijkstrg’s algorithm [7] to create initial
paths and classifying three collision solutions. Vivaldini et al. [15] presented three
algorithms, including a global routing algorithm based on Dijkstrg’s algorithm,
a local path planning algorithm based on A∗ algorithm, and an AGV auto-
localization algorithm based on Extended Kalman Filter. Vivaldini et al. [14]
proposed a method to determine the number of AGVs required to execute a given
transportation order within a specific time window, and evaluated greedy and
TS algorithms for task assignment and Dijkstrg’s algorithm for AGV routing.
Saidi-Mehrabad et al. [9] proposed a problem combining job shop scheduling and
conflict free routing for AGVs, and proposed a two-stage ant colony algorithm to
solve the problem. Smolic-Rocak et al. [11] proposed a dynamic routing method
that uses time windows to supervise and control multiple AGVs, in which a path
depends on the number of currently active AGVs’ missions and their priorities.
To solve the conflicts happened when multiple AGVs working in parallel, Xing
et al. [16] proposed a TS algorithm, where relocation and exchange operations
were designed for the neighborhood search. In [13] Umar et al. proposed a hybrid
genetic algorithm (GA) based integrated scheduling, dispatching, and conflict-
free routing for AGVs in FMS environment. However, to our knowledge, there
are few studies on integrated scheduling of multiple AGVs for goods picking and
transportation with consideration of collision avoidance.

3 Problem Description

The considered problem is to schedule a set A of m AGVs to complete a number
of picking orders in an intelligent warehouse. The warehouse has R rows and C
columns of storage locations; the entrance ws is the top left corner at location
(0, 0), and the exit we is the bottom right corner at location (C + 1, R + 1), as
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illustrated by Fig. 1. As is the case in most warehouses [5], for convenience, it
is assumed that each storage location stores only one type of goods. The orders
involve a set G of n types of goods, the total required amount of each goods g ∈ G
is qg, and the storage location of g is denoted by lg. The distances between ws

and lg, between we and lg, and between each pair of locations of g and g′ are
d(ws, g), d(g, we), and d(g, g′), respectively. Here we use Manhattan distances,
i.e., the distance between two locations (x, y) and (x′, y′) is |x − x′| + |y − y′|.
The capacity of each AGV is Q, the AGV speed is v, and the average time for
an AGV to pick up one unit of goods g is �tg. The initial location of each AGV
a ∈ A is denoted by pa (in most cases pa = (0, 0), but not always).

Entrance / Exit

AGV

1

2

R

(0, 0) 2 C1

(C+1, R+1)

Storage location

Fig. 1. Illustration of an AGV scheduling problem instance.

The problem is to allocate the picking tasks to the AGVs, and then determine
the route of each AGV. As is the case in most warehouse operations, for each
goods g, if qg ≤ Q, then the goods should be picked by only one AGV; otherwise,
the goods should be picked by multiple AGVs, each of which being fully loaded
of g until the remaining amount of g is less than Q. For those fully loaded AGVs,
their tasks are just to directly move to lg to load the goods and then directly
moves to the exit. Therefore, we can simplify the problem by, for each goods g
whose required amount qg ≥ Q, performing the following procedure:

1) Let k = �qg/Q� and q′
g be the remainder of qg modulo Q;

2) If q′
g = 0, arrange k AGVs to fully load the goods, remove them from the

AGV set A, and remove g from the goods set G;
3) Else, arrange k−1 AGVs to fully load the goods, remove them from the AGV

set A, and set qg = q′
g.

As a result, we have qg < Q for each g ∈ G. After this simplification, the
decision variables of the problem are as follows:

– The subset Xj of goods allocated to each jth AGV (∀1 ≤ j ≤ m).
– The route Yj of each jth AGV; as the starting point is pa and the ending

point is the exit, we represent the route as the sequence of nj = |Xj | storage
locations of goods, denoted by {yj1 , yj2 , . . . , yjnj

} (∀1 ≤ j ≤ m).
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For each jth AGV, the time at which it arrives the first storage location is:

tj(1) = d(pa, yj1)/v (1)

And the time at which it leaves the first storage location is:

t′j(1) = tj(1) + qyj1
�tyj1

(2)

For each kth storage location in Yj , the arrive time and leaving time are as
follows (1 < k ≤ nj):

tj(k) = t′j(k − 1) + d(yjk−1 , yjk)/v (3)
t′j(k) = tj(k) + qyjk

�tyjk
(4)

Finally, the time at which the AGV completes its task is:

Tj = tj(nj) + d(yjnj
, we)/v (5)

Equations (1)–(5) assume that an AGV can directly move to any storage
location. However, in practice, we should consider possible collisions of AGVs.
Assume that each aisle allows two AGVs to stop or pass through side by side,
we use the following procedure to adjust the AGV routes for collision avoidance:

1) Initially, suppose that all AGV routes are row-first, i.e., a route from (x, y)
to (x′, y′) first moves from (x, y) to (x′, y), and then from (x′, y) to (x′, y′);

2) Find all collision points and sort them in increasing order of collision time;
3) For each collision point c, if AGV a is obstructed by another AGV a′ working

on the point, then perform the following steps (if a and a′ meets at the
collision point at the same time, then we randomly select an AGV as a):

3.1) let c† be the most recent crossroads before c in the route of a;
3.2) If there is no other AGV obstructing a in the segment from c† to c aligned

in the column-first manner, changing the segment to the column-first
manner in the route of a;

3.3) Else, let c† be the previous recent crossroads: if c† traces back to the
initial location pa, let a wait for a′ to free the segment; otherwise go to
step 3.2);

4) Repeat step 3) until all collision points have been processed.

The problem objective is to minimize the maximum completion time among
all AGVs (equivalent to minimize the latest completion time of all orders), sub-
ject to AGV capacity constraint (7) and task allocation constraints (8) and (9):

min f(X,Y ) max
1≤j≤m

Tj (6)

s.t.
nj∑

k=1

qyjk
≤ Q, 1 ≤ j ≤ m (7)

Xj ∩ Xj′ = ∅, ∀j �= j′, 1 ≤ j, j′ ≤ m (8)
m⋃

j=1

Xj = A (9)
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4 A Hybrid Intelligent Algorithm for the Problem

To efficiently solve the problem, after testing a variety of optimization algo-
rithms, we propose a hybrid intelligent algorithm, which adapts the WWO meta-
heuristic to optimize task allocation and employs the TS algorithm to optimize
the route of each AGV. The flowchart of the algorithm is shown in Fig. 2.

Start

Randomly initialize a population of solutions to the main allocation problem

For each main solution X in the population:
For each AGV:

Create an initial route based on the greedy strategy

Use TS to iteratively improve the AGV route

Combine the sub-solutions of all AGVs to evaluete the fitness of X

Use WWO operators to evolve the main solutions

terminate

End
Y

N

Fig. 2. The flow of the hybrid algorithm for the AGV Scheduling problem.

4.1 Tabu Search for AGV Routing

For each jth AGV, when the set Xj of goods allocated to the AGV is fixed, the
subproblem of AGV routing is to find an optimal sequence of goods in Xj to
minimize the completion time Tj . First, we use a greedy strategy to produce an
initial route Yj by always selecting a closest unvisited point as the next point
until all points have been in the route. Next, we use TS to iteratively improve
Yj . At each iteration, the TS generates NbSize neighboring solutions, each being
obtained by randomly swapping two adjacent points in Yj . The best neighbor,
if better than the current Yj , or the swapping is not forbidden, will replace Yj .
A tabu list is used to record the forbidden moves, and the most recent position
selected for swapping is always added to the end of the tabu list so as to prevent
cycling during the search process. If the number of elements in the tabu list
exceeds an upper limit TabuSize, the first element in the tabu list is released.
Algorithm 1 presents the pseudocode of the TS algorithm.
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Algorithm 1: The tabu search algorithm for AGV routing.
1 Initialize a path Yj for AGV based on the greedy strategy and let Y ∗

j = Yj ;
2 Create an empty tabu list;
3 while the stopping condition is not met do
4 for i = 1 to NbSize do
5 Randomly select a point p in Yj ;
6 Generate a neighboring solution Y ′

j by swapping p and p + 1 in Yj ;

7 Let Y † be the best neighbor among the NbSize ones and p† be the
corresponding selected point;

8 if p† is not in the tabu list or Y † is better than Yj then

9 Add p† to the tabu list;
10 if The tabu length exceeds TabuSize then
11 Remove the first element from the tabu list;

12 if Y † is better than Yj then

13 Update Yj to Y †;
14 if Y † is better than Y ∗

j then

15 Update Y ∗
j to Y †;

16 return Y ∗
j .

4.2 WWO for Allocating Tasks to AGVs

A main allocation solution X = {X1,X2, . . . , Xm} is represented by an n × m
dimensional 0–1 vector, where each component xi,j = 1 denotes that goods
gi is allocated to AGV aj and xi,j = 0 otherwise. Each row has exactly one
1-element. In such an encoding, constraints (8) and (9) have been satisfied.
To handle constraint (7), we add a constraint violation value to the objective
function (6):

f(X) = f(X,Y ∗) + M
m∑

j=1

max
(( ∑

g∈Xj

qg

) − Q, 0
)

; (10)

where Y ∗ is the combination of all Y ∗
j produced by the TS algorithm and pro-

cessed by the collision avoidance process, and M is a large positive constant.
For optimizing task allocation, we employ WWO where each solution X is

analog to a water wave with a wavelength λX that is inversely proportional
to the solution fitness, such that low-fitness (high-fitness) solutions to explore
large (small) spaces to balance global and local search. WWO first initializes
a population of NP solutions to the problem, and then iteratively evolves the
solutions using propagation and breaking operators (the original WWO has an
additional refraction operator, which is abandoned in its improved version [21].
The propagation operator propagates each solution to a new position by moving
each dimension d within a range proportional to its wavelength. As the origi-
nal WWO is proposed for continuous optimization, we adapt the operators to



An Intelligent Algorithm for AGV Scheduling in Intelligent Warehouses 169

this combinatorial optimization problem. Guided by the strategies from [20],
we redefine the propagation operation on a solution X as performing K steps
of local search, where K is proportional to the wavelength λX , and each local
search step is conducted by randomly reversing a component xi,j from 0 to 1
and then reversing the corresponding component xi,j′ (where aj′ is the AGV to
which goods gi is originally allocated) from 1 to 0.

We also adapt the wavelength calculation method for our problem as follows:

λX = n(f(X)−fmin+ε)/(fmax−fmin+ε) (11)

where fmin and fmax are the minimum and maximum fitness value among the
population, respectively, and ε is a small number to avoid division-by-zero.

Whenever a new best solution X∗ is found, the breaking operator gener-
ates a set of Nb neighboring solutions around X∗. Each neighboring solution is
generated by perform a one-step local search on X∗.

We also adopt the population size reduction strategy in [21] to remove low-
quality or static solutions:

NP = NPmin + (NPmax − NPmin)
g

gmax
(12)

where g and gmax are the current number and maximum allowable number of the
generations (or function evaluations), and NPmax and NPmin are the upper and
lower limits of the population size, respectively. Whenever the population size is
decreased by one, the worst solution in the population is removed. Algorithm 2
presents the discreate WWO algorithm for the AGV scheduling problem.

5 Computational Experiments

We use a set of 15 test instances generated based on three real-world intelligent
warehouses. We compare the proposed algorithm (denoted by S-WWO) with
basic WWO (that uses refraction instead of population size reduction) and the
following five popular metaheuristics (with parameters tuned on the test set):

– GA [2], for which we set crossover rate pc = 0.8, and mutation rate pm = 0.2.
– Bogeography-based optimization (BBO) [10] , for which we set pm = 0.1.
– Ecogeography optimization (EBO) [19], for which we set the initial immatu-

rity to 0.7, and the ending immaturity to 0.4.
– Differential Evolution (DE) [12], for which we set scale factor F = 0.5, and

crossover rate CR = 0.9.
– PSO [4], for which we set c1 = 2, c2 = 2, wmax = 0.9, and wmin = 0.4.

For WWO and S-WWO, we set NPmax = 50, NPmin = 6, and Nb = 12. For
basic WWO, we set hmax =12. The population sizes of other algorithms are all
set to 50. For fairness, we set the stopping condition as the number of function
evaluations (NFEs) to 500m for all algorithms. Each algorithm is run 30 times
on each instance. For the TS algorithm invoked, we TabuSize = 10, Nbsize = 15,
and the maximum number of iteration to 100.
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Algorithm 2: WWO algorithm for the AGV scheduling problem.
1 Randomly initialize a population of NP main allocation solutions;
2 while the stopping condition is not met do
3 foreach solution X in the population do
4 Call Algorithm 1 to plan the route for each AGV;
5 Combine the routes and apply the collision avoidance procedure;
6 Evaluate X based on the results;

7 Update the current best solution X∗;
8 Calculate the wavelengths of the solutions based on Eq.(11);
9 foreach solution X in the population do

10 Let K = rand(1, λX);
11 Propagate X to a new X ′ by performing K reversal of components;
12 Evaluate the fitness of X ′ according to Lines 4–6;
13 if f(X ′) < f(X) then
14 Replace X with X ′ in the population;
15 if f(X) < f(X∗) then
16 Produce the Nb neighboring solution of X;
17 Let X ′ be the best neighbor;
18 if f(X ′) < f(X∗) then
19 Replace X∗ with X ′;

20 Update the population size based on Eq.(12);

21 return X∗.

Table 1 presents the medians and standard deviations of the results of the
comparative algorithms, where the minimum median value among the algorithms
on each instance is shown in bold. We use the nonparametric Wilcoxon rank
sum test to compare the results of S-WWO and other algorithms, and use a
superscript † before a median value to show that the result of the algorithm is
significantly different from that of S-WWO (at a confidence level of 95%).

On each instance, S-WWO always achieves the best median value and best
minimum value, and its performance advantages increases with the instance size.
According to the statistical test, the result of S-WWO is statistically significantly
better than those of the other six algorithms on each instances. Among the other
six algorithms, the overall performance of WWO is the best. This demonstrates
that the adapted WWO metaheuristic is efficient in solving this problem, and
the removal of the refraction operator of the orginal WWO and inclusion of
the population size reduction strategy problem can further improve the search
performance. In summary, the results validate that the propose hybrid S-WWO
and TS algorithm is efficient for solving the AGV scheduling problem compared
to the other well-known metaheuristic algorithms.
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Table 1. Experimental results on the 15 test instances

Ins scale(R×C) m×n Metric GA BBO EBO DE PSO WWO S-WWO

1 50× 50 5× 30 Median †481.5 †504 †504 †450 †473 †445.5 429

Std 11.41 7.46 8.66 7.86 13.09 13.13 10.96

2 5× 50 Median †613.5 †647 †614 †586.5 †613.5 †569 519

Std 13.56 12.75 12.22 8.47 15.09 15.45 11.07

3 8× 60 Median †881 †931 †854.5 †852.5 †905.5 †784 719

Std 25.59 16.60 14.55 12.80 14.01 20.50 18.40

4 8× 80 Median †876.5 †962.5 †943 †882.5 †929 †862 794.5

Std 24.49 15.00 17.15 9.28 15.82 20.69 13.99

5 100× 100 5× 30 Median †833 †883 †828 †785.5 †827 †761.5 722

Std 22.77 21.16 19.61 11.64 30.52 27.79 16.17

6 5× 50 Median †1022.5 †1078 †1020 †980.5 †1014 †950 853.5

Std 19.70 20.64 24.49 15.30 27.94 26.71 19.67

7 8× 60 Median †1398.5 †1251.5 †1464 †1357 †1448 †1314.5 1189.5

Std 51.84 33.58 28.64 29.46 31.14 46.05 28.31

8 8× 80 Median †1501.5 †1635.5 †1578.5 †1493 † 1558 †1440.5 1319

Std 49.71 27.78 28.27 16.80 23.24 34.50 18.89

9 10× 100 Median †2003.5 †2188.5 †2138 †2008.5 †2108.5 †1989 1787

Std 66.12 42.21 25.33 27.66 34.82 47.89 27.89

10 200× 200 5× 40 Median †1401.5 †1512.5 †1412.5 †1311.5 †1411.5 †1240 1132.5

Std 60.82 50.38 45.56 30.10 59.84 70.28 40.80

11 5× 50 Median †1993 †2110 †1971 †1882 †1966 †1866 1569.5

Std 41.74 54.57 43.67 43.22 78.75 72.75 39.73

12 8× 60 Median †2478 †2754 †2651 †2478 †2593 †2365.5 2150.5

Std 106.28 63.38 56.47 37.65 76.78 72.03 54.2

13 8× 80 Median †2876 †3164 †3069.5 †2888.5 †3026.5 †2814 2487.5

Std 89.71 52.42 58.47 22.78 44.40 82.76 43.47

14 8× 100 Median †3244.5 †3551 †3488 †3257.5 †3410 †3221.5 2813.5

Std 113.90 81.77 81.77 45.47 79.29 103.10 60.86

15 10× 120 Median †4067 †4504 †4426 †4123.5 †4371.5 †4043 3616.5

Std 162.65 80.68 89.99 45.98 67.48 112.23 85.25

6 Conclusion

This paper proposes a intelligent algorithm for AGV scheduling in warehouse. We
adapt WWO to optimize the allocation of picking orders to AGVs, where each
allocation is evaluated by using TS to route each AGV and then combining all
routes while resolving collisions among them. Experimental results demonstrate
the performance of the algorithm that compare to other popular metaheuristics.
Our future work will study AGV scheduling for dynamically arriving orders.
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Abstract. This paper introduces a modification of the recently developed Adap-
tive Gaining Sharing Knowledge (AGSK) algorithm. The AGSK algorithm simu-
lates the process of human gaining and sharing knowledge using two main phases
to solve optimization problems: junior and senior. AGSK’s efficiency was proved;
however, there are still various approaches that can be used to improve its worka-
bility. In this study a new technique for generating potential solutions for theAGSK
algorithm is proposed. This technique uses a historical memory of successful posi-
tions found by individuals stored in the external archive to guide those individuals
in different directions and thus to improve the exploration and exploitation abili-
ties of the AGSK algorithm. At first, the size of the external archive was fixed, but
later in order to improve the performance of AGSK, a reduction technique was
applied to decrease its size during the optimization process. Moreover, three dif-
ferent approaches were used to update the external archive after each algorithm’s
iteration. The modified algorithm (as well as its original variant) was evaluated on
a set of test functions taken from the CEC 2021 competition. The obtained exper-
imental results are presented and compared. It was established that the proposed
modification of the AGSK algorithm allows finding better solutions with the same
computational effort. Thus, proposed position adaptation technique’s usefulness
was demonstrated.

Keywords: Optimization · Gaining-sharing information · External archive ·
Nature-inspired algorithms · Evolutionary algorithms · Linear reduction

1 Introduction

Solving single objective unconstrained optimization problems can be found in the vari-
ous disciplines and real-life applications, including computer science, engineering and
many others. In the context of single-objective unconstrained real-valued problems, the
optimization task is to find the values of decision variables by optimizing an objec-
tive function. This objective function may possess difficult mathematical properties (it
can be non-linear, multimodal or rotated, for example), and in this case the standard
optimization methods are usually not able to solve them.

Recently researchers use more frequently use the computational intelligence
approaches, including evolutionary algorithms [1, 2], to solve complex optimization
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problems. Evolutionary algorithms are nature-inspired methods which use operators
adapted from the biological systems: for example, operators that simulate mutation,
recombination and selection in the nature are used in differential evolution (DE) or
genetic algorithms (GA) [3, 4]. Besides, evolutionary algorithms have the capability to
self-organize, do not require particular mathematical characteristics to be satisfied and
can evaluate several solutions in parallel.

In this study, a new nature-inspired algorithm called Gaining-Sharing Knowledge
algorithm or GSK is considered [5]. The GSK algorithm is inspired from the human
life span and the process of sharing and gaining the knowledge. It has two main phases:
junior and senior gaining-sharing knowledge phases. The GSK approach’s performance
has been evaluated on a set of test functions and its workability was demonstrated.
Later this algorithm was improved by applying a new adaption technique to its control
parameters. Mentioned modification was called Adaptive Gaining-Sharing Knowledge
or AGSK, which is more efficient than the original algorithm according to the conducted
experiments [6].

Thus, in this study additionally an adaptation has been proposed for the AGSK
algorithm to enhance its ability to seek the balance between exploration and exploitation
[7]. This adaptation was originally proposed for the DE algorithm in [8] and its main
idea consists in the usage of an archive of potentially good solutions, which is limited
in size and updated as the search proceeds.

The advantage of the archive is that it contains promising solutions that appear to
have valuable information about the search space and its promising regions, therefore
indicating the history of algorithms’ successful search. The idea of using such informa-
tion could be applied to any nature-inspired algorithm. In this paper the idea of applying
the success-history based archive of potentially good solutions was explored in two
stages, resulting in six potential versions of that modification. Namely, at first archive
size was fixed and didn’t change during the optimization process, besides, there were
three different approaches to update archive on each step (the first three versions). Addi-
tionally, three versions of the proposed AGSK modification with reduction technique
applied to decrease the archive size were considered.

Therefore, in this paper firstly theAGSKalgorithm is described, and then the descrip-
tion of its modification, proposed in this study, is presented. In the next section the exper-
imental results obtained by all versions of the proposed modification as well as results
obtained by the original AGSK algorithm are discussed and demonstrated. Finally, some
conclusions are given in the last section.

2 Gaining-Sharing Knowledge Based Algorithm

The gaining-sharing knowledge optimization algorithmorGSKhas twomain stages, the:
first stage is called the junior gaining and sharing phase and the second stage is called the
senior gaining and sharing phase [5]. Firstly, the initial population for a given problem
is randomly generated. Namely, the set of potential NP solutions called individuals and
defined as real-valued vectors with length D (where D is the number of dimensions for
a given optimization problem) is randomly generated in a given search space.

Then, the number of gained and shared dimensions for each individual using both
junior and senior stages will be determined at initialization phase. To be more specific,
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the number of the desired number of variables that will be updated using junior scheme
and the other number of dimensions that will be updated using senior scheme during
generations must be determined for each individual at the beginning of the search, which
is done by using a nonlinear formula presented in [5]. The first control parameter of the
GSK algorithm is used in this formula: k or knowledge rate.

During the junior phase, firstly, all individuals are arranged in ascendingorder accord-
ing to their objective function value. Then, two different individuals (the nearest better
and worsen) are selected for each individual. Additionally, the third individual is ran-
domly selected among the rest of the population. After that all three selected individuals
are used to calculate the new values for dimensions that use the junior scheme according
to the rule described in [5]. It should be noted, that the best and worst individuals are
updated by using the closest best two individuals and the closest worsen two individuals,
respectively.

During the senior phase all individuals again are sorted in ascending order according
to their objective function. After that they are divided into three categories: best indi-
viduals, better or middle individuals, worst individuals. Then, for each individual, the
senior scheme uses two random chosen vectors of the top and bottom 100p% individuals
in the current population of size NP. The third individual is selected randomly from the
middle NP − (2 ∗ 100p%) individuals. Here p is the value from [0, 1]. Finally all three
selected individuals are used to calculate the new values for dimensions that use the
senior scheme according to the rule described in [5].

Both schemes use two additional control parameters [5]. The first one is kf or knowl-
edge factor, it controls the total amount of gained and shared knowledge that will be
added from others to the current individuals during generations. The second parameter is
kr or knowledge ratio, it controls the ratio between the current and acquired experience.

In the study [6] an adaptation technique was proposed for each mentioned control
parameter (knowledge rate, knowledge factor and knowledge ratio). Besides, the popu-
lation size was also reduced during the optimization process. Themodification described
in [6] was called Adaptive Gaining-Sharing Knowledge or AGSK.

3 Proposed Adaptation

In this study the success-history based position adaptation of potential solutions for
improving the search diversity of the nature-inspired AGSK algorithm and its efficiency
is introduced. The key concept of the proposed technique can be described as follows.

First of all, in addition to the initial population, the external archive for best found
positions is created. At the beginning the external archive is empty. If later the improved
position for any individual from the population will be discovered, then its previous
position will be stored in the external archive. Three different approaches to update the
external archive are considered in this study. The only difference between them consists
in the way the archive is updated when it is already full. To be more specific, let us
assume that the archive is full and it is the archive update phase, then:

• the first approach – replace random individual from archive;
• the second approach – choose random individual from archive and replace it if its
function value is worse than the value of a given individual from the population;
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• the third approach – choose 3 random individuals from archive and repeat steps of the
second approach until either one of the chosen individuals is replaced or it’s proved
that neither of them should be replaced.

Similar schemes for archive update have been previously proposed in [9]. The process
of the external archive update can be described with the following pseudo-code for a
minimization problem:

For each individual Pj (j = 1:NP)
If f(Pj) < f(Qj) and (k + 1) ≤ |A|

Ak+1 = Qj and k = k + 1
End If
If f(Pj) < f(Qj) and (k + 1) > |A|
If approach 1
Randomly choose r from [1, |A|] and Ar = Qj

Else If approach 2
Randomly choose r from [1, |A|]
If f(Qj) < f(Ar)
Ar = Qj

End If
Else if approach 3
Randomly choose r1, r2, r3 from [1, |A|]
For i = 1:3
If f(Qj) < f(Ari)
Ari = Qj and break

End If
End For

End If
End If

End For

In this pseudo-code A is the external archive, |A| is the archive size (it should be
noted, that the size is fixed here), k is the current number of individuals stored in A, thus,
Ai (i = 1, …, k) are individuals stored in the archive. Besides, NP is the population size,
Pj (j = 1, …, NP) are the current coordinates of individuals in the population, while Qj

(j = 1, …, NP) are the previous coordinates of individuals in the population; and finally
f is the objective function.

Later to improve algorithm’s efficiency the archive size was reduced during the
optimization process. Therefore, the archive size will be decreased according to the
following function:

|A| = round

(
(Ninit − Nmin) ·

(
NFE

NFEmax

) 1−NFE
NFEmax + Ninit

)
(1)

where |A| is the archive size,Ninit is the initial archive size,Nmin = 12 is theminimum
archive size, NFE is the current number of function evaluations and NFEmax is the
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maximum number of objective function evaluations. It should be noted that the initial
archive size is equal to the initial population size.

Finally, individuals stored in the external archive are used during the junior and
senior phases of the AGSK algorithm with some probability pa.

4 Experimental Results

4.1 Benchmark Functions and Experimental Setup

Benchmark functions taken from the CEC 2021 competition on bound constrained
numerical optimization [10] are used to test the performance of the proposed modi-
fication of the AGSK algorithm. To be more specific 6 versions of this modification
were tested:

• the external archive with fixed size and three different approaches to update it
(AGSK_f1, AGSK_f2, AGSK_f3);

• the external archive with reduced size and three different approaches to update it
(AGSK_r1, AGSK_r2, AGSK_r3).

Thementioned benchmark set consists of 10 optimization problems, including basic,
hybrid and composition functions. In this competition, the benchmark functions are
considered by applying the different transformations such as bias, rotation and shift and
their combinations. Thus, there are 80 test functions, which were used for tests with 10
and 20 dimensions. More details can be found in [10].

The idea was to check the workability of the proposed modification; therefore, the
probability of using the external archive during both junior and senior phases was the
same. Moreover, no adjustments were applied to this parameter and pa was set to 0.2.
For the first 3 versions of the proposed modification with fixed archive size |A| was equal
to the population size.

4.2 Numerical Results

Themaximumnumber of function evaluations, or the terminal criteria, was set to 200000
and 1000000 for D = 10 and D = 20, respectively. All experiments for each function
and each algorithm run 30 times independently. As an example, results obtained by
the standard AGSK algorithm and its modifications for benchmark functions with bias,
rotation and shift (D = 20) are presented in the Table 1. It includes the obtained mean
values and the standard deviations of the obtained results.

The search process for all tested algorithms on the mentioned functions is presented
in the Fig. 1. Here one can see how the results from Table 1 were achieved.

In Table 2 the results of comparison between the original AGSK algorithm and 6
versions of the proposed modification according to the Mann-Whitney statistical test
with significance level p = 0.01 are presented. It should be noted that the standard
AGSK approach was used as baseline.
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Table 1. Results obtained for test functions with shift, bias and rotation (D = 20).

AGSK AGSK_f1 AGSK_f2 AGSK_f3 AGSK_r1 AGSK_r2 AGSK_r3

1 Mean 0 0 0 0 0 0 0

Std 0 0 0 0 0 0 0

2 Mean 2,725E+01 9,769E+00 9,330E+00 1,087E+01 8,212E+00 1,268E+01 1,364E+01

Std 1,682E+01 4,939E+00 3,630E+00 4,761E+00 3,603E+00 4,059E+00 6,819E+00

3 Mean 2,245E+01 2,185E+01 2,141E+01 2,182E+01 2,187E+01 2,177E+01 2,155E+01

Std 9,106E−01 5,480E−01 5,164E−01 6,661E−01 6,844E−01 5,974E−01 6,640E−01

4 Mean 1,298E+00 1,307E+00 1,385E+00 1,326E+00 1,355E+00 1,385E+00 1,407E+00

Std 1,184E−01 1,356E−01 1,098E−01 1,331E−01 1,192E−01 1,660E−01 1,425E−01

5 Mean 1,726E+02 1,697E+02 1,634E+02 1,450E+02 1,590E+02 1,408E+02 1,380E+02

Std 7,848E+01 6,032E+01 7,507E+01 7,996E+01 7,884E+01 7,887E+01 6,123E+01

6 Mean 7,153E−01 4,547E−01 4,757E−01 4,722E−01 4,620E−01 4,600E−01 4,398E−01

Std 1,744E−01 1,439E−01 1,250E−01 1,405E−01 1,008E−01 1,392E−01 1,375E−01

7 Mean 1,127E+01 1,032E+01 7,323E+00 7,819E+00 8,260E+00 8,568E+00 4,593E+00

Std 1,017E+01 1,056E+01 8,252E+00 8,653E+00 8,297E+00 7,223E+00 6,147E+00

8 Mean 1,000E+02 1,000E+02 1,000E+02 1,000E+02 1,000E+02 1,000E+02 1,000E+02

Std 0 0 0 0 0 0 0

9 Mean 1,236E+02 3,209E+02 3,168E+02 3,405E+02 3,242E+02 2,765E+02 3,292E+02

Std 7,196E+01 1,433E+02 1,498E+02 1,387E+02 1,493E+02 1,592E+02 1,438E+02

10 Mean 4,137E+02 4,137E+02 4,137E+02 4,137E+02 4,137E+02 4,137E+02 4,137E+02

Std 0 0 0 0 0 0 0

Table 2. Results of the Mann-Whitney statistical test with p = 0.01.

D AGSK_f1 AGSK_f2 AGSK_f3 AGSK_r1 AGSK_r2 AGSK_r3

+ 10 11 10 9 17 12 8

20 30 31 28 33 27 31

= 10 69 70 71 63 68 72

20 42 39 44 39 45 39

− 10 0 0 0 0 0 0

20 8 10 8 8 8 10

Total 10 11 10 9 17 12 8

20 22 21 20 25 19 21

Thus, the following notations are used in Table 2: “+” means that considered mod-
ification was better compared to AGSK, similarly, “−” means that proposed algorithm
was statistically worse, and “=”means that there was no significant difference between
their results.
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Fig. 1. Results obtained for test functions with shift, bias and rotation (D = 20).

Results showed that success-history based position adaptation with decreasing
archive size and the first approach to update the external archive (the AGSK_r1 modifi-
cation) improves the workability of the AGSK algorithm the most. Therefore, it can be
used for solving the optimization problems instead of the original AGSK algorithm and
other versions of the proposed modification.

5 Conclusions

In this study, a new modification of the nature-inspired AGSK algorithm is proposed
for solving real-valued unconstrained optimization problems. Mentioned modification,
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uses success-history based position adaptation, or in other words, the external archive
with size, which is reduced during the search process, and update technique based on
random selection. This algorithm is compared with the original AGSK approach and
other versions of the proposed modification by using the set of test functions taken from
the CEC 2021 competition. The experimental results show that the performance of the
proposed algorithm is superior to other algorithms mentioned in this study: it is better
in exploiting the search space and also has advantages in exploration.

In the future research, the parameters of the introducedmodification will be adjusted.
This algorithm could also be considered for usage for multi-objective and constrained
optimization problems.
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Abstract. This article presents an investigation into the effects of the
search space dimension on the control parameter importance of the multi-
guide particle swarm optimization (MGPSO) algorithm over time. The
MGPSO algorithm is a multi-objective optimization algorithm that uses
multiple swarms, each swarm focusing on an individual objective. This
relative control parameter importance of the MGPSO is identified using
functional analysis of variance (fANOVA). The fANOVA process quanti-
fies the control parameter importance through analysing variance in the
objective function values associated with a change in control parame-
ter values. The results indicate that the inertia component value is the
most influential control parameter to tune when optimizing the MGPSO
throughout the run time. The relative importance of the inertia weight
remains dominant with an increase in the search space dimensions.

Keywords: Particle swarm optimization · Multi-objective
optimization · Multi-guide particle swarm optimization · Control
parameter tuning · Functional analysis of variance

1 Introduction

The importance of understanding the impact of control parameter importance on
algorithm performance allows for optimal resource allocation in control param-
eter tuning processes. Control parameter importance analysis is done through
evaluating an algorithm under various control parameter configurations and com-
paring the fluctuations in the algorithm’s performance [8]. The optimal control
parameter configurations for low dimensional search spaces cannot be applied
and assumed best for a high dimensional search space. Application of the algo-
rithm to higher dimensional search spaces requires retuning of the algorithm’s
control parameters values [5].

Control parameter importance analysis has seen little application for meta-
heuristics. Harrison et al. [3] were the first to study control parameter importance
analysis of a meta-heuristic, specifically particle swarm optimisation (PSO). The
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analysis was done using functional analysis of variance (fANOVA) [8], which
analyses the variance in performance relative to each input control parameter
configuration. Carolus and Engelbrecht [1] followed on this research with the first
control parameter importance analysis of the multi-guide PSO (MGPSO) [7].

The MGPSO control parameter importance was analysed through the evalu-
ation of the algorithm across the walking fish group (WFG) [4] benchmark suite
in a 10-dimensional search space. Carolus and Engelbrecht [1] found that the
inertia component value is of greatest influence on the MGPSO performance.
However, this investigation was applied to a limited number of benchmark prob-
lems and applied at a low dimensional space. The MGPSO performance was
analysed on the final archive, which does not provide information on how the
control parameter importance change during the search process.

Oldewage et al. [5] showed that the best control parameter values for a low
dimensional problem does not necessarily best for a high dimensional problem.
Therefore, this paper extends the MGPSO control parameter importance anal-
ysis to larger dimensional multi-objective optimisation problems (MOOPs) to
determine if control parameter importance changes with an increase in problem
dimensionality. Changes in control parameter importance over time is also stud-
ied. The analysis is also done on more MOOPs. The results show fluctuations
in control parameter importance throughout the duration of the search process.
Furthermore, the control parameter importance present with changes contrary
to [1] when increasing the search dimensions.

The remainder of the paper is structured as follows: Sect. 2 provides back-
ground on multi-guide particle swarm optimisation. Section 3 outlines the exper-
imental procedure, followed by a discussion of the results in Sect. 4. Section 5
provides concluding remarks.

2 Background

Background knowledge is presented in this section. Section 2.1 defines multi-
objective optimization. Section 2.2 describes the MGPSO algorithm, and
Sect. 2.3 provides a description of the fANOVA process.

2.1 Multi-objective Optimization

A MOOP, assuming minimization and only boundary constraints, is defined as

min
x

(f1(x), f2(x), · · · , fm(x)) s.t. xj ∈ [xj,min, xj,max] ,∀j = 1, · · · , n (1)

where m is the number of objectives and x is a particular solution within the
boundaries of the solution space of dimension n.

The goals of a MOA are to find solutions as close to the true Pareto-optimal
front (POF) as possible, with as many non-dominated solutions as possible,
whilst obtaining an even spread of these solutions.
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2.2 Multi-guide Particle Swarm Optimization

The MGPSO is a multi-swarm algorithm of the inertia weight PSO, that assigns
a sub-swarm to each objective of the MOOP. Particles in each sub-swarm are
evaluated with respect to their corresponding objective function. The velocity
update equation of the MGPSO is defined as

vi(t + 1) = wvi(t) + c1r1(t)(yi(t) − xi(t)) + λic2r2(t)(ŷi(t) − xi(t))
+ (1 − λi)c3r3(t)(âi(t) − xi(t)) (2)

w is the inertia weight, c1 and c2 are the cognitive and social acceleration coef-
ficients, yi(t) and ŷi(t) are respectively the personal and neighbourhood best
position vectors at time t, and r1, r2 and r3 are vectors of random values, with
each random value sampled from a uniform distribution between 0 and 1.

The fourth component of the velocity update includes an archive component
to facilitate exchange of information about best positions with respect to all
the objectives, between the sub-swarms. Here, âi(t) is the archive guide and
the archive acceleration coefficient, c3, controls the contribution of the archive
component to the movement of the particles. The archive balance coefficient, λ,
balance the exploitation of the neighbourhood best and the archive guide. The
MGPSO initialises the archive balance coefficient to a random value sampled
from a uniform distribution between 0 and 1.

At each iteration, new non-dominated solutions are stored in a bounded
archive using the crowding distance [6]. The size of the archive is set to the total
number of particles in the sub-swarms. At each iteration, the archive guide,
âi(t), is selected from the archive using tournament selection, usually with a
tournament size of 2 or 3 [7]. The solution with the largest crowding distance in
the tournament is selected as the archive guide.

Particle positions, xi, are updated using

xi(t + 1) = xi(t) + vi(t + 1) (3)

The MGPSO algorithm is provided in Algorithm 1, where fk refers to the k-th
objective function.

2.3 Functional Analysis of Variance

Control parameter importance can be determined using functional analysis of
variance (fANOVA) [8]. fANOVA aims to quantify the variance of the perfor-
mance metric m(θi, πj) for a given problem πj , in terms of a subset of con-
trol parameters. For more details on how the fANOVA process is applied, the
reader is referred to [1,3]. Control parameters with higher variances are of greater
importance, and consequently should have a higher priority in control parameter
tuning of the algorithm in question.
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Algorithm 1. Multi-guide Particle Swarm Optimization (MGPSO)
t = 0
for each objective k = 1, · · · , m do

Create and initialize a swarm, Sk, of size nSk

for each particle i = 1, · · · , Sk · nSk do
Let fk be the objective function
Initialise the personal best position be Sk · yi(0) = Sk · xi(0)
Determine the neighbourhood best position, Sk · ŷi(0)
Initialise the velocity to Sk · vi(0) = 0
Initialize Sk · λi ∼ U(0, 1)

end for
end for
repeat

for each objective k = 1, · · · , m do
for each particle i = 1, · · · , Sk · nSk do

if fk (Sk · xi(t)) < fk (Sk · yi(t)) then
Sk · yi(t + 1) = Sk · xi(t)

end if
for particles j with particle i in their neighbourhood do

if fk (Sk · yi) < fk (Sk · ŷj) then
Sk · yj = Sk · yi

end if
end for
Update the archive with the solution Sk · xi

end for
end for
for each objective k = 1, · · · , m do

for each particle i = 1, · · · , Sk · nSk do
Select a solution, Sk · âi(t), from the archive using tournament selection
vi(t + 1) = wvi(t) + c1r1(yi(t) − xi(t))

+λic2r2(ŷi(t) − xi(t)) + (1 − λi)c3r3(âi(t) − xi(t)));
xi(t + 1) = xi(t) + vi(t + 1);

end for
end for

until stopping condition is True

3 Experimental Procedure

The objectives of this investigation is to study the effects of larger dimensions on
MGPSO control parameter importance, and the changes in control parameter
importance throughout the duration of the search processes.

The MGPSO control parameters were initialised through sampling in incre-
ments of 1

30 in the following ranges: w ∈ [−1.0, 1.0], c1 ∈ [0.0, 2.0], φ1 = λc2 and
φ2 = (1 − λ)c3 such that λ ∈ [0.0, 1.0] and c2 = c3 = 2. The archive balance
coefficient, λ, balances the contribution of the social and archive components to
update equation (2). It is the product of λc2 and (1 − λ)c3 that controls the
weighting of the social and archive component to the movements of the particles
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and cannot be decoupled. Therefore, the products φ1 = λc2 and φ2 = (1 − λ)c3
are analysed as weighted social and archive coefficients, since their contribution
to equation (2) are not dependent on a single variable.

This produced 31744 control parameter configurations, of which 19168 con-
trol parameter configurations were within the region of stability derived in [7]. Of
the generated control parameter configurations, only those within the theoretical
region of stability were evaluated. This selection criterion is enforced as control
parameter values outside the stability region generally leads to a performance
worse than that of a random walk [2].

The MGPSO were evaluated on the two-objective Walking Fish Group
(WFG) [4] and Zitzler-Deb-Thiele (ZDT) [9] benchmark suites (refer to Table
1) in 10, 30, and 100 dimensions.

Table 1. Properties of the ZDT and WFG problems

Name Separability Modality Geometry

ZDT1 Separable Unimodal Convex

ZDT2 Separable Unimodal Concave

ZDT3 Separable Unimodal/multimodal Disconnected

ZDT4 Separable Unimodal/multimodal Convex

ZDT6 Separable Multimodal Concave

WFG1 Separable Unimodal Convex, mixed

WFG2 Non-separable Unimodal/multimodal Convex, disconnected

WFG3 Non-separable Unimodal Linear, degenerate

WFG4 Separable Multimodal Concave

WFG5 Separable Multimodal Concave

WFG6 Non-separable Unimodal Concave

WFG7 Separable Unimodal Concave

WFG8 Non-separable Unimodal Concave

WFG9 Non-separable Multimodal, deceptive Concave

Each control parameter configuration was evaluated for 30 independent runs
per benchmark problem. Each run was executed for 1000 iterations. The perfor-
mance measures considered are the IGD and the HV. The HV is calculated with
the nadir vector as the reference point.1 To evaluate the performance throughout
the run, the performance measure was calculated at time intervals of 10% of the
total run-time. The average performance measure across the 30 runs, at each
time interval, is used to determine the control parameter importance using the
fANOVA method.

1 The nadir vector is a vector with components consisting of the worst objective values
in the Pareto-optimal set.
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4 Results

This section discusses the results of this study. Section 4.1 investigates the effects
of larger dimensions on the control parameter importance. Section 4.2 studies
the change in control parameter importance during the search processes.

4.1 Control Parameter Importance for Higher Dimensional
Problems

Tables 2 and 3, contains the results for control parameter importance at 10,
30 and 100 dimensions. Across all benchmark problems, performance measures
and dimensions, the inertia weight, w, accounted for the greatest proportion of
variance. An increase in the proportion of variance arises for the inertia weight
when applied to multi-modal, concave problems, such as WFG 4,9 and ZDT
6 with respect to HV. There is a general trend towards a decrease in control
parameter importance of w with an increase in dimensions.

Similar to the inertia weight, the relative importance of the cognitive coeffi-
cient, c1, changes with the modality and geometry of the problem as the dimen-
sion increase. The relative importance increases for uni-modal problems and
decrease in importance for concave problem. The cognitive acceleration coeffi-
cient is the second most important control parameter to tune across all problems,
except ZDT 2.

Contrary to the results by [1], the weighted social component, φ1, is of greater
importance than the archive component, φ2, when increasing the dimensions,
with respect to IGD. Alternatively, the relative importance of φ1 and φ2 becomes
indistinguishable as the dimensions increase with respect to the HV. Implying
that lower priority should be given to these components when control parameter
tuning is considered.

4.2 Control Parameter Importance over Time

For each independent run of the MGPSO, the archive was stored at time intervals
of 10 % and used to calculate the IGD and HV. The average IGD and HV, at
each time interval, over the 30 independent runs were used within the fANOVA
process. Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14 present the relative
control parameter importance as a function of run-time for the 30D problems.

All the problems showed a high importance in the inertia weight, w, within
the first 20% of the run, with the acceleration coefficients presenting with low
importance in this period, for both IGD and HV. Most problems illustrate an
increasing importance of the inertia weight in the first 20% of the iterations.
Although the relative control parameter importance of the inertia weight is dom-
inant throughout the run, the proportion of variance attributed to w generally
peaks after 60% run time. The 2 most influence control parameters throughout
the duration of the run are the inertia weight, w and the social acceleration
coefficient, c1.
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Table 2. The proportion of Variance in IGD
at 10D, 30D, and 100D

n c1 φ1 φ2 w

wfg1 10 0.010338 0.005814 0.008457 0.049322

30 0.010692 0.009932 0.009145 0.035651

100 0.012314 0.011923 0.006686 0.029457

wfg2 10 0.014449 0.009283 0.005665 0.041766

30 0.008568 0.008155 0.006562 0.021736

100 0.012917 0.010078 0.008683 0.024468

wfg3 10 0.012384 0.008313 0.010789 0.031181

30 0.010021 0.005302 0.007312 0.025119

100 0.010596 0.006106 0.006240 0.019963

wfg4 10 0.013607 0.010366 0.007656 0.029092

30 0.010504 0.004617 0.012989 0.018535

100 0.011323 0.008379 0.008026 0.019355

wfg5 10 0.014423 0.011089 0.008180 0.029438

30 0.014266 0.011149 0.008903 0.027062

100 0.010742 0.010141 0.005778 0.027359

wfg6 10 0.008541 0.009025 0.009025 0.042318

30 0.014376 0.005143 0.006818 0.011099

100 0.014071 0.008708 0.009667 0.018873

wfg7 10 0.012572 0.008268 0.009570 0.040248

30 0.012190 0.015746 0.006447 0.021688

100 0.011594 0.011464 0.010457 0.047155

wfg8 10 0.011585 0.013803 0.005199 0.018879

30 0.013435 0.007736 0.010032 0.031019

100 0.010737 0.012131 0.010320 0.020276

wfg9 10 0.009969 0.006453 0.008996 0.021227

30 0.011399 0.006491 0.009872 0.017915

100 0.010231 0.008780 0.009283 0.041084

zdt1 10 0.011471 0.010660 0.009626 0.031351

30 0.010481 0.010994 0.010551 0.027234

100 0.010449 0.007651 0.007582 0.017027

zdt2 10 0.008170 0.008968 0.009859 0.017667

30 0.008405 0.008608 0.009571 0.041801

100 0.009352 0.010267 0.008302 0.049784

zdt3 10 0.008134 0.013607 0.011575 0.031963

30 0.011560 0.009857 0.010064 0.022256

100 0.011052 0.008249 0.012012 0.021287

zdt4 10 0.008258 0.009655 0.006635 0.022004

30 0.010973 0.010164 0.008383 0.027489

100 0.010482 0.009356 0.009368 0.030538

zdt6 10 0.012360 0.006237 0.008246 0.028341

30 0.011527 0.010261 0.007603 0.030507

100 0.012155 0.006396 0.006603 0.016431

Table 3. The proportion of Variance
in HV at 10D, 30D, and 100D

c1 φ1 φ2 w

0.009925 0.005174 0.006862 0.030629

0.013008 0.005693 0.009333 0.027992

0.009265 0.016173 0.009437 0.024282

0.010825 0.009987 0.007648 0.023400

0.010857 0.009355 0.010829 0.023924

0.013929 0.010759 0.006904 0.036403

0.009756 0.007365 0.009742 0.023252

0.014354 0.008718 0.011380 0.026553

0.008858 0.012245 0.007276 0.030449

0.010888 0.003467 0.007822 0.032223

0.011501 0.007194 0.007759 0.030531

0.010349 0.007658 0.008171 0.012540

0.012039 0.011680 0.008557 0.031422

0.008968 0.008292 0.007148 0.039820

0.011802 0.007273 0.007525 0.030190

0.012243 0.011366 0.007387 0.024050

0.009666 0.011745 0.010737 0.032641

0.010179 0.007773 0.011195 0.036260

0.010550 0.008557 0.008876 0.037149

0.009638 0.011629 0.009911 0.020874

0.011652 0.011715 0.013051 0.021824

0.010337 0.011546 0.008014 0.024821

0.012732 0.007769 0.008844 0.025232

0.009821 0.011145 0.010006 0.023210

0.009670 0.006925 0.010060 0.031003

0.010925 0.007180 0.006019 0.032193

0.011960 0.008116 0.004991 0.029861

0.012688 0.009528 0.012860 0.033321

0.011010 0.008369 0.008598 0.023686

0.011931 0.007444 0.005370 0.027588

0.009083 0.011609 0.006507 0.030648

0.008132 0.007304 0.010008 0.035430

0.010274 0.008632 0.007843 0.027236

0.007347 0.011424 0.010770 0.037996

0.014408 0.011047 0.004354 0.025680

0.008210 0.011067 0.007910 0.022667

0.008760 0.008478 0.009494 0.020543

0.014495 0.012847 0.006046 0.028266

0.010550 0.010133 0.007641 0.024943

0.011130 0.007808 0.006763 0.022569

0.011289 0.006473 0.009814 0.017399

0.009369 0.007988 0.009872 0.021797
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For 9 of the 14 problems, the weighted archive component, φ2, is of greater
influence than the weighted social component, φ1, in the first 60% of the runtime.
The control parameter importance of φ1 and φ2 fluctuates to the end of the run,
with problem specific changes.

Problems with uni-modality, such as WFG 1, 3, and 6, present an increase
in the importance of the inertia weight as the search progress. The increasing
importance of the inertia weight indicates a greater need for controlling the
influence of the previous search direction. Most of the changes in the control
parameter importance occurs between the 20% to 60% with respect IGD and
between 60% to 100% with respect HV. Control parameter tuning should there-
fore in the first 60% of the search aims to achieve a solution closer the true POF.
For the last 40% of the run improves the diversity of the obtained solutions and
the volume of the objective space covered.

IGD HV

Fig. 1. WFG1 control parameter importance over time.

IGD HV

Fig. 2. WFG2 control parameter importance over time.
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IGD HV

Fig. 3. WFG3 control parameter importance over time.

IGD HV

Fig. 4. WFG4 control parameter importance over time.

IGD HV

Fig. 5. WFG5 control parameter importance over time.
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IGD HV

Fig. 6. WFG6 control parameter importance over time.

IGD HV

Fig. 7. WFG7 control parameter importance over time.

IGD HV

Fig. 8. WFG8 control parameter importance over time.
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IGD HV

Fig. 9. WFG9 control parameter importance over time.

IGD HV

Fig. 10. ZDT1 control parameter importance over time.

IGD HV

Fig. 11. ZDT2 control parameter importance over time.
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IGD HV

Fig. 12. ZDT3 control parameter importance over time.

IGD HV

Fig. 13. ZDT4 control parameter importance over time.

IGD HV

Fig. 14. ZDT6 control parameter importance over time.
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5 Conclusions

This study investigated the relative importance of the multi-guide particle swarm
optimization (MGPSO) algorithm control parameters in high dimensional prob-
lem spaces. The control parameter configuration space was initialised with 31744
different configurations. Configurations within the region of stability as proposed
by [7] were used in the evaluation of the MGPSO on the Walking Fish Group
(WFG) [4] and Zitzler-Deb-Thiele (ZDT) [9] benchmark functions. The rela-
tive control parameter importance was calculated at 10% intervals of the total
runtime using function analysis of variance (fANOVA).

The inverted generational distance (IGD) and the hypervolume (HV) were
used as performance measures. Both performance measures indicate that the
inertia weight, w is of greatest importance to the MGPSO performance through-
out the run. At the initialisation of the control parameters, greater emphasis
should be placed on the selection of the inertia weight.

When control parameter tuning is considered for the MGPSO, resources
should be targeted towards tuning the inertia weight, followed by the social
component. The importance w increase for multi-modal, concave problems when
increasing the dimensions. Lower priority should be placed on the weighted
social, φ1 and archive components, φ2, when considering control parameter tun-
ing in high dimensional problems spaces.

Significant fluctuations in the control parameter importance occurs within
the the first 60% of the run. Emphasis of tuning during this period drives the
MGPSO to focus on finding solutions closer to the true POF. Tuning in the last
40% of the run time, improves the diversity of the solutions obtained.

Future research will investigate the development of explorative landscape
analysis methods for multi-objective optimization and its use in understanding
the periodic changes in control parameter importance.
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P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0056872

https://doi.org/10.1007/BFb0056872


Research on the Latest Development of Particle
Swarm Optimization Algorithm for Satellite

Constellation

Jia-xu Zhang(B) and Xiao-peng Yan

Science and Technology on Electromechanical Dynamic Control Laboratory, School of
Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

yanxiaopeng@bit.edu.cn

Abstract. As a huge space system, satellite constellation is developing rapidly.
Satellite constellation design is a basic problem in the design of multi spacecraft
space system. It is the premise of building constellation of earth observation, satel-
lite navigation, satellite communication and various scientific exploration satel-
lites. According to the characteristics of modern satellite constellation design, this
paper investigates the design and application of particle swarm optimization algo-
rithm in satellite constellation, and the latest research progress of various research
institutions in satellite constellation maintenance and control, autonomous nav-
igation and space real-time monitoring, and discusses the latest strategies and
technical methods of satellite constellation operation and management.

Keywords: Satellite constellation · Particle Swarm Optimization · Localization ·
Mapping · Position precision

1 Introduction

With the increasingly prominent positionof space strategy, satellite constellationpresents
a trend of rapid development and attractswidespread attention [1]. Satellite constellations
are widely applied for earth observation [2, 3], global navigation [4, 5], and communi-
cations [6, 7]. But as a huge space system, the operation and management of satellite
constellation is a big problem. [8] The design of satellite constellation is the premise
and key to the establishment of satellite system. The goal is to obtain the number of
satellites in the constellation and six orbit parameters of each satellite, i.e. semi major
axis r, eccentricity e, inclination i, perigee argument ω, right ascension of ascending
node (RAAN)� and mean anomaly f [9]. Satellite system tasks involve multiple objec-
tives and constraints, such as coverage performance, communication performance, inter
satellite links, system cost, fault tolerance, stability, etc. [10]. Therefore, satellite con-
stellation design is a multi-objective and multi-constraint optimization problem, that
is, to find the constellation configuration parameters that satisfy various constraints to
optimize the objective function. Particle swarm optimization (PSO) algorithm, which is
commonly used in science and engineering, can be used for complex optimization of
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nonlinear, non differentiable and multimodal. Compared with other optimization algo-
rithms, the implementation of the algorithm is relatively simple, and there is no need to
adjust the parameters, but its disadvantages are slow convergence speed and poor local
search capability [11].

This paper investigates the design and application of particle swarm optimization
algorithm in satellite constellation, as well as the latest research progress of various insti-
tutions in satellite constellation positioning and maintenance, autonomous navigation,
etc., and discusses the latest strategies and technical methods of satellite constellation
operation management. It also points out the shortcomings of the existing researches
on constellation design. Finally, the development direction of communication satellite
constellation design is pointed out.

2 Particle Swarm Optimization (PSO)

Random initialization
particle swarm optimization

Update of satellite position

Constellation performance calculation

Update the best point of individual and the 
best point of neighborhood

Update particle speed and position

Termination 
conditions Output

Particle fit-
ness calculation

TrueFalse

Fig. 1. The flow chart of PSO algorithm.

Kennedy and Eberhart proposed particle swarm optimization (PSO) in 1995. The
flow chart of the algorithm is shown in Fig. 1. The basic particle swarm optimization
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(PSO) is mainly based on the predatory behavior of birds in nature [12]. It puts forward
the method of individual exploration and group cooperation to realize the search and
optimization of the solution space. Each bird in the bird group is called a “particle”, and
each particle has a velocity and a position. The fitness value of the particle is determined
by the fitness function defined by the problem. The historical optimal solution of the
particle itself and the global optimal solution of the group affect the flight velocity and
the next position of the particle, so that the particle can repeatedly explore and develop
in the search space, and finally find the global optimal solution. To detect global most
favorable, the velocity and position of each particle are upgraded repeatedly with help
of succeeding equations [13, 14]:

velt+1
id = w ∗ veltid + c1 ∗ rand ∗ (

pbesttid − ptid
) + c2 ∗ rand ∗

(
gbesttgd − poptid

)

(1)

pt+1
id = ptid + velt+1

id (2)

w = (wmin − wmax) ∗ IterMax − t

IterMax + wmax (3)

Where t is the repetition (generation) figure, veltid and ptid are the velocity and pop-
ulation of ith particle in d dimension. w is the inertia constant, wmin and wmax are
the coefficients of acceleration, and are the minimum and maximum value of iner-
tia constants. rand ∈ [0,1] is the uniformly distributed random number. pbesttid and
gbesttid are the local and global best of ith particle in dimension. Kennedy has referred
c1∗rand ∗(pbesttid −poptid ) as the cognitive component and c2∗rand ∗(gbesttgd −poptid )

as the social component respectively.
Particle swarm optimization algorithm is easy to implement, the parameter space

is small, and the real number coding method can solve the real value optimization
problem. It has goodeffect on continuous optimizationproblemanddiscrete optimization
problem, but it is easy to fall into local optimization. Therefore, it has high requirements
for the initial population and learning factor setting. The advantage of particle swarm
optimization is very obvious. The real number coding is especially suitable for dealing
with the optimization problems in constellation design, but the algorithm is easy to fall
into the local optimal solution,which affects the optimization efficiency and optimization
results. Therefore, the mutation operator similar to genetic algorithm can be introduced,
so that the particles can accept other changes with a certain probability when they change
their position and speed, so as to increase the efficiency. The diversity of candidate
solutions is added to avoid falling into the local optimal solution [15].

In reference [16], the multi-objective particle swarm optimization (MOPSO) algo-
rithm was used to optimize the design of navigation constellation. The number of satel-
lites, number of orbital planes, orbital height, inclination angle and phase in the constella-
tion were taken as design variables, the navigation performance and satellite production
cost were taken as objective functions, andmedium earth orbit (MEO) and geostationary
orbit (GEO) were adopted (The MEO constellation uses walker model for global nav-
igation, and the GEO satellite is used to enhance the navigation performance of China
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and its surrounding areas, which has a certain reference value for practical engineering
applications.

In reference [17], a hybrid satellite constellation composed of low orbit and elliptical
orbit is studied. The optimization objective is the minimum number of satellites to
meet the coverage requirements, and the constraint condition is at least single coverage
in the target area. An efficient particle swarm optimization algorithm with adaptive
mutation is proposed to optimize the design. It is concluded that the performance of
the algorithm is better than that of genetic algorithm and traditional particle swarm
optimization algorithm.

To sum up, particle swarm optimization algorithm has the advantages of easy imple-
mentation, less parameters, high search efficiency, and its real coding characteristics are
particularly suitable for constellation optimization problems, and has gradually become
a research hotspot.

3 Binary Particle Swarm Optimization (BPSO)

The concept of binary particle swarm optimization (BPSO) is also given by Kennedy
and Eberhart which allows BPSO to operate in binary space. In BPSO, a new approach
is suggested to update the position of particle which takes either 0 or 1 in dth dimension
as:

pt+1
id =

⎧
⎨

⎩

0, if rand() > Sig
(
velt+1

id

)

1, if rand() < Sig
(
velt+1

id

)

⎫
⎬

⎭
(4)

Where Sig(·) is the sigmoidal function which is used to transform the velocity into
probability between [0, 1]. The sigmoidal function can be expressed as:

Sig
(
velt+1

id

)
= 1

1 + e−velt+1
id

(5)

Figure 2 shows the pseudo-code of BPSO. It must be taken care of that the BPSO
is responsive to sigmoid function congestion, which occurs in case values of velocity
are either too huge or too small. When the velocity of the particle approaches the lower
bound, the probability in the change in value comes near to zero, thereby limit explo-
ration. On the other hand, when the velocity of the particle approaches the upper bound,
the probability in the change in value comes near to one, thereby limit exploitation. A
probability of 0.5 returns by the sigmoidal function when the velocity of the particle
comes near to zero, it means there is 50% chances for the bit to flip. However, veloc-
ity clamping will delay the occurrence of the sigmoid function saturation. Hence, the
optimal selection of velocity is important for faster convergence [18, 19].

4 Modified Binary Particle Swarm Optimization (MBPSO)

They consider one planning period (such as 280s–300s) to facilitate the problem descrip-
tion and algorithm performance analysis. Figure 3 shows the performance analysis of
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BPSO and MBPSO. All the parameters are the same to ensure a fair comparison [20].
As can be seen from Fig. 3, the algorithm of BPSO has slower convergence speed and
is easily trapped in local minima. On the contrary, the MBPSO requires less number of
iterations than BPSO to get converged to the global best value.

Fig. 2. Algorithm for edge detection using BPSO

Still taking the algorithm performance between 280s and 300s as an example, they
explain why the population size is set to be 40 and the iteration number is set to be
20. The performance of MBPSO is analyzed with varying population size and iteration
number. Figure 4 shows the optimization history of MBPSO using 20, 30, 40 and 100
particles respectively. According to Fig. 4, it is clear that when the population size is
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small, theMBPSO algorithm is easily trapped in localminimawith a slower convergence
speed. This is due to the fact that larger population size can bring in larger area of search
space. When the population size exceeds 40, the increase of population size would
have little impact on the performance improvements but would significantly increase
the computation time. So, a population size of 40 is finally selected in MBPSO for the
sensor management problem. Figure 5 shows the optimal fitness value of MBPSO using
10, 20, 30 and 40 iterations respectively when the population size is 40. According to
Fig. 5, it is clear that when the iteration number is small, the algorithm is more likely
to be trapped in local minima. When the iteration number exceeds 20, the increase of
iteration number would have little impact on the performance improvements but would
significantly increase the computation time. So, an iteration number of 20 is finally
selected in MBPSO for the sensor management problem [21].

Fig. 3. Performance comparison of BPSO and MBPSO when the population size is 40 and the
iteration number is 20.

Fig. 4. Performance of MBPSO with different population size.
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Fig. 5. Performance of MBPSO with different iteration number.

5 Hybrid-Resampling Particle Swarm Optimization (HRPSO)

ThePSOalgorithmhas been successfully applied to high dimensional complex optimiza-
tion problems and achieved good results [22]. However, due to the inherent properties
of the PSO algorithm, there are still some shortcomings, which mainly manifest in two
aspects: premature convergence andmoving lag. A newoptimizationmethod is proposed
by Wang et al.--the Hybrid-Resampling Particle Swarm Optimization (HRPSO). It pro-
vides higher efficiency for constellation design. Simulation results show that HRPSO
is more efficient than standard particle swarm optimization (PSO) and other improved
resampling particle swarm optimization (RPSO).

There are three key issues here: calculating particleweights, choosing the resampling
methods, and determining the speed of particles after resampling.

First, calculating the weights of the particles. In the optimization algorithms, the
weight of one particle should be related to its corresponding objective function or fitness
value. Taking the minimum value optimization as an example, the smaller the objective
value or the greater its contribution to the population is, the larger its weight should be.
On the contrary, when the objective value is larger or its contribution to the population is
lower, its weight should be smaller. According to this principle, the calculation method
of the particle weight is given as follows:

qi = 1√
2σπ

exp

(

−
(
F(xi) − pg

)2

2σ

)

(6)

Where qi is the ith particle’s weight, F(·) is the fitness value corresponding to the
particle, pg is the current optimal position of the group, and σ is the variance based on
F(xi) − pg . In practice, normalized weights are used:

Qi = qi
∑N

i=1 qi
(7)
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There are six resampling methods: multinomial resampling; stratified resam-
pling; systematic resampling; residual resampling; residual-systematic resampling and
reallocation resampling, which can be divided into two categories [23].

The first category contains the former fivemethods. In thesemethods, the resampling
process will not generate new particles but only copies of the original particles. The
speeds of the particles after resampling are also copied from the original particles. After
resampling, all particle weights return to the same level. When one particle is copied
multiple times, it will actually search from the same position in different directions even
though its position and velocity are the same. This is due to the difference between
the random factor and the optimal value of the particle in the velocity update formula.
In this way, more particles can search in better areas, which improves the movement
lag to a certain extent but reduces the diversity of the population at the same time.
Reallocation resampling is in another category, in which existing particles are copied
and new particles are generated. Particles with small weights will be eliminated and
replaced by new particles. The positions of the new particles are randomly generated,
and the speeds of the new particles are obtained by the following formula:

vti = Tmax + t

2Tmax
vti + Tmax − t

2Tmax
vti (8)

Where Tmax is the maximum number of iterations, and vti is the randomly gener-
ated speed. In this way, the diversity of the population can be significantly increased,
which will help overcome premature convergence. However, this method will reduce
the efficiency of exploring local areas.

The two types of resampling methods have their own advantages and disadvantages
[24]. To combine their advantages, the particle population is divided into two subpopu-
lations. One subpopulation uses the first type of resampling method to quickly explore a
local area, while the other subpopulation uses the second type of resampling method to
maintain diversity of the population. At the same time, it is necessary to ensure that the
information exchange between the two sub-populations is unobstructed. In this paper,
this kind of PSO algorithm using multiple resampling methods at the same time is called
the hybrid-resampling particle swarm optimization algorithm, i.e., HRPSO. The process
of the HRPSO algorithm is shown as follows:

Step 1. Set the basic parameters of the algorithm, including the population size N , the
sizes of the two subpopulations with different resampling methods N1N2, the dimension
D, the maximum number of iterations Tmax, and the acceleration factors c1, c2. Set the
current count of the iterations to t = 0.
Step 2. Initialize the positions and velocities of the particles, calculate the particle fitness
value, and initialize the individual optimal positions aswell as the groupoptimal positions
of the particles.
Step 3. Let t = t + 1. If t%5 �= 0, performing Step 4; otherwise, assign a weight to each
particle using Eqs. (7) and (6), and resample based on the weights.
Step 4. Update the speed of each particle and limit it to the maximum speed if the speed
is out of range. Update the position of each particle. If the position is out of range, correct
the position and speed according to certain rules.
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Step 5. Calculate the fitness value of each particle, update the individual optimal position
of the particle based on the fitness, and then select the group optimal position from the
individual optimal positions.
Step 6. If t ≥ Tmax, return the optimal position of the current group as the final result;
otherwise, go back to Step 3.

6 Conclusions and Future Work

With the rapid development of satellite constellation, in order to ensure the long-term
high reliability, high performance, high precision and stable operation of satellite con-
stellation, perfect operation management strategy and optimization algorithm are essen-
tial. The design of satellite constellation has entered a new stage. Traditional satellite
constellation design methods have shown their shortcomings, and a new generation of
constellation design method based on particle swarm optimization is emerging. Because
satellite constellation is a very complex space system, satellite constellation design is
also a very complex system optimization design problem, the understanding of its mis-
sion requirements, constraints, performance evaluation and other aspects is still in the
process of deepening and improving.

This papermainly investigates the achievements of satellite constellation positioning,
maintenance and operation management at home and abroad in recent years, including
traditional Particle SwarmOptimization, Binary Particle SwarmOptimization,Modified
Binary Particle Swarm Optimization, Hybrid-Resampling Particle Swarm Optimization
and so on. The advantages and disadvantages of each algorithm are analyzed:

1. Similar to genetic algorithm, PSO is an optimization algorithm based on iteration.
The system is initialized as a set of random solutions, and the optimal value is
searched by iteration. Compared with genetic algorithm, PSO is simple and easy
to implement. Performance is not particularly good on some issues. The coding of
network weights and the selection of genetic operators are sometimes troublesome.

2. BPSO is based on the discrete particle swarm optimization algorithm, the position
vector and velocity vector are composed of 0 and 1 values. BPSO has strong global
search ability, but it can’t converge to the global optimal value. With the increasing
randomness of iterative search, BPSO lacks local search ability;

3. The proposed MBPSO algorithm can effectively improve the tracking performance
of Leo infrared constellation. Simulation results show that MBPSO algorithm is
superior to BPSO algorithm in performance and convergence speed.

4. Comparedwith standard PSO algorithm and other improved PSO algorithm,HRPSO
algorithm can achieve better coverage performance with less computing time.
Therefore, HRPSO algorithm is expected to be a practical choice for constellation
design.

The next step is to establish an accurate constellation design optimization model
according to the actual objective requirements and constraints, comprehensively evaluate
the constellation performance, and adjust the constellation scheme according to the
evaluation results.
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Abstract. This paper introduces a new approach to solving regression
problems by using a particle swarm optimization algorithm to find opti-
mal polynomial regressions to these problems. Polynomial regression is
defined as a multi-objective optimization problem, with the goals to find
both an optimal combination of terms in the polynomial and optimal
values of the coefficients of the terms, in order to minimize the approxi-
mation error. This paper shows that a set-based PSO works well to find
the optimal term structure of the target polynomials in low dimensions,
and holds promise for improved performance in higher dimensions. The
results of the set-based PSO are compared to the results of a Binary PSO
on the same problems. Finally, this paper explores possible solutions to
create a hybrid algorithm that can find both the optimal term structure
and the coefficients of the found terms.

Keywords: Particle swarm optimization · Polynomial regression ·
Adaptive coordinate descent · Set-based particle swarm optimization

1 Introduction

A polynomial is a functional mapping, f : Rnx → R, relating an nx-dimensional
input space to a one-dimensional output space. Polynomial regression refers to
the process of finding an optimal polynomial that accurately approximates an
arbitrary functional mapping. While a number of approaches exist, this paper
develops a novel set-based optimization approach to find polynomial mappings.

Polynomial regression is here defined as a multi-objective optimization prob-
lem, using a set-based solution representation. The objectives are to find: (1)
the smallest number of terms and lowest polynomial order, and (2) optimal
coefficient values for these terms in order to minimize the approximation error.

This paper determines the viability of using a set-based particle swarm opti-
mization (SBPSO) algorithm to find an optimal term set in order to achieve the
first objective. As a precursor to future improvements to this approach, in order
to meet the second objective, the suitability of an interleaved, dual optimization
process is investigated to find both optimal term architecture and coefficients.
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This is achieved in a preliminary study by applying adaptive coordinate descent
(ACD) [10] to find the coefficients of the found term sets’ components. To the
knowledge of the authors, this a first approach to polynomial regression using a
set-based optimization algorithm.

The SBPSO algorithm is empirically evaluated on a number of problems to
determine its ability to select optimal combination of terms, and is compared
to a binary particle swarm optimization (BPSO) [7] algorithm’s ability to select
terms. The combined algorithm with ACD is compared to a standard non-set
based particle swarm optimization (PSO) [6] algorithm. SBPSO is shown to be
able to find an optimal set of terms by itself, and the preliminary results of the
proposed hybrid algorithm shows that it is also able to find an optimal set of
terms and optimal coefficients.

It is shown that the SBPSO and ACD hybrid algorithm performs well when
applied on low dimensional problems and hold promise for improvement in higher
dimensions. The hybrid algorithm is able to approximate the source polynomial
from the input data both in structure and in coefficients.

Section 2 discusses the concepts needed to implement the work in this paper,
and Section 3 outlines how existing optimization algorithms can be combined to
approximate polynomial mappings. Section 4 contains the empirical procedure,
while Section 5 discusses the results followed by the conclusion in Section 6.

2 Background

This section outlines background information on polynomial regression, PSOs,
SBPSOs, and ACD as used in this paper.

2.1 Polynomial Regression

Polynomials are made of constituent parts called terms or monomials. These
monomials are defined as the product of one or more input variables, each raised
to a power and preceded by a coefficient:

ai

∏
xn

j (1)

The goal of polynomial regression is to find the best possible polynomial to
accurately approximate a functional mapping, f : R

nx → R, embedded in a
data-set, D = {(xp, yp)|p = 1, . . . , np}; where xp = (x1p, x2p, . . . , xnxp) is a
vector of input variables, yp is the corresponding desired output value, p refers
to a specific data point in D, nx is the number of input variables, and np = |D|
is the total number of data points.

Univariate polynomials have nx = 1, and are presented in the general form:

f(x) =
no∑

j=0

ajxj = a0 + a1x + a2x
2 + · · · + ano

xno (2)
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where no is the order of the polynomial. Multivariate polynomials have nx > 1,
and have the general form:

f(x) = a0 +
nt∑

t=1

at

nq∏

q=1

xλq
q (3)

where nt is the number of monomials, at is the coefficient of the tth monomial,
nq is the number of variables in the tth monomial, and λq is the order of the
corresponding variable.

The goal of finding the best polynomial approximation can be broken down
into the following sub-goals: (1) to find optimal monomials, (2) to find the small-
est number of monomials, (3) to minimize the order of the monomials, and (4)
to find the best coefficient values of these monomials.

The rationale of these sub-goals is to produce a polynomial that minimizes the
approximation error and the complexity of the polynomial. The structure of the
polynomial is minimized to prevent overfitting, while underfitting is prevented
by minimizing the approximation error. Approximation error is estimated using
the mean squared error (MSE), defined as

E =
1
np

np∑

p=1

(yp − ŷp)2 (4)

Polynomial approximation is a multi-objective optimization problem, defined as:

minimize F (f(x),D) = E(f(x),D) + λP (f(x)) (5)

where f(x) is a polynomial from the universe, U , of possible polynomials, D
is the data-set of points, E is the MSE, P is a polynomial complexity penalty
function, and λ is a penalty coefficient. An example penalty function is

P (f(x)) =
nt∑

i=0

a2
i (6)

referred to as ridge regression, or weight decay in neural network terminology [8].
Polynomial regression is a commonly performed task in model induction and

machine learning in general and, as a result, various approaches have been tested.
Notably, neural networks (NN) have been used for polynomial regression [15] and
have been shown to be universal approximators capable of learning any non-
linear mapping [5]. However, the output of a NN is not the target polynomial
itself, but an uninterpretable list of tuned weights.

2.2 Particle Swarm Optimization

Particle swarm optimization is a well-established swarm-based optimization
method [6]. Since its inception, many modifications have been proposed to
improve its performance and its application on different problem types. Mod-
ifications for discrete environments include the BPSO or the angle modulated
PSO [12].
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Basic Particle Swarm Optimization. The first PSO, proposed by Kennedy
and Eberhart [6], is a swarm-based optimization algorithm that makes use of
stochastic optimization techniques inspired by the flocking behaviour of birds.
The population of a PSO is called a swarm, and each agent in the swarm is known
as a particle. Each particle represents a candidate solution to the optimization
problem. These potential solutions are changed to explore the search landscape
and attempt to exploit any potential optima that have been found in the process.

In the PSO algorithm, let ns denote the swarm size, and nx denote the dimen-
sionality of the problem. Each particle i has a position xi(t), a velocity vi(t), a
personal best position yi(t), and a neighbourhood best position ŷi(t), with each
variable being nx-dimensional vectors. The personal best position is the best
optimum discovered by particle i up to iteration t, and the neighbourhood best
is the best optimum discovered by any particle in particle i’s neighbourhood.
Particle positions are updated in each iteration using:

xij(t + 1) = xij(t) + vij(t + 1) (7)

where vij(t) is the velocity, calculated for each dimension j using [13]:

vij(t + 1) = ωvij(t) + c1r1j(t)[yij(t) − xij(t)] + c2r2j(t)[ŷij(t) − xij(t)] (8)

where ω is the inertia weight, c1 and c2 are the acceleration coefficients and
r1j(t) ∼ U(0, 1) and r2j(t) ∼ U(0, 1) are uniformly distributed random variables
for all i ∈ {1, . . . , ns} and j ∈ {1, . . . , nx}.

The control parameters ω, c1 and c2 control the exploration-exploitation
trade-off in PSOs. This trade-off is adjusted to determine whether the goal of the
swarm is to discover new potential solutions or to refine already found optima.

Binary Particle Swarm Optimization. While PSOs were initially developed
for continuous search spaces, the binary PSO (BPSO) variant was developed by
Kennedy and Eberhart to solve binary problem spaces [7].

The BPSO has a structure similar to the standard PSO, with its velocities
still being defined by Eq. (8) in continuous space. However, the velocities are not
interpreted as a spatial change in R

nx space, but as probabilities of bit flips. The
position vector is changed to consist of bits, i.e. each xi ∈ B

nx , and the position
update equation is defined as:

xij(t + 1) =

{
1 if r3j(t) < S(vij(t + 1))
0 otherwise

(9)

where S(vij(t)) = 1

1+e−vij(t)
and r3j(t) ∼ U(0, 1).

Set-Based Particle Swarm Optimization. The set-based PSO, as imple-
mented in this paper, was developed to solve the multi-dimensional knapsack
problem [9]. This is a discretised version of the standard PSO which makes use
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of a set-based search space instead of a nx-dimensional continuous search space.
Particle positions consist of elements from the universal set, U , while the velocity
is a set of operation pairs which add to or remove from elements in the position.
The set-based representation allows for candidate solutions of various dimensions
(a variable number of components), contrary to the basic PSO where all candi-
date solutions have to be of the same dimension. This optimization algorithm
has been successfully applied to real-world problems like portfolio optimization
and feature selection [2,3], and performs well in discrete search spaces.

Because there is no concept of spatial structure for a set-based representa-
tion, analogies of the velocity and position update equations were developed by
Langeveld and Engelbrecht [9]. These new equations contain operators to cal-
culate the attraction to the global best position and to each particle’s personal
best position as seen in the standard PSO. There is also an operator to add
unexplored terms to the position and an operator to remove possibly poorly
selected terms. For more detail on the SBPSO and its position and velocity
update equations, the reader is referred to [9].

A brief description of the important control parameters follows: Coefficient
c1 controls the particle’s attraction to its own previous personal best position,
while c2 controls its attraction to the neighbourhood (global) best position up to
iteration t. The additional acceleration coefficients, c3 and c4, manage the effect
of the operators designed to improve exploration of the search space. The number
of terms added to a position is controlled by c3, and the number of terms from
a position is controlled by c4.

2.3 Adaptive Coordinate Descent

Adaptive coordinate descent (ACD) [10] is an improvement to the covariance
matrix adaptation evolutionary strategy (CMA-ES). ACD adds adaptive encod-
ing (AE), developed by Hansen [4], to the coordinate descent (CD) optimization
algorithm. AE is applied to an optimization algorithm in a continuous domain
to make the search independent from the coordinate system. This allows for
performance improvements in non-separable problems and in problems where
traditional CD fails. ACD utilises AE to perform its optimization process. For
more detail on ACD, the reader is referred to [10].

3 Set-Based Particle Swarm Optimization Polynomial
Regression

A BPSO can be used to learn polynomial structure by letting the position vector
represent all possible terms in the universal set. A position entry where xij = 1
means that particle i has selected term j to form part of the polynomial structure.
However, if the universal set contains nt terms, the BPSO particles’ positions
and velocities are fixed at size nx = nt, which is expected to scale poorly [11].

The proposed solution to this dimensionality problem is to use a SBPSO,
outlined in Algorithm 1, with its variable position size to represent the selected
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terms from the universal set. This allows only the necessary terms to be added
to the position set, meaning that particle position sizes are not fixed to be of
size nt, allowing particle dimensions to be kept to a minimum. Positions are
initialised from the universal set by selecting a small collection of terms, and
velocities are initialised to the empty set. SBPSO velocities are interpreted as
the terms which need to be added or removed in order to change the current
set to a given target set which is calculated from the personal best, global best,
or a randomly chosen set. Therefore, the attractions to the personal and global
bests create pressure for position sets to add terms from the personal and global
bests, and to remove possibly unnecessary terms. The SBPSO velocities also
create pressure to explore the search space by adding terms not currently in the
particle position, personal best or global best; while also removing terms from
the position that are potentially unnecessary.

The size of the universal set increases exponentially as the number of input
dimensions are increased, and linearly as the maximum power of the target
polynomial is increased:

|U | = 1 +
no∑

p=1

nx∑

i=1

(
nx

i

)
(10)

where no is the maximum order, nx is the number of input variables and the
constant of one accounts for the bias term of a0.

Algorithm 1. Set-Based Particle Swarm Optimization
Generate the universal set
Create a swarm containing ns particles
Initialise particle positions as random subsets of U
Initialise local and global best values
while Stopping conditions not true do

for each particle i = 1, . . . , ns do
Use an optimization algorithm to find the coefficient values of the selected terms,
and evaluate the quality of this solution.
if f(Xi) < f(Yi) then

Update local best: Yi = Xi

end if
if f(Yi) < f(Ŷi) then

Update global best: Ŷi = Yi

end if
end for
for each particle i = 1, . . . , ns do

Update particle i’s velocity and position.
end for

end while

SBPSO and BPSO algorithms both find only the optimal term structure,
and not the coefficients; hence the following approaches are proposed.
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A PSO can be used to find the coefficients of a polynomial by setting the
position vector to refer to all the possible terms from the universal set. The value
of each xij refers to the coefficient of the jth term, with coefficients close to 0
indicating that the corresponding term does not contribute to the polynomial
structure. However, this approach has many drawbacks. The position vectors are
fixed to size nx = nt and, as with the BPSO, will suffer from poor performance
in high dimensions [11]. Additionally, the threshold of when a coefficient is “close
to 0“ has to be defined and tuned as an additional control parameter.

In a preliminary feasibility study, this paper proposes a hybrid algorithm
which uses SBPSO to find the polynomial structure and a separate optimization
algorithm to find the optimal coefficients, with preliminary investigations con-
ducted using ACD. This hybrid algorithm will have the advantage of minimizing
the dimensionality of the problem using the SBPSO and the ability to find the
coefficients of the polynomial using ACD.

The basic overview is as follows: the main concepts of the standalone SBPSO
algorithm are still present in the hybrid algorithm; this includes the position and
velocity update equations, as well as the additional set operators used to increase
exploration. The interleaved optimization process using ACD is achieved in the
fitness function of the SBPSO. By using the terms currently being evaluated as
the input dimensions for ACD, coefficients can be found for each of the target
terms. The whole optimization process, as outlined in [10], is completed for each
fitness function evaluation of a SBPSO position.

4 Empirical Process

This section outlines the processes followed to evaluate the proposed polynomial
regression algorithms and to compare it to existing regression algorithms.

4.1 Benchmark Problems

The main aim of this paper is to illustrate the feasibility of the SBPSO for
inducing optimal polynomial structures and its secondary aim is to illustrate
the need for a second optimization algorithm to find both the term structure
and coefficients.

In order to test the ability of the SBPSO to find optimal polynomial struc-
tures and to compare these results to that of a BPSO, seven benchmark problems
with varying characteristics were created. These test functions, f1 to f7, have
coefficients of 1 to allow the SBPSO and BPSO algorithms to be tested in iso-
lation and to accurately measure their term-choosing abilities. The polynomials
for these problems have a known order, allowing this information to be used
to calculate the universal set. A further three test functions, f8 to f10, were
created with non-unit coefficients to test and compare the regression abilities of
the proposed combined SBPSO and ACD algorithm, as well as a standard PSO
algorithm. Table 1 outlines the test functions generated and their universal set
characteristics.
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Table 1. Proposed test functions and their generated universal set characteristics

Function Max
degree

Universe
size

f1(x) = x3
1 + x2

2 + x2 + 1 5 16

f2(x) = x3 + x2 + x 5 6

f3(x) = x7 + x5 + x4 + 1 9 10

f4(x) = x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1 10 11

f5(x) = x2
1 + x2

2 + x2
1x

2
3 + x3 4 29

f6(x) = x6
1 + x5

2 + x4
3 + x1 + x2

2x
2
3 + x3 + 1 8 57

f7(x) = x1 + x2
2 + x2

3 + x2
4 + x2

5 + x1x2x4x5 + x3x4 + 1 4 125

f8(x) = 0.5x3 + 2x2 − x 5 6

f9(x) = x2
1 − 2x2

2 + 3x2
1x

2
3 − 1.5x3 4 29

f10(x) = −3x1 − 3x2
2 − 3x2

3 − 3x2
4 − 3x2

5 + 2x1x2x4x5 + 5x3x4 − 6.2 4 125

4.2 Tuning Algorithm Configurations

Each of the control parameters of the algorithms used were tuned using quasi-
randomly generated Sobol sequences [14]. These sequences are generated to pro-
vide good coverage of the hypercube generated by the control parameter search
space.

The control parameters of each algorithm were tuned per problem. This was
done by sampling values for the control parameters as specified in Table 2.
For each algorithm, on each test problem, 128 Sobol sequences were generated
by sampling from the specified ranges and tuned for 500 iterations, with 30
particles in the swarm. The PSO control parameters were sampled to also satisfy
the stability conditions as outlined in [1]. The obtained optimal parameters are
outlined in Table 3 and Table 4, rounded to four (4) decimal places for brevity.
The best parameter combination was selected as the one that had the best
generalizable approximation ability, as represented by the lowest MSE over the
test set.

Table 2. Table of the parameters tuned for each implemented algorithm

SBPSO BPSO ACD PSO

Parameter range Parameter range Parameter range Parameter range

c1 [0, 1] ω [0, 1] ksucc {2} ω [0, 1]

c2 [0, 1] c1 [0, 2] kunsucc {0.5} c1 [0, 2]

c3 [0.5, 5] c2 [0, 2] λ [0, 1] c2 [0, 2]

c4 [0.5, 5] vmax [0, 6] λ [0, 1]
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Table 3. Optimal control parameters for SBPSO, BPSO on f1 to f7

Function SBPSO c1, c2, c3, c4 BPSO ω, c1, c2, vmax

f1 0.0683, 0.5605, 0.9130, 0.9306 0.5249, 1.0498, 0.2548, 5.4755

f2 0.9648, 0.5351, 3.5410, 3.5410 0.2758, 1.0478, 1.4716, 3.3603

f3 0.7226, 0.6523, 4.8417, 3.2246 0.5063, 0.7431, 0.5107, 3.4306

f4 0.5166, 0.5498, 3.8793, 4.1782 0.3706, 0.4912, 1.6259, 0.6123

f5 0.8105, 0.8183, 2.7060, 4.9736 0.9243, 1.0322, 0.3935, 4.2509

f6 0.8916, 0.9248, 2.1918, 4.7407 0.9858, 0.4091, 1.7392, 4.5849

f7 0.8564, 0.6787, 2.2797, 1.1372 0.9936, 1.2373, 0.6923, 3.7880

Table 4. Optimal control parameters for Hybrid, PSO on f8 to f10

Function Hybrid c1, c2, c3, c4, λ PSO ω, c1, c2, λ

f8 0.5830, 0.5146, 1.6118, 0.8208, 0.2998 0.7631, 0.9169, 1.7158, 0.0883

f9 0.2041, 0.3623, 0.7856, 4.4594, 0.8818 0.7109, 1.4218, 1.2656, 0.9921

f10 0.3720, 0.8818, 0.8032, 0.6450, 0.0576 0.6909, 0.3818, 1.8291, 0.2973

4.3 Performance Measures

For each problem, 10000 nx-dimensional data points were created by calculating
the Cartesian product of nx generated real-valued axes to form the complete
data-set. These sets were split into training and test sets with the training set
being 70% of the total and the test 30%. In order to quantify the performance
of the algorithm, the MSE over the train and test set is reported on, as well as
the average size of the found polynomial.

The final tests were run with the selected parameter combinations, with the
results summarised in Section 5. For SBPSO and BPSO 2000 iterations over 30
independent runs were used; for the hybrid and PSO algorithms, 500 iterations
over 30 independent runs were used due to the high computational complexity
of the hybrid algorithm. For the final tests, all algorithms had 30 particles in
their swarms.

5 Results

This section outlines the results obtained from applying the SBPSO to the prob-
lem of finding the optimal term structure, followed by the preliminary investi-
gation into the feasibility of a hybrid algorithm to find both the optimal term
structure and coefficients.

5.1 SBPSO and BPSO Results

Table 5 shows the performance of SBPSO and BPSO on test functions f1 to f7
by reporting on the train and test MSEs. Table 6 shows how many independent
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runs induced the correct target polynomial structure; this was calculated by
comparing, term by term, the structure of the found polynomial with the known
structure of the target polynomial. For each problem, the found polynomial that
was most similar to the target polynomial is reported on, as well as how many of
the independent runs induced the correct polynomial. In all test problems, except
f4, all 30 independent runs induced the correct polynomial term structure.

Table 9 compares the average size of the found optimum over the 30 indepen-
dent runs with the target polynomial size for both the SBPSO and the BPSO.
Specifically, the number of terms in the SBPSO global best positions, and the
number of one’s in the BPSO global best positions were averaged over the 30
independent runs to calculate the induced polynomial size.

Table 5. MSE values achieved by SBPSO and BPSO on problems f1 to f7

Problem SBPSO BPSO

Train MSE Test MSE Train MSE Test MSE

f1 0.99 ± 0.01 0.99 ± 0.02 0.99 ± 0.01 0.99 ± 0.03

f2 1.00 ± 0.01 0.99 ± 0.02 1.00 ± 0.01 1.0 ± 0.03

f3 0.99 ± 0.01 1.0 ± 0.02 0.99 ± 0.01 0.99 ± 0.02

f4 1.02 ± 0.19 1.03 ± 0.17 0.99 ± 0.01 1.00 ± 0.02

f5 1.00 ± 0.01 1.00 ± 0.02 1.00 ± 0.01 1.00 ± 0.02

f6 1.00 ± 0.01 0.99 ± 0.03 0.99 ± 0.01 1.00 ± 0.02

f7 0.99 ± 0.01 1.00 ± 0.02 9353.03 ± 41904.74 9263.03 ± 41475.77

Table 6. Polynomials induced by SBPSO for problems f1 to f7

Function Best induced polynomial # correct

f1 x3
1 + x2

2 + x2 + 1 30

f2 x3 + x2 + x 30

f3 x7 + x5 + x4 + 1 30

f4 x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1 29

f5 x2
1 + x2

2 + x2
1x

2
3 + x3 30

f6 x6
1 + x5

2 + x4
3 + x1 + x2

2x
2
3 + x3 + 1 30

f7 x1 + x2
2 + x2

3 + x2
4 + x2

5 + x1x2x4x5 + x3x4 + 1 30

The results show that SBPSO performed very well when inducing the optimal
term. The SBPSO performs better than BPSO in higher dimensions, as seen
for f7 where BPSO failed and SBPSO succeeded. The results f4 indicate that
SBPSO tends to keep position sizes smaller, as it was unable to induce the correct
structure in one run.
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5.2 Hybrid and PSO Results

Table 7 shows the performance of the hybrid SBPSO and PSO on test func-
tions f8 to f10 by reporting on the train and test MSEs. Table 8 shows how
many independent runs induced the correct target polynomial structure. For
each problem, the found polynomial that was most similar to the target polyno-
mial is reported on, as well as how many of the independent runs induced the
correct polynomial. The hybrid algorithm often did not induce the exact polyno-
mial term structure of the target polynomial, but was still able to minimize the
MSE by compensating for incorrectly chosen terms by varying the coefficients.

Table 10 compares the average size of the found optimum over the 30 inde-
pendent runs with the target polynomial size. Specifically, the number of terms
in the hybrid algorithm’s global best positions, and the number of dimensions
in the PSO’s global best positions were averaged over the 30 independent runs
to calculate the induced polynomial size. In the case of the PSO, the particles’
dimensionality is always the same as the size of the universal set, but it was
added for consistency.

Table 7. MSE values achieved by the hybrid algorithm and PSO on problems f8 to
f10

Problem Hybrid PSO

Train MSE Test MSE Train MSE Test MSE

f8 1.00± 0.01 1.00± 0.03 466018.07± 1045346.24 474531.68± 1073162.36

f9 3.22± 4.82 17.06± 56.73 3.56e21± 5.75e21 3.46e21± 5.58e21

f10 1.01± 0.04 1.08± 0.11 2.56e28± 7.25e28 2.47e28± 7.06e28

Table 8. Polynomials induced by the hybrid algorithm for problems f8 to f10

Function Best induced polynomial # correct

f8 0.50x3 + 1.99x2 − 0.99x + 0.02 27

f9 x2
1 − 2x2

2 + 3x2
1x

2
3 − 1.5x3 − 0.04 0

f10 −2.99x1 − 3.00x2
2 − 2.99x2

3 − 3.0x2
4 + 1.99x2

5 0

+1.99x1x2x4x5 + 0.0x1x2x3 + 4.99x3x4 + 0.00x1x4 − 4.78

The hybrid algorithm performed considerably better than the PSO when
searching for optimal coefficients. For each of the problems f8 to f10, the hybrid
algorithm was able to minimize the MSE to an acceptable range. However, the
hybrid algorithm did not find the optimal term structure, as ACD was able to
minimize the contribution of these incorrectly chosen terms with coefficients close
to zero. The PSO algorithm was unable to approximate the correct coefficient
values, as seen by the poor MSE results.
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Table 9. SBPSO and BPSO induced
polynomial sizes

Problem Target size Average size

SBPSO BPSO

f1 4 4.0 4.0

f2 3 3.0 3.0

f3 4 4.0 4.0

f4 9 8.96 9.0

f5 4 4.0 4.0

f6 7 7.0 7.0

f7 8 8.0 8.5

Table 10. Hybrid and PSO induced
polynomial sizes

Problem Target size Average size

Hybrid PSO

f8 4 4.1 6.0

f9 4 8.03 29.0

f10 8 11.57 125.0

6 Conclusions and Future Work

The purpose of this paper was to propose a novel set-based approach to inducing
optimal polynomial structures using a well-established optimization algorithm,
and to lay the foundation for future improvements and additions to be made to
this approach.

The proposal of using a set-based optimization algorithm holds promise for
future work, as the SBPSO performed well when tasked with selecting optimal
term combinations and showed that it scales better than the existing BPSO
method. Because the SBPSO is grounded in set-theory, it holds even more
promise to be improved to perform better on the high dimensional problems
in which it failed.

The proposed hybrid algorithm consists of the SBPSO algorithm to find an
optimal combination of monomials in the polynomial, and the ACD algorithm to
find optimal coefficients of these monomials. The application of the SBPSO and
ACD shows promise as a well-suited set-based solution for polynomial regres-
sion problems. Preliminary results show good performance on low dimensional
and low order polynomials where the universal set size remains relatively small,
but with some performance drawbacks with larger search spaces. The proposed
algorithm also provides the advantage over existing algorithms that it has eas-
ily interpretable results and the most potential for improvement. However, this
paper’s results are not sufficient to draw conclusions about the SBPSO or hybrid
SBPSO algorithm’s performance on high dimensional problems. More complex
polynomials need to be tested to understand how the algorithms will behave in
high dimensional spaces.

Future work includes further testing the capabilities of the SBPSO algorithm
when applied to real-world data-sets and to investigate the possibility of using
computationally cheaper methods to find optimal the coefficients. The algorithm
can also be extended to work in dynamic environments by introducing quantum-
PSO inspired effects.
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Abstract. Artificial neural networks (ANN) are commonly used in function
approximation as well as classification problems. This paper shows a configurable
architecture of a simple feed forward neural network trained by particle swarm
optimization (PSO) algorithm. PSO and ANN have several hyperparameters that
have impact on the results of approximation. ANN parameters are the number
of layers, number of neurons in each layer, and neuron activation functions. The
hyperparameters of the PSO are the population size, the number of informants
per particle, and the acceleration coefficients. Herein, this work comes to spot the
light on how the PSO hyperparameters affect the ability of the algorithm to opti-
mize ANNs weights in the function approximation task. This was examined and
tested by generating multiple experiments on different types of input functions
such as: cubic, linear, XOR problem. The results of the proposed method show
the superiority of PSO compared to backpropagation in terms of MSE.

Keywords: Artificial Neural Network (ANN) · Particle Swarm Optimization
(PSO) · Mean Square Error (MSE) · Function Approximation · Backpropagation

1 Introduction

Function approximation can be thought as a mapping problem where such input and
output are only available without having an explicit equation or function to generate such
outputs from the existed inputs [1]. Indeed, this is a core problem in various real world
applications including image recognition, restoration, enhancement, and generation.

Formally, assume the inputs are denoted by the vector x, and the outputs are denoted
by the vector y. The problem is to seek for a function f that maps x to y. The best f is that
fits the actual output y with the lowest error rate. Herein, the main issue is to minimize
the error to obtain more accurate approximation.

Function approximation using ANN has a long record in the literature [2], it is
used effectively to search for a mapping that can approximate a function using a set of
input-output pairs, classically using backpropagation learning algorithm [3]. However,
backpropagation is widely used in training ANN, it suffers from lower efficiency in
some cases, and it can easily being trapped in local minima [4]. On the other hand, as a
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global searching algorithm, PSO is well known for its simplicity compared with genetic
algorithms (GA) [5, 6].

In [1], multiple activation functions were tested on different cases of functions’
approximation. The authors applied two models of NN: The Radial Basis Function
Network (RBFN), and theWavelet Neural Network (WNN). They achieved better results
when applying theRBFN in approximating the exponential function.However, theWNN
showed better accuracy in approximating the periodic functions.

The authors in [7] focused on the approximation of four known cases including the
XOR problem (one of the examined functions in this study). They applied different NN
models, starting by backpropagation. The results revealed low performance compared
with other models.

The aim of this study is to investigate the impact of different configurations of
PSO hyperparameters on its ability to optimize the ANNs weights for the function
approximation task. In parallel with testing different ANNs architectures.

The remaining of this paper is organized as follows: methodology in Sect. 2 which
is divided in two subsections. Starting by building the ANN and followed by the imple-
mentation of the PSO. In Sect. 3, the results are analyzed, and limitations are discussed.
Finally, Sect. 4 concludes the paper.

2 Methodology

This section illustrates the main steps that are adopted to build a testing model by which
we can study and analyze how the hyperparameters (of both PSO and ANN) affect the
ability of PSO to optimize ANNs. They are two main steps, first is to build a multilayer
feed forward ANN, while the second is to implement the PSO algorithm to optimize the
ANN’s parameters as shown in Fig. 1.

Fig. 1. Feedforward NN (weights and biases are optimized using PSO)
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2.1 Building a Feed Forward ANN

In this work, a one input-output ANN is instantiated with fully connected hidden layers.
The implemented is a dynamic architecture that enables the user to configure the number
of hidden layers, the number of neurons in each layer, and the activation function at the
hidden layers.

The NN is defined as a class called FNN that has the parameters: a. Number of input
features, b. Number of neurons in each layer, which is defined as an array. The array
size reflects the number of hidden layers and its members denote the number of neuros
in each hidden layer, c. Number of outputs, and d. The name of the activation function
to be employed at the hidden layers. For simplicity, the hidden layers were assumed to
share the same activation function. However, linear activation function is fixed for the
output layer.

Our implementation has assumed random values for initial weights and biases. They
are set randomly since they will be optimized later using the PSO algorithm. Both, the
number of neurons in each layer, and the number of layers are configurable. At this
step, we did not implement any classical training algorithms–such as backpropagation,
because the PSO will be used for the training task. The list of examined activation
functions in this study was shown in Table 1.

Table 1. Activation functions used in this study.

Activation function Equation

None _

Sigmoid 1
1+e−x

Hyperbolic Tangent tanh(x)

Cosine cos(x)

Gaussian
e

(
− x2

2

)

2.2 Implementing the PSO Algorithm

The particle swarm optimization is an evolutionary algorithm, which is modeled to
emulate the coordinated behavior of swarm [8]. In PSO, each particle has a position
which denotes a possible solution for a minimization problem. The algorithm starts
by initializing a set of random solutions. Thereafter, searching for the optimal solution
iteratively. In PSO, the optimal solution (position) is achieved by tracking the best
particles in the swarm.

In this work (of function approximation task), particle’s position denotes the weights
and biases of the ANN. The aim is to find the set of weights and biases by which the
network can generate outputs that are approximately match the actual outputs of the
function of interest.
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PSO is an iterative algorithm, in each iteration particles move to new positions
which, hopefully, better problem solutions. The movement is based on the velocity of
the particle, the best position recorded by the particle, and the best position that is
recorded globally on the swarm.

Each particle updates its velocity using Eq. 1, where the new velocity is v
′
. v is the

current velocity of the particle. ω denotes the inertia weight. c1 and c2 are constants
they called the acceleration coefficients –our experiments spot the light on the impact
of population size [9] and these parameters on the overall accuracy of the model. Here,
pbest denotes the best position recorded by the particle at any time and gbest denotes
the best position recorded by any particle in the swarm. Where, x denotes the current
position of the particle. Also, r1 and r2 are randomly generated variables in range [0,1)
[10, 11].

v
′ = (ω ∗ v) + (c1 ∗ r1 ∗ (pbest − x)) + (c2 ∗ r2 ∗ (gbest − x)) (1)

Thereafter, the updated position x’ is defined as depicted in Eq. 2.

x
′ = x + v

′
(2)

Briefly, the main steps of the PSO algorithm are:

1. Initialize particles of all populations and store them in matrix (xx) of size [n × k];
where n is the population size, and k is the particle size.

2. Find the fitness for each particle such that: fitness = MSE, where MSE is the mean
square error between the target and the predicted output and defined as depicted in
Eq. 3.

MSE = 1

n

∑n

i=1
(target − output)2 (3)

3. Check the fitness value for each particle. If it is greater than the personal best
(pbest), continue to step 4 otherwise skip to step 5.

4. Set the values of the current fitness as the new personal best then go to step 6.
5. Maintain the value of the previous personal best then go to step 7.
6. Set the global best (gbest) as the personal best of the best particle.
7. Find the velocity (v) for each particle, as defined in Eq. 1.
8. Update the position of (x) of each particle as defined in Eq. 2.
9. Check if the target reached continue to step 10 otherwise repeat steps 2–9.
10. End the process and return the best particle which gain the minimum fitness value.

Figure 1, summarizes the implemented learningmodel. The learningmodel is divided
into four phases: (1)Defining the hyperparameters of the feedforwardNN. (2) Initializing
and configuring the NN. (3) Initializing PSO algorithm. (4) Starting the PSO learning
algorithm. At the end, a vector of weights and biases is generated by the model to be
used for approximating the function of interest (Fig. 2).
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Fig. 2. Pseudocode of the implemented model.

3 Results and Analysis

This section discusses the conducted experiments and analyzes the obtained results.

3.1 Experimental Environment and Parameter Settings

Experiments in this study were performed using Python programing language on Intel
Core i5 machine with 8GB of RAM and processor running at 1.60 GHz.

For all the conducted experiments, to simplify the architecture of the ANN, we
assumed that all hidden layers share the same activation function for their neurons,
however we apply linear activation function for the output layer.
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3.2 Experimental Results

Multiple experiments were conducted by applying different values of PSO hyperpa-
rameters (population size, inertia weight, acceleration coefficients), and different NN
architectures (i.e.varying the number of hidden layers and the number of neurons in hid-
den layers), this is to compare and examine the accuracy achieved by applying different
activation functions.

A variety of function types are examined in this study including linear, nonlinear,
classification, and complex functions. The selected functions are shown in Table 2. For
each function, three main experimental scenarios were conducted to choose the number
of hidden layers, the number of neurons per hidden layer, the population size, the inertia
weight (ω), and the acceleration coefficients (c1, c2). Table 3 shows an example of the
results for approximating theXOR function. Referring to the same table, the first scenario
assumes an ANN with one hidden layer which contains two neurons, where c1 = 0.5,
c2 = 3, ω = 0.2. This scenario is tested for different population sizes (10, 20, 50) and
different activation functions. The underline denotes the minimal MSE in each scenario,
the bold underlined denotes the minimal MSE among the three scenarios for a specific
activation function. The grey shaded cell denotes the overall minimal MSE among all
the tested activation functions. As shown in the table, applying the cosine activation
function on the hidden layer neurons obtained the best result in its third scenario for an
ANN with three hidden layers and (4, 6, 9) neurons for each hidden layer respectively,
where (c1 = 0.7, c2 = 2.1, ω = 0.5). It is worth noting that MSE values in the table
are the average of five runs per experiment. Likewise, Table 4. shows the results of the
remaining functions. To avoid lengthy results and to save space, for each approximation
function, it shows the results of only the best scoring scenario with its parameter settings.

Table 5 shows the results of the same ANN architectures trained by backpropagation
with learning rate 0.01. By comparing the results in Tables 4 and 5, it can be noticed
that the PSO has obtained better results in approximating all functions.

Table 2. Functions to be approximated.

Function Equation

Linear y = x

Cubic y = x3

Sine y = sin(x)

Tanh y = tanh(x)

XOR y = x1 ⊕ x2

Complex y = 1.9[1.35 + ex1−x2sin
(
13(x1 − 0.6)2

)
sin(7x2)]
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Table 3. Average MSE for approximating the XOR function by varying the hyperparameters of
the ANN and the PSO. ANN architecture is described in brackets, the number before the slash
denotes the number of hidden layers while the number/s after the slash denote/s the number of
neurons in each hidden layer.

ANN Architecture: [1/2] ANN Architecture: [1/9] ANN Architecture: [3, {4,6,9}]

c1 = 0.5 c2 = 3 w = 0.2 c1 = 1.5 c2 = 2.5 w = 0.4 c1 = 0.7 c2 = 2.1 w = 0.5

Population size Population size Population size

Act.Fun 10 20 50 10 20 50 10 20 50

None 0.253605 0.276773 0.288392 0.263440 0.250477 0.249867 0.251875 0.275954 0.254363

Sigmoid 0.134012 0.049246 0.049872 0.037974 0.029498 0.002504 0.238960 0.112409 0.028918

Tanh 0.078690 0.025935 0.024623 0.005743 0.000533 0.000882 0.125313 0.067031 0.022191

Cosine 3.05E-08 1.20E-09 3.88E-11 3.62E-03 7.82E-04 9.34E-05 9.32E-11 4.45E-10 4.32E-12

Gaussian 8.88E-06 4.18E-07 1.46E-11 1.26E-03 9.72E-04 8.07E-04 1.37E-02 1.21E-10 1.72E-10

Table 4. Average MSE for approximating the functions in Table 2 (except the XOR). The best
activation function which obtained the lowest MSE denoted in bold.

Linear ANN Architecture: [1/2] Population Size: 50 c1, c2, w: 0.5, 3, 0.2

Activation Functions

None Sigmoid Hyperbolic Tangent Cosine Gaussian

2.26E-32 1.76E-06 4.96E-07 2.67E-06 1.64E-06

Cubic ANN Architecture: [3, {4, 6, 3}] Population Size: 50 c1, c2, ω: 0.7, 2.1, 0.5

Activation Functions

None Sigmoid Hyperbolic Tangent Cosine Gaussian

0.012 7.32E-06 1.05E-05 3.66E-06 4.30E-05

Sine ANN Architecture: [1/2] Population Size: 50 c1, c2, w: 0.5, 3, 0.2

Activation Functions

None Sigmoid Hyperbolic Tangent Cosine Gaussian

0.0003 1.22E-06 4.83E-07 8.41E-07 1.73E-06

Tanh ANN Architecture: [3/ {4, 6, 3}] Population Size: 50 c1, c2, w: 0.7, 2.1, 0.5

Activation Functions

None Sigmoid Hyperbolic Tangent Cosine Gaussian

0.0006 8.19E-07 2.47E-07 8.72E-07 4.83E-07

Complex ANN Architecture: [3/ {4, 6, 3}] Population Size: 50 c1, c2, w: 0.7, 2.1, 0.5

Activation Functions

None Sigmoid Hyperbolic Tangent Cosine Gaussian

0.102 0.028 0.029 0.008 0.011

3.3 Limitations

Due to hardware specifications, a small number of epochs (500 iteration) was applied
in our experiments. In addition, five runs were applied to determine the average MSE
score, however higher number of runs may produce more reliable results. And more
measures could be used for comparisons in addition to the MSE.
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Table 5. NN models trained by backpropagation, average MSE for approximating the functions
in Table 2. The best activation function which obtained the lowest MSE denoted in bold.

Linear ANN Architecture: [1/9] Learning rate = 0.01

Activation Functions

None Sigmoid Hyperbolic Tangent Cosine Gaussian

0.004971 0.048026 0.005462 0.079253 0.078026

Cubic ANN Architecture: [1/9] Learning rate = 0.01

Activation Functions

None Sigmoid Hyperbolic Tangent Cosine Gaussian

0.018487 0.059585 0.016164 0.082899 0.072443

Sine ANN Architecture: [1/9] Learning rate = 0.01

Activation Functions

None Sigmoid Hyperbolic Tangent Cosine Gaussian

0.00558 0.039814 0.004323 0.058145 0.057912

Tanh ANN Architecture: [1/2] Learning rate = 0.01

Activation Functions

None Sigmoid Hyperbolic Tangent Cosine Gaussian

0.009825 0.064234 0.007036 0.051839 0.056086

XOR ANN Architecture: [1/9]

Activation Functions

None Sigmoid Hyperbolic Tangent Cosine Gaussian

0.196123 0.120555 0.17832 0.132438 0.121469

Complex ANN Architecture: [1/2] Learning rate = 0.01

Activation Functions

None Sigmoid Hyperbolic Tangent Cosine Gaussian

0.104736 0.116643 0.104106 0.136408 0.121425

In this study, a set of activation functions (Sigmoid, Hyperbolic Tangent, Cosine, and
Gaussian) were included in our comparisons, however other functions such as (ReLU)
may produce comparable results.

Furthermore, we assumed that all hidden layers share the same activation function,
for simplifying the comparisons. However, variating activation functions on the hidden
layers was not tested and might have a remarkable effect on the learning capacity of the
system.

4 Conclusion

For function approximation task, this study highlights: a. the influence of different set-
tings of the PSO hyperparameters in training a simple feedforward NN, and b. the impact
of the ANN parameters (the activation functions, number of hidden layers and number
of neurons) on the resulted accuracy.

We observed impressive results when using PSO for training the ANN compared to
the traditional backpropagation. In addition, it is noticed that PSO is highly sensitive to
its hyperparameters.
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As a future work, more complex functions can be examined with different ANN
models. Deep NNs can be experimented, and their results can be compared with the
achieved results.
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Abstract. Multimodal function optimization (MMO) has seen a lot of
interest and research over the past several years due to its many real
world applications, and its complexity as an optimization problem. Sev-
eral niching techniques proposed in past research have been combined
with popular meta heuristic search algorithms such as evolutionary algo-
rithms (EA), genetic algorithms (GA) and particle swarm optimization
(PSO). The NichePSO algorithm was one of the first PSO algorithms pro-
posed for utilizing niching methods and parallel swarms to apply PSO
to MMO problems effectively. In this paper, two modified versions of
the NichePSO algorithm are proposed, the NichePSO-R and NichePSO-
S algorithms, in an attempt to improve its performance. Experimental
results show that both proposed algorithms are able to locate more global
optima on average than the NichePSO algorithm across several popular
MMO benchmark functions.

1 Introduction

Over the past several years, the field of multimodal function optimization
(MMO) has received considerable interest from researchers. Many real world
problems have arisen that have proven too complex for traditional unimodal
optimization algorithms to solve [1–4]. For a multimodal problem, it is often not
enough to find a single global best solution. MMO algorithms and techniques
focus on locating multiple strong solutions to a single problem concurrently,
returning a set of solutions as opposed to a single solution.

Particle swarm optimization (PSO) is a unimodal function optimization algo-
rithm proposed in [5]. PSO is a stochastic, population based algorithm that uti-
lizes a swarm of particles to search the landscape. The traditional PSO algorithm
showed strong results for many unimodal optimization problems, but was shown
to be ineffective when applied to MMO problems [6]. Traditional niching tech-
niques such as function stretching and neighbourhood clustering were applied to
PSO [7,8], but they are limited in performance due to only being able to locate
solutions sequentially as opposed to concurrently.

c© Springer Nature Switzerland AG 2021
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The NichePSO algorithm was proposed in [9] as an extension of the tra-
ditional unimodal PSO algorithm. Instead of a single swarm of particles, the
NichePSO algorithm uses multiple subswarms that each traverse the landscape
in parallel, with the goal of each subswarm converging to a unique optimum. This
allows the algorithm to search for multiple solutions concurrently, and return
several strong solutions in a single run.

The NichePSO algorithm showed strong results across several tested MMO
functions [9]. A follow up scalability study was done in [10] which showed that the
NichePSO algorithm can perform well on MMO functions up to five dimensions.
Further research was done in [11] which proposed several possible modifications
to the NichePSO merging strategies with the goal of improving exploration and
performance. Additional research was done in [12] which showed the existence of
a major issue with the NichePSO algorithm, referred to as the merging subswarm
problem. The impact of the alternative merging strategies discussed in [11] on
the merging subswarm problem was analyzed, and a few more possible strategies
were proposed that were shown to overcome this issue. An extensive analysis of
the NichePSO algorithm was done in [13], along with empirical studies aimed to
find optimal values for many of the control parameters.

The algorithms proposed in this paper utilize the work done in [11]-[13] to
design two modified NichePSO algorithms. These two variants are shown through
experimental results to track more global optima on average than the original
NichePSO algorithm across multiple MMO benchmark functions.

Section 2 provides a detailed overview of the NichePSO algorithm. Section 3
presents the NichePSO-R algorithm, and Sect. 4 presents the NichePSO-S algo-
rithm. Section 5 provides experimental setup and results that compare the three
algorithms discussed on a variety of benchmark MMO functions.

2 The NichePSO Algorithm

This section describes the NichePSO algorithm in detail, along with all of its
components. An overview of the NichePSO algorithm is given in Algorithm1.

2.1 Cognitive Velocity Update

The velocities of main swarm particles are updated using Eq. 1, and the positions
are updated using Eq. 2. These formulas match the traditional PSO update for-
mulas, except that the social component has been removed. Social information
is not shared between the particles so that they each act like an independent
hill-climber. Each particle performs a local search of their immediate area in the
search space with the goal of converging to a local optimum.

vi(t + 1) = wvi(t) + c1r1i(t)(yi(t) − xi(t)) (1)

xi(t + 1) = xi(t) + vi(t + 1) (2)
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Initialize particles in main swarm;
while stopping criteria not met do

Update position of all particles in main swarm;
Evaluate fitness of particles in main swarm;
for each subswarm S do

Update position of all particles within S ;
Evaluate fitness of all particles within S ;
Recalculate the radius of S ;

end
if any subswarms intersect then

Merge subswarms;
end
for each particle p in the main swarm do

if p intersects with radius of a subswarm S then
Particle p is absorbed by subswarm S ;

end
if partitioning criteria for p is met then

Create new subswarm from particle p;
end

end

end
Algorithm 1: The NichePSO Algorithm

2.2 Social Velocity Update

Particles that are part of a subswarm use a velocity update formula based on the
guaranteed convergence PSO (GCPSO) algorithm [14]. The GCPSO algorithm
uses both a cognitive and social aspect to the particles’ velocity update, and each
subswarm shares social information amongst all particles within the subswarm.
The velocities of particles within a subswarm are updated using the traditional
PSO velocity update formula shown in Eq. 3, and the positions are updated using
Eq. 2.

vi(t + 1) = wvi(t) + c1r1i(t)(yi − xi(t)) + c2r2i(t)(ȳi(t) − xi(t)) (3)

The GCPSO formula modifies the way that the subswarm best particles are
updated, where the velocity of the strongest particle in each subswarm is updated
using Eq. 4, and the position is updated using Eq. 5. The GCPSO algorithm has
been proven to always converge to a local optimum given sufficient time [15].
Further details regarding the GCPSO algorithm can be found in [14].

v̄i(t + 1) = −xi(t) + ȳi(t) + wv̄i(t) + ρ(t)(1 − 2r1,i) (4)

xi(t + 1) = ȳi(t) + wv̄i(t + 1) + ρ(t)(1 − 2r2,i) (5)
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2.3 Initialization

When initializing the particles in the main swarm, it is important that they
are spread out throughout the search space to try and maximize exploration
and to increase the total number of unique optima that can be found. Par-
ticles are initialized using Faure-sequences [16], which distribute the particles
uniformly within an n-dimensional cube. Particle velocities are initialized to a
value between [−0.5, 0.5], but not to 0 [13].

2.4 Partitioning Criteria

The fitness of each particle is monitored each iteration, and a particle in the main
swarm is considered to be converged when the variance of its change in fitness
over the past three iterations is less than some threshold parameter δ = 0.0001.
When a particle converges, it is removed from the main swarm and creates a
new subswarm. This new subswarm will consist of two particles, the converged
particle and its closest (spatial) neighbour within the main swarm.

2.5 Merging Subswarms

To promote diversity amongst the particles and subswarm, each subswarm main-
tains a radius that defines the area in the search space it is currently exploring.
A subswarm’s radius is calculated as the greatest Euclidean distance between
each particle in the subswarm and the subswarm’s best position. If a particle in
the main swarm moves inside the radius of a subswarm, that particle is absorbed
by the subswarm and shares social information with its neighbours. If the radii
of two subswarms intersect, then the subswarms are merged into one larger sub-
swarm.

3 The NichePSO-R Algorithm

The NichePSO-R algorithm modifies the way that subswarms and particles inter-
act with each other when they intersect. Instead of merging subswarms together,
the radii of each subswarm is treated as an out of bounds area to particles not
within the subswarm. In a traditional PSO algorithm, when a particle travels
out of bounds it is unable to update its personal best position or the global best
position of the swarm. This behaviour is replicated for when a particle travels
within the radius of a subswarm that they are not a part of. This technique is
referred to as the radius out of bounds (radiusOOB) method in this paper.

Another aspect that is modified is the way subswarms are created when
a particle in the main swarm converges. Subswarms are no longer created by
combining the converged particle with its closest neighbour. Instead, a subswarm
is formed by creating κ particles and adding them to the subswarm along with
the converged particle.

The originally proposed closest neighbour method has a few drawbacks that
this modified creation method overcomes. The first issue is that there is no
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guarantee that the two particles that create the subswarm are actually close to
each other. It is possible that by chance the closest neighbour to a particle is
far away in the search space, which would result in a subswarm that contains a
very large radius. This large radius would intersect with other subswarm’s radii
and trigger the radiusOOB method from applying, even though the subswarms
are not searching the same area of the search space.

Along with the potential for particles to be located far away from each other,
it is undesirable to modify the behaviour of a particle that could be tracking a
unique optimum of its own. An advantage of this alternative subswarm creation
method is that particles in the main swarm are free to converge and search
their local neighbourhood to completion, without being forced to abandon their
search to converge to another optimum already discovered by another particle.
Pseudocode for the NichePSO-R algorithm is shown in Algorithm2. Only the
differences between the NichePSO and NichePSO-R algorithms are shown.

Initialize particles in main swarm;
while stopping criteria not met do

...
foreach subswarm S do { ... }
foreach particle P do

foreach subswarm S do
if P intersects with S & P is not a subset of S then

Flag P as out of bounds;
end

end
if P is not within any subswarm radius then

Remove out of bounds flag from P ;
end

end
foreach particle P in the main swarm do { ... }

end
Algorithm 2: The NichePSO-R Algorithm

4 The NichePSO-S Algorithm

The NichePSO-S algorithm uses several small subswarms that are regularly reini-
tialized to new areas of the search space when either intersection occurs or
convergence is reached. This approach gives the algorithm a high exploration
ability, while also allowing particles that find favourable positions sufficient time
to explore their local neighbourhood before being moved to a new area of the
search space.

The NichePSO-S algorithm utilizes the scatter merge modification proposed
in [11]. When two subswarms intersect, the particles in the weaker subswarm
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are reinitialized back into the main swarm with a new location. This improves
the exploration ability of the algorithm by allowing particles that are searching
close to each other to move to a new area of the search space that may have not
been searched.

Along with the scatter merge modification, the diversity merge modification
proposed in [12] is also utilized. This modification changes the way that radii
are calculated for each subswarm. The radius of a subswarm is determined by
calculating the median distance between the subswarm best location and each
particle within the subswarm. Using the median distance as opposed to the max
distance used by the traditional NichePSO prevents radii from growing large if
a particle was to travel far away from the rest of the swarm.

Another modification that the NichePSO-S algorithm uses is a reinitialization
strategy, where particles within a subswarm are reinitialized back into the main
swarm when the subswarm has existed for a long period of time. The length
of time that a subswarm exists for is ι iterations. Empirical tests performed
found that an ι value of ι = number of dimensions ∗ 300 provides a sufficient
amount of time for subswarms to converge fully. Once a subswarm has existed
for ι iterations, the particle that originally created the subswarm is placed back
into the main swarm with a new random position in the search space.

The NichePSO-S algorithm also utilizes the alternative subswarm creation
method described previously for the NichePSO-R algorithm. To combine this
method with the scatter merge and reinitialization modifications, when a sub-
swarm is reinitialized the additional κ particles created from the creation strat-
egy are removed from the search. This prevents more and more particles from
being created exponentially as the run progresses. Pseudocode for the NichePSO-
S algorithm is described in Algorithm3. Only the differences between the
NichePSO and NichePSO-S algorithms are shown.

Initialize particles in main swarm;
while stopping criteria not met do

...
foreach subswarm S do { ... }
foreach subswarm S do

if subswarm S meets convergence test then
Reinitialize particles in subswarm S ;

end
foreach subswarm T do

if S and T intersect then
Reinitialize particles in weaker subswarm;

end

end

end
foreach particle P in the main swarm do { ... }

end
Algorithm 3: The NichePSO-S Algorithm
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5 Experimental Results

This section compares the performance of the two proposed algorithms against
the NichePSO algorithm using several benchmark functions. The functions
selected were from the CEC 2013 competition on niching methods for multi-
modal function optimization. All twenty functions outlined in [17] are used,
with the goal of detecting the most global optima over several runs. For each
test, the peak ratio of detected global optima is recorded and averaged over 30
runs. The peak ratio of a run is the percentage of total global optima located for
a function, calculated by the number of global optima found divided by the total
number of global optima. A summary of the functions used is given in Table 1.

In order to effectively test whether a global optimum has been detected or
not, an accuracy threshold is used. Each benchmark function has a global best
score known beforehand, shown in Table 1. At the end of a run, a set of solutions
is returned, one for each existing subswarm. A global optimum is considered
located if the fitness evaluation of a subswarm’s best position is greater than the
global best score minus the accuracy threshold. A smaller accuracy threshold
means that the subswarms will need to be closer to the global best score in order
to have the optimum counted and located. For each experiment, an accuracy
threshold of 0.0001 is used. This threshold matches the smallest threshold used
in the CEC niching competitions, and provides a strict environment for detecting
global optima for each algorithm.

The NichePSO-R and NichePSO-S algorithms are evaluated against the
NichePSO algorithm using the diversity merge modification described in [12].
The original NichePSO algorithm was shown in [12] to suffer from a major prob-
lem where the subswarms created throughout a run do not isolate as intended,
and instead merge into a single large subswarm. The diversity merge modifi-
cation is applied to the NichePSO algorithm as it is shown to overcome the
merging subswarm problem, while also modifying the original algorithm only a
small amount.

Each algorithm uses the parameters w = 0.7 and c1 = c2 = 1.2 to match that
of the original NichePSO. The NichePSO and NichePSO-R algorithms use 250
particles per run. The NichePSO-S algorithm requires less particles due to its
use of a reinitialization strategy, and uses 80 particles per run. The NichePSO-
R and NichePSO-S algorithms use the alternative subswarm creation strategy
that creates κ particles, and for each run a value κ = 1 is used. These values
were empirically shown in [13] to provide strong results with respect to the
computational resources required.

5.1 Results

Experimental results are shown in Table 2. To verify the results shown, Mann-
Whitney U-tests were performed for each pair of results, and the p-values
returned are shown in Table 3. P-values that are statistically significant using
a confidence level of p < 0.05 are shown in bold.
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Table 1. A summary of the twenty benchmark functions described in [17].

Function # of dimensions # of
global
optima

Total
function
evaluations

Global peak
fitness

Five uneven peak Trap 1 2 50 K 200

Equal maxima 1 5 50 K 1

Uneven decreasing maxima 1 1 50 K 1

Himmelblau 2 4 50 K 200

Six-hump camel back 2 2 50 K 1.031628453

Shubert 2 18 200 K 186.7309088

Vincent 2 36 200 K 1

Shubert 3 81 400 K 2709.093505

Vincent 3 216 400 K 1

Modified rastrigin 2 12 200 K −2

Composite function 1 2 6 200 K 0

Composite function 2 2 8 200 K 0

Composite function 3 2 6 200 K 0

Composite function 3 3 6 400 K 0

Composite function 4 3 8 400 K 0

Composite function 3 5 6 400 K 0

Composite function 4 5 8 400 K 0

Composite function 3 10 6 400 K 0

Composite function 4 10 8 400 K 0

Composite function 4 20 8 400 K 0

The NichePSO-R algorithm outperformed the original NichePSO algorithm
on nine out of the twenty benchmark functions used. Out of those nine functions,
eight performances were statistically significant improvements over the origi-
nal algorithm. The original NichePSO algorithm outperformed the NichePSO-R
algorithm on two benchmark functions, but only one was statistically significant.
All remaining results for both algorithms are either equal, or too similar to be
considered a significant difference.

The NichePSO-S algorithm outperformed the original NichePSO algorithm
on eleven out of twenty benchmark functions. Out of these eleven functions, nine
showed an improvement that was statistically significant. The original NichePSO
algorithm outperformed the NichePSO-S algorithm on three functions, two of
which were statistically significant. All remaining results are either equal, or too
similar to be considered a significant difference.

Overall both the NichePSO-R and NichePSO-S algorithm show a consid-
erable improvement over the NichePSO algorithm. This improvement becomes
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more pronounced when one considers that the NichePSO algorithm being tested
uses the diversity merge modification to mitigate the impact of the merging sub-
swarm problem. Compared to the vanilla NichePSO algorithm proposed in [9],
both modified versions greatly outperform the original.

The differences between the NichePSO-R and NichePSO-S algorithms are
much less noticeable. Out of the twenty functions used, the NichePSO-R algo-
rithm performed better than the NichePSO-S on six of the problems. Out of
these six performances, four were a statistically significant improvement. The
NichePSO-S algorithm outperformed the NichePSO-R algorithm on four of the
twenty functions, three of which were statistically significant. All other results
were either even or too similar to be considered a significant difference.

Table 2. The peak ratio of each Algorithm across all benchmark functions.

Function NichePSO NichePSO-R NichePSO-S

Five-uneven-peak trap 1 1 1

Equal maxima 0.86 1 1

Uneven decreasing maxima 1 1 1

Himmelblau 1 1 1

Six-hump camel back 0.5667 1 1

Shubert 0.8241 1 1

Vincent 0.5565 0.6778 0.8472

Shubert 0.649 0.8852 0.8317

Vincent 0.2025 0.2769 0.3377

Modified rastrigin 0.4972 1 1

Composite function 1 0.9944 0.9944 0.7556

Composite function 2 0.7625 0.9833 0.85

Composite function 3 0.8944 0.7667 0.6778

Composite function 3 0.6667 0.6667 0.6667

Composite function 4 0.6292 0.6583 0.6417

Composite function 3 0.6667 0.6667 0.6667

Composite function 4 0.3 0.4167 0.4

Composite function 3 0 0 0.3833

Composite function 4 0 0 0.0125

Composite function 4 0 0 0

When comparing the NichePSO-R and NichePSO-S algorithms to each other,
both have their own strengths and merits. The NichePSO-R algorithm performed
the best consistently and on the most function used. The NichePSO-S algo-
rithm also performed well, and was the only algorithm to be able to locate any
optima on the functions with ten dimensions. Overall, both the NichePSO-R
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Table 3. P-values comparing each algorithms results using mann-whitney U tests.

Function NichePSO to
NichePSO-R

NichePSO to
NichePSO-S

NichePSO-R to
NichePSO-S

Five uneven peak trap 0.9999 0.9999 0.9999

Equal maxima 0.0271 0.0271 0.9999

Uneven decreasing maxima 0.9999 0.9999 0.9999

Himmelblau 0.9999 0.9999 0.9999

Six-hump camel back 0.0001 0.0001 0.9999

Shubert 0.0001 0.0001 0.9999

Vincent 0.0001 0.0001 0.0001

Shubert 0.0001 0.0001 0.0001

Vincent 0.0001 0.0001 0.0001

Modified rastrigin 0.0001 0.0001 0.9999

Composite function 1 0.9999 0.0001 0.0001

Composite function 2 0.0001 0.05 0.0001

Composite function 3 0.0003 0.0001 0.0017

Composite function 3 0.9999 0.9999 0.9999

Composite function 4 0.2757 0.6384 0.5419

Composite function 3 0.9999 0.9999 0.9999

Composite function 4 0.0001 0.0001 0.6031

Composite function 3 0.9999 0.0001 0.0001

Composite function 4 0.9999 0.5093 0.5093

Composite function 4 0.9999 0.9999 0.9999

and NichePSO-S algorithms show a considerable improvement over the original
NichePSO algorithm.

6 Conclusions

This paper proposed two variants of the NichePSO algorithm, referred to as the
NichePSO-R and NichePSO-S algorithms. The NichePSO-R algorithm removes
the ability for subswarms to merge, and instead treats them as out of bounds to
particles not within the subswarm. The NichePSO-S algorithm implements the
scatter merge approach proposed in [11] along with a reinitialization strategy to
greatly improve the exploration and efficiency of the algorithm. Both proposed
variants were shown to locate more global optima on average than the original
NichePSO algorithm across several benchmark MMO functions.

Future work involves improving the performance and robustness for each
proposed algorithm. The NichePSO-R algorithm would benefit from an alterna-
tive method of calculating subswarm radii that defines the area the subswarm is
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searching using the fitness landscape as opposed to the particle positions. The
NichePSO-S algorithm would benefit from the use of a convergence test that
accurately determines when a subswarm has fully converged before reinitializa-
tion. Using a convergence test instead of a set number of iterations would allow
subswarms that converge quickly to reinitialize faster without wasting iterations,
while also allowing subswarms that converge slower more time to fully explore
the local neighbourhood.

Further analysis is needed into the scalability of the NichePSO algorithm
and its variants. All three algorithms performed strongly on lower dimensional
functions, but failed in most cases to find a single optimum on problems of ten
dimensions or higher. Further analysis into the causes of the poor scalability
of the algorithms, along with additional modifications aimed to improve perfor-
mance on higher dimensional problems would benefit the NichePSO algorithms
greatly.
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Abstract. Recently, particle swarm algorithm (PSO) has demon-
strated its effectiveness in solving multi-objective optimization problems
(MOPs). However, due to rapid convergence, PSO has poor distribu-
tion when processing MOPs. To solve the above problems, we propose
a multi-objective collaborative competition particle swarm algorithm
based on vector angles (VaCSO). Firstly, in order to remove the influ-
ence of global or individual optimal particles, the competition mechanism
is used. Secondly, in order to increase the diversity of solutions while
maintaining the convergence, the population is clustered into two groups
which use different learning strategies. Finally, a three-particle competi-
tion and co-evolution mechanism is proposed to improve the distribution
and diversity of particle swarms. We set up comparative experiments
to test the performance of VaCSO compared with the current popu-
lar multi-objective particle swarm algorithm. Experimental results show
that VaCSO has excellent performance in convergence and distribution,
and has a significant effect in optimizing quality.

Keywords: Multi-objective optimization · Co-evolution mechanism ·
Three-particle competition

1 Introduction

In engineering practice and scientific research, we often need to pursue multi-
ple optimization goals. In optimization problems, multiple optimization goals
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are contradictory [7]. This type of problem is called multi-object optimization
problem (MOP).

In the past two decades, multi-objective optimization has attracted increas-
ing interests in the evolutionary computation community. Some population-
based meta-heuristic algorithms have been successfully applied to multi-objective
optimization. As a result, various multi-objective optimization algorithms have
evolved. Among them, the rapid convergence of PSO configured with reasonable
control parameters on single-objective optimization problems [6] has caused more
and more scholars to pay attention to the research of PSO on multi-objective
optimization problems. Generally speaking, the existing multi-objective particle
swarm algorithm can be divided into two categories. The first one is based on
Pareto dominance, which determines the level of the global optimal particle and
the individual optimal particle. The second category is the use of decomposition
ideas, mainly decomposing multiple goals into single goals.

Competitive swarm optimizer (CSO) [1] is a variant of PSO. The main dif-
ference is that the search process is guided by competitors in the current group,
rather than individual individual best particles and global best particles. Both
theoretical analysis and empirical results show that by adopting a competi-
tion mechanism, the competitive group optimizer can achieve a better balance
between convergence and diversity than the original PSO. There are also many
studies applying CSO to MOPs. In CMOPSO [13], two particles are randomly
selected from non-dominated individuals to compete to optimize the particles to
be optimized. In LMOCSO [10], an accelerated speed update formula is used. In
CMaPSO [11], a new environment selection mechanism different from CMOPSO
is adopted. The above algorithms still have the shortcoming of a relatively simple
offspring generation strategy. In order to overcome the problems of traditional
CSO on MOPs, while considering the requirements of MOPs for convergence
and distribution, we propose VaCSO.

In VaCSO, in order to comprehensively consider the two indicators of conver-
gence and distribution in multi-objectives, the following measures are designed.

1. A cluster optimization strategy is proposed. The first population is mainly
responsible for the convergence of the population, and the second population
conducts collaborative learning based on the convergence, taking into account
the distribution of the population.

2. A competitive particle strategy based on angle is proposed. In the proposed
strategy, the competing winner particles enter the “winner set”, and at the
same time, the winning particles guide the losing particles towards the PF
frontier, which improves the convergence of the algorithm.

3. A three-particle competition strategy is proposed. In the proposed strategy,
the intermediate particles are drawn. We make the intermediate particles
learn from the winning particles of the adjacent population to optimize the
gap between the winning particles.

The rest of this paper is organized as follows. The details of the proposed
VaCSO are given in Sect. 2 and the performance of VaCSO is verified in Sect. 3 by
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comparing it with existing multi-objective PSO algorithms. Finally, conclusion
and future work are presented in Sect. 4 .

2 The Proposed VaCSO

2.1 General Framework

VaCSO is similar to the overall framework of other multi-objective optimization
algorithms. The basic structure diagram is shown in Fig. 1. Firstly, randomly
initialize a particle swarm with N solutions in the entire decision space. Then
the particles are sorted according to the fitness value of each particle. The par-
ticles with the higher sorting show that they have better adaptability. Next, the
particles are divided into two populations, and a set of offspring solutions are
generated through particle learning based on the competition mechanism. Then
put the generated offspring particles and the better individual particles into the
selection pool, and obtain a round of better solution sets through the environ-
ment selection operator. Continue this step until the exit condition is met or the
loop ends. Next, we introduce these steps in detail.

Fig. 1. Framework of the Proposed VaCSO

2.2 Clustering Based on Indicators

In the multi-objective optimization problem, the two issues we care about are
the convergence and the distribution of the algorithm. According to these two
directions, we divide the population into two populations. Population 1 is mainly
responsible for generating more individuals with better convergence, and popu-
lation 2 is responsible for generating individuals with better distribution.

We need to consider the impact of convergence indicators on algorithm per-
formance for Population 1. Through the research of scholars, a variety of con-
vergence indicators have also evolved [8]. Here we discuss four convergence indi-
cators and analyze their pros and cons. The four methods are: the sum of all
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objectives (abbreviated as Sum), the Chebyshev distance to the ideal reference
point (abbreviated as CdI), the Euclidean distance to the ideal reference point
(abbreviated as EdI), and the Euclidean distance based on Nadir point (abbre-
viated as EdN).

Sum is one of the simplest and most famous aggregation functions that con-
vert multiple goals into one goal. Since the shape of the optimal frontier of the
Pareto to be optimized is unknown, it is unreasonable to use EdI or EdN directly.
This algorithm is not a decomposition strategy, and CdI is not applicable. In
addition, when calculating EdI and EdN, the ideal reference point or Nadir ref-
erence point must be found first. Sum only needs to sum the target value, which
is simple and easy, so we use Sum as the convergence index.

Above we chose Sum as the convergence index, and then we choose the dis-
tribution index. At present, most of the distribution indicators are based on
Euclidean distance, but this method has a big defect: when the target dimension
increases, the amount of calculation increases greatly and the performance of
the distribution evaluation deteriorates. Since we compete based on angle in the
offspring generation strategy, in order to continue to use angle information, we
use cosine similarity as our distribution index.

Cosine similarity uses the cosine value of the angle between two vectors as
a measure. The calculation formula is as Eq. 1. Here, we use cosine distance as
our distribution indicators.

cos(θij) =
∑M

m=1 (fm(xi) − z∗
m) · (fm(xj) − z∗

m)
√∑M

m=1 (fm(xi) − z∗
m)2 ·

√∑M
m=1 (fm(xj) − z∗

m)2
(1)

2.3 Competitive Learning Based on Elite Archive Sets

Our competition mechanism adopts the CSO framework, and use two small
populations to pursue the convergence and the distribution of the algorithm.
In order to ensure the convergence of the algorithm, we first obtain the elite
particle set, and use the particles in the elite particle set to guide the particles
to be optimized. Then in the two populations according to the CSO framework,
conduct competitive learning.

When the elite particle swarm is initialized, here we use non-dominated sort-
ing and crowding distance to obtain our elite particle swarm. In the later stage of
evolution, the individuals in the elite particle swarm are the winning particles in
the competitive particle swarm optimizer. The purpose of using the elite particle
swarm is to use the winning particles in the elite particle swarm to guide the
losing particles to the frontier.

In population 1, we use the competitive particle swarm optimizer to compete
with the individuals in the elite particle swarm, and use the winning particles to
guide the individuals in the non-elite particle swarm to improve convergence. The
particles in the elite particle swarm compete with the particle to be optimized
according to the angle, and the smaller angle is regarded as the winning particle,
otherwise it is regarded as the losing particle.
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We obtain the velocity formula and position formula of the particle to be
optimized according to Eq. 2 and Eq. 3, respectively. R1, R2 is randomly gener-
ated by a uniform distribution in [0, 1]. w represents the victory particle, and p
represents the particle to be optimized.

Vp,k(t + 1) = R1(k, t)Vp,k + R2(k, t)(Xw,k(t) − Xp,k(t)) (2)

Xp,k(t + 1) = Xp,k(t) + Vp,k(t + 1) (3)

2.4 Co-Evolution Based on the “Three-Particle Competition”
Mechanism

When the basic CSO framework is directly used for multi-objective optimization,
it has the following problems: the offspring generation strategy is single, and
only one competition mechanism is used; only the information of the winning
particles is used, so that the useful information hidden by the failed particles
is not mined. In response to the above problems, we proposed a three-particle
competition mechanism.

Algorithm 1. co-evolution based on the “three-particle competition”.
Input: P (current position), V(current velocities), N(swarm size), D(Optimization tar-

get number)
Output: Offspring (Offspring individuals)
1: B ← According to Euclidean distance, get the adjacent distance between two pop-

ulation particles;
2: for each particle pi in P2 do
3: Use tournament selection rules to select individuals a, b, c from P2;
4: Calculate the angle θ1 between a and pi , θ2 between b and pi , and θ3 between

c and pi ;
5: pw, pn, pl ← Sort angles;
6: Generate offspring;
7: /* three-particle competition */
8: p∗

w ← According to the adjacency matrix B, get the nearest victorious particle
in population 1;

9: Off v2, Off v3 ← The velocity vectors of the two offspring particles are obtained
by Equation 4 and Equation 5;

10: Off p2, Off p3 ← Obtain the position vectors of the two offspring particles by
Equation 3;

11: Offspring ← Individual offspring
12: end for
13: return Offspring

In the three-particle competition, in order to make full use of the information
between particles and maximize the use of particle information, we now design
two two speed update formulas, as shown in we now design two two speed update
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formulas 4 and we now design two two speed update formulas 5. The thought is
further explained.

Vp,k(t + 1) =R1(k, t)Vp,k

+ R2(k, t)((Xn,k(t) + Xl,k(t))/2 − Xp,k(t))
(4)

Vp,k(t + 1) =R1(k, t)Vp,k

+ R2(k, t)((Xn,k(t) + X∗
w,k(t))/2 − Xp,k(t))

(5)

For population 2, in order to avoid the singularity of the offspring speed
update strategy, we use Eq. 4 and Eq. 5 to generate two new velocity vectors,
and the position vector uses Eq. 3.

Fig. 2. Schematic diagram of co-evolution.

Figure 2 shows the schematic diagram of three-particle competition co-
evolution in a two-dimensional target space. Among them, in the elite particle
swarm, a and b are in population 1, and c, d, and e are in population 2. In
population 1, the result of using the particle competition optimizer is that the
particle P1 to be optimized learns from the winning particle b with a smaller
angle value, which improves the convergence of the algorithm.

In population 2, due to the use of the three-particle competition strategy, we
mainly use the information of the failed particle and the intermediate particle.
At this time, it will be divided into two cases: the same side and the opposite
side of the failed particle and the intermediate particle.

The situation on the same side is shown in (a) in Fig. 2, p2 will produce two
possible offspring solutions o1 and o2. The generation of o1 mainly uses Eq. 4
and Eq. 3, p2 is optimized to the gap between the intermediate particle and the
failed particle to expand the two The gap between particles. The generation of
o2 mainly uses Eq. 5 and Eq. 3, and p2 advances in the middle direction between
the intermediate particle and the nearest victory particle in the group 1. The
occurrence of o2 greatly improved the possibility of opening up the gap between
the two populations.
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The situation on the opposite side is shown in (b) in Fig. 2, which also pro-
duces two possible forward directions. The offspring o2 produced by Eq. 5 and
Eq. 3 is also used to optimize the gap between the two populations. The offspring
o1 produced by Eq. 2 and Eq. 3 may be closer to the victory particle, so we added
a polynomial mutation strategy at the end to make o1 fluctuate within a certain
range.

3 Experimental Studies

3.1 Experimental Parameter Settings

In order to compare the performance of the algorithm, we used 9 WFG questions
(WFG1-WFG9), and four ZDT questions (ZDT1-ZDT4) [12]. IGD [3] is a com-
prehensive evaluation index, which is widely used in the evaluation of MOEAs.
The smaller the IGD value, the better the overall performance of the algorithm.
For each test problem, about 5000 points uniformly sampled at the front of
Pareto are used to calculate IGD.

Besides, the Wilcoxon rank sum test [5] with a significance level of 0.05
is adopted to perform statistical analysis on the experimental results, where
the symbols “+”, “−” and “≈” indicate that the result by another MOEA is
significantly better, significantly worse, and statistically similar to that obtained
by VaCSO, respectively.

In this research, in order to verify the effectiveness of the proposed algorithm,
we compare with five multi-objective particle swarm optimization algorithms. It
contains two multi-objective particle swarm optimization algorithms based on
competition mechanisms: CMOPSO [13] and LMOCSO [10]. The other three
multi-objective particle swarm algorithms include: MOPSO [2], MOPSOCD [9]
and MPSO/D [4]. Table 1 shows the standard value and standard deviation of
the IGD index of the algorithm on ZDT and WFG issues. In order to make the
data more accurate, we run the data 30 times here.

In terms of experimental parameter setting, the number of each target divi-
sion in MOPSO is 10. In MPSO/D, the parameters C1 and C2 for updating
the particle velocity are both 2, the differential evolution parameter F is set to
0.5, and CR is set to 0.5. In MPSOCD, CMOPSO, LMOCSO and VaCSO, the
expected number of mutations proM is set to 1, and the distribution index of
the polynomial mutation disM is set to 20. The population size is set to 100,
a total of 10,000 evaluations. In order to make the data more accurate, we run
the data 30 times here, and take the average of the data as the IGD value.

3.2 Experimental Results and Analysis

From Table 1, we can clearly find that the VaCSO algorithm we proposed is
better than the compared algorithms in terms of IGD indicators. Among them,
VaCSO is significantly better than MOPSO and MPSO/D in terms of ZDT,
but its performance is similar to that of LMOCSO and MOPSOCD, but slightly
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worse than CMOPSO. On the WFG problem, VaCSO has an absolute advantage
over the compared algorithms. Among them, on the WFG1 issue, LMOCSO has
the best performance, which may be because it is mainly suitable for large-
scale optimization problems, which makes its distribution on the WFG1 issue
better. CMOPSO also uses a particle swarm optimizer, and its performance on
the WFG problems is gradually worse than VaCSO as the number of targets
increases, which also proves the effectiveness of the three-particle competition
strategy adopted in VaCSO.

Table 1. Median and IQR (in brackets) of IGD metric on the ZDT and all the WFG
test instances

Problem M MOPSO MOPSOCD MPSO/D CMOPSO LMOCSO VaCSO

ZDT1 2 4.1778e+1 (7.03e+0) − 4.1856e-3 (2.70e-4) + 3.2019e+0 (3.40e+0) − 4.4023e-3 (3.26e-4) + 6.7247e-3 (3.18e-3) + 7.8148e-3 (1.34e-3)

ZDT2 2 4.3674e+1 (9.64e+0) − 7.4947e-2 (1.89e-1) − 4.3791e+0 (4.23e+0) − 4.0492e-3 (1.55e-4) + 4.7076e-3 (8.18e-4) ≈ 4.7953e-3 (5.89e-4)

ZDT3 2 3.9994e+1 (7.62e+0) − 2.0566e-1 (1.10e+0) − 4.8278e+0 (3.32e+0) − 1.2855e-1 (1.81e-1) ≈ 1.4458e-1 (1.16e-1) − 4.5582e-2 (1.05e-1)

ZDT4 2 1.9745e+1 (8.21e+0) ≈ 1.3855e+1 (6.21e+0) + 3.3712e+1 (7.29e+0) − 7.9530e+0 (5.68e+0) + 4.1246e-1 (2.40e-1) + 1.8097e+1 (5.43e+0)

WFG1

2 1.2253e+0 (7.04e-2) + 1.6796e+0 (3.87e-2) − 1.5412e+0 (5.22e-2) − 1.2424e+0 (4.56e-2) + 1.1706e+0 (6.15e-2) + 1.3260e+0 (4.45e-2)

3 1.9551e+0 (6.87e-2) − 2.1160e+0 (2.65e-2) − 1.8661e+0 (8.37e-2) − 1.6338e+0 (4.32e-2) + 1.5726e+0 (3.89e-2) + 1.6619e+0 (3.22e-2)

5 2.4268e+0 (7.00e-2) − 2.5634e+0 (2.67e-2) − 2.3139e+0 (4.85e-2) − 2.2220e+0 (3.75e-2) ≈ 2.0673e+0 (5.19e-2) + 2.2237e+0 (5.03e-2)

10 3.3886e+0 (9.83e-2) − 3.4103e+0 (3.55e-2) − 3.1803e+0 (2.79e-2) + 3.2508e+0 (3.62e-2) − 3.1284e+0 (5.66e-2) + 3.2122e+0 (2.79e-2)

WFG2

2 1.3418e-1 (2.69e-2) − 9.2168e-2 (2.14e-2) − 1.2087e-1 (1.58e-2) − 2.0572e-2 (2.13e-3) ≈ 5.3130e-2 (1.41e-2) − 2.1518e-2 (3.77e-3)

3 3.2488e-1 (4.22e-2) − 3.5691e-1 (2.73e-2) − 2.7035e-1 (1.62e-2) − 1.8651e-1 (6.82e-3) − 2.2475e-1 (2.06e-2) − 1.6949e-1 (4.29e-3)

5 2.4341e+0 (9.62e-1) − 1.1056e+0 (1.02e-1) − 6.0474e-1 (1.80e-2) − 7.3783e-1 (2.42e-2) − 5.9159e-1 (2.65e-2) − 4.8673e-1 (7.88e-3)

10 9.5223e+0 (1.83e+0) − 2.6106e+0 (9.40e-2) − 1.4166e+0 (4.26e-2) − 1.8852e+0 (9.68e-2) − 1.5997e+0 (3.99e-1) − 1.2088e+0 (7.64e-2)

WFG3

2 1.1414e-1 (2.74e-2) − 7.0699e-2 (1.18e-2) − 5.8759e-2 (9.39e-3) − 1.7997e-2 (8.79e-4) − 3.0116e-2 (5.46e-3) − 1.6695e-2 (7.83e-4)

3 3.8832e-1 (8.14e-2) − 3.3790e-1 (4.25e-2) − 3.4200e-1 (2.29e-2) − 1.7139e-1 (1.42e-2) − 2.4798e-1 (2.73e-2) − 1.5421e-1 (1.31e-2)

5 2.4556e+0 (8.41e-1) − 8.6330e-1 (1.00e-1) − 8.5910e-1 (4.21e-2) − 9.6669e-1 (9.43e-2) − 1.1568e+0 (1.10e-1) − 6.7039e-1 (8.92e-2)

10 5.2002e+0 (9.27e-1) − 1.6121e+0 (1.39e-1) ≈ 1.8904e+0 (1.23e-1) − 2.8452e+0 (3.30e-1) − 4.2248e+0 (1.46e+0) − 1.5964e+0 (3.30e-1)

WFG4

2 7.8633e-2 (7.28e-3) − 1.1940e-1 (8.71e-3) − 8.8641e-2 (7.23e-3) − 7.3051e-2 (5.63e-3) ≈ 4.8903e-2 (4.65e-3) + 7.2310e-2 (5.65e-3)

3 4.1395e-1 (4.23e-2) − 3.8760e-1 (1.78e-2) − 2.9576e-1 (9.66e-3) − 2.6888e-1 (5.73e-3) − 2.7562e-1 (6.56e-3) − 2.6211e-1 (5.79e-3)

5 4.6722e+0 (3.92e-1) − 1.5000e+0 (3.80e-2) − 1.5978e+0 (3.51e-2) − 1.2221e+0 (1.77e-2) − 1.3654e+0 (1.45e-2) − 1.1971e+0 (1.19e-2)

10 1.5538e+1 (6.56e-1) − 5.2612e+0 (4.90e-2) − 6.1486e+0 (2.65e-1) − 4.8903e+0 (6.23e-2) ≈ 6.1074e+0 (2.05e-1) − 4.9099e+0 (6.25e-2)

WFG5

2 8.4917e-2 (8.44e-3) − 6.9996e-2 (1.44e-3) ≈ 7.0960e-2 (1.71e-3) − 6.8998e-2 (2.38e-3) ≈ 6.8342e-2 (1.84e-3) + 6.9127e-2 (2.13e-3)

3 4.3794e-1 (7.86e-2) − 2.9738e-1 (1.34e-2) − 2.6617e-1 (8.19e-3) − 2.5140e-1 (7.26e-3) ≈ 2.4578e-1 (2.35e-3) ≈ 2.5272e-1 (1.54e-2)

5 4.0059e+0 (6.12e-1) − 1.5552e+0 (3.88e-2) − 1.4362e+0 (2.86e-2) − 1.2322e+0 (3.65e-2) ≈ 1.3245e+0 (8.68e-3) − 1.2390e+0 (5.06e-2)

10 1.1093e+1 (8.00e-1) − 5.7343e+0 (1.04e-1) − 5.2567e+0 (7.12e-2) − 4.9480e+0 (8.48e-2) ≈ 5.8189e+0 (1.63e-1) − 4.9700e+0 (7.12e-2)

WFG6

2 1.1050e-1 (2.40e-2) − 1.1837e-1 (4.89e-2) − 8.8136e-2 (2.68e-2) − 2.6005e-2 (9.73e-3) ≈ 5.4579e-2 (1.69e-2) − 2.5630e-2 (7.82e-3)

3 4.8528e-1 (3.97e-2) − 3.9377e-1 (2.02e-2) − 3.4912e-1 (2.01e-2) − 2.5339e-1 (1.13e-2) − 3.1164e-1 (2.00e-2) − 2.3988e-1 (9.96e-3)

5 4.6054e+0 (3.92e-1) − 1.6368e+0 (4.28e-2) − 1.5489e+0 (2.38e-2) − 1.3165e+0 (4.09e-2) − 1.4541e+0 (4.80e-2) − 1.2086e+0 (2.27e-2)

10 1.4431e+1 (4.50e-1) − 5.3088e+0 (5.84e-2) − 6.0739e+0 (2.52e-1) − 5.0485e+0 (6.15e-2) − 6.7209e+0 (6.60e-1) − 4.9086e+0 (5.88e-2)

WFG7

2 9.5939e-2 (2.24e-2) − 4.2870e-2 (8.38e-3) − 4.8391e-2 (8.68e-3) − 1.6809e-2 (8.47e-4) ≈ 2.4804e-2 (2.31e-3) − 1.6724e-2 (7.22e-4)

3 4.5871e-1 (4.35e-2) − 3.8667e-1 (1.97e-2) − 2.9634e-1 (9.47e-3) − 2.3650e-1 (4.10e-3) − 2.9675e-1 (2.11e-2) − 2.2513e-1 (2.94e-3)

5 4.6796e+0 (2.45e-1) − 1.5465e+0 (3.53e-2) − 1.5758e+0 (3.44e-2) − 1.2604e+0 (3.16e-2) − 1.4098e+0 (2.41e-2) − 1.1861e+0 (1.63e-2)

10 1.4044e+1 (4.88e-1) − 5.2650e+0 (6.03e-2) − 5.6609e+0 (1.81e-1) − 4.8550e+0 (4.49e-2) − 7.4325e+0 (2.79e+0) − 4.8077e+0 (3.28e-2)

WFG8

2 2.6151e-1 (2.53e-2) − 1.6339e-1 (1.37e-2) − 1.5922e-1 (1.17e-2) − 1.2600e-1 (5.69e-3) + 1.2990e-1 (1.04e-2) ≈ 1.3271e-1 (8.27e-3)

3 6.3536e-1 (5.48e-2) − 5.5580e-1 (1.90e-2) − 4.0112e-1 (1.06e-2) − 3.6566e-1 (9.30e-3) ≈ 3.8932e-1 (1.82e-2) − 3.6639e-1 (1.19e-2)

5 4.5986e+0 (3.98e-1) − 1.8097e+0 (4.56e-2) − 1.5182e+0 (2.09e-2) ≈ 1.5404e+0 (6.15e-2) − 1.5583e+0 (5.40e-2) − 1.5037e+0 (5.86e-2)

10 1.4427e+1 (4.33e-1) − 5.4528e+0 (6.22e-2) − 5.6601e+0 (8.74e-2) − 5.3514e+0 (5.65e-2) − 7.0812e+0 (2.54e+0) − 5.2545e+0 (3.91e-2)

WFG9

2 7.5531e-2 (1.96e-2) − 1.0364e-1 (6.11e-2) − 4.1279e-2 (4.35e-3) − 3.0851e-2 (1.92e-3) ≈ 4.3027e-2 (3.63e-2) − 3.1617e-2 (2.51e-3)

3 3.7027e-1 (3.56e-2) − 3.9860e-1 (1.68e-2) − 2.6639e-1 (8.27e-3) − 2.2633e-1 (5.53e-3) ≈ 2.5988e-1 (9.21e-3) − 2.2523e-1 (5.74e-3)

5 3.5757e+0 (6.09e-1) − 1.7392e+0 (5.41e-2) − 1.4693e+0 (2.49e-2) − 1.2227e+0 (4.05e-2) − 1.3581e+0 (1.76e-2) − 1.1682e+0 (3.21e-2)

10 1.0972e+1 (9.45e-1) − 6.0271e+0 (1.88e-1) − 5.4366e+0 (1.06e-1) − 5.1758e+0 (7.47e-2) − 5.9593e+0 (2.39e-1) − 4.9273e+0 (1.00e-1)

+/ − / ≈ 1/38/1 2/36/2 1/38/1 6/20/14 8/29/3

Regarding the WFG series, whether the number of targets is 2, 3, 5 or 10,
VaCSO has shown its good performance. Figure 3 shows the IGD convergence
curves of the algorithm on WFG2, respectively. Take WFG2 as an example for
discussion. In Fig. 3 (a), the number of targets is 3, and in (b), the number
of targets is 10. In the case of three goals, VaCSO has the fastest convergence
speed. At the same time, it is stable around the 40th generation, and the conver-
gence speed and solution quality are better. As the dimensionality increases, the
performance of CMOPSO and LMOCSO based on the competition mechanism
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declines faster in 10 dimensions. And the effect of MPSOD based on decompo-
sition idea gradually becomes better as the target dimension increases. As the
dimensionality increases, the convergence speed of VaCSO further increases, and
it stabilizes around 30 generations, while the IGD value is the smallest.

Fig. 3. Graphs of IGD value changes of 6 comparison algorithms on the WFG2 problem.

4 Conclusion and Remark

This paper proposes an angle-based multi-objective competitive particle swarm
optimization algorithm (VaCSO). In VaCSO, groups are divided into groups
1 and 2 according to indicators. The population 1 is mainly responsible for
improving the convergence of the algorithm and the competitive particle swarm
optimizer is used in the population. In population 2, a three-particle cooperative
competition mechanism is added. By learning from the victory particles in the
population 1, the performance of the algorithm for optimizing the gaps between
the population particles is improved. Experimental results show that our pro-
posed VaCSO has better performance than the current main multi-objective
particle swarm optimization on basic test problems, and the convergence speed
and solution distribution performance are outstanding.

In the future, our three-particle competition mechanism and the maximum
angle priority mechanism will be used to solve large-scale multi-objective algo-
rithms, because the idea of three-particle co-evolution can make the particle
distribution more widely, thus providing the possibility for later exploration of
blank areas.
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Abstract. Binary Particle Swarm Optimization (BPSO) has extended
the capacity of the conventional particle swarm optimization (PSO) for
optimizing the discrete combinational optimization problems. The trans-
fer function of BPSO is key for its capacity to search solution. This paper
discuss the weight setting of two variants called the S-Shaped and the
V-Shaped transfer functions in BPSO. The experimental results indicate
that the increasing weight setting is beneficial to the performance of
BPSO with the S-shaped transfer function, while the decreasing weight
setting is flavorful for that of BPSO with the V-shaped transfer function.
The Multi dimension Knapsack Problem (MKP) are used in the exper-
iment for testing the discussable conclusions. The experimental results
illustrate that the transfer function can be adjusted to improve the per-
formance of BPSO, and the recommended weight setting is obtained,
accordingly.

Keywords: Binary Particle Swarm Optimization · Transfer function ·
Weight setting · Knapsack problem

1 Introduction

Particle Swarm Optimization (PSO) is an evolutionary computation algorithm
based on Swarm intelligence developed by R.Eberhart and J.Kennedy in 1995
[1]. In order to utilize PSO to solve the problems of discrete values, Binary
Particle Swarm Optimization (BPSO) was developed in 1997 [2]. The BPSO
has extended the functionality of PSO and is applied to many combinatorial
problems in the discrete space [3,4], In order to gain more advantage for BPSO
to optimize combinatorial problems, there are many methods to improve BPSO
[3,4].

BPSO has rarely been analyzed in theory. [5] defined a conception of the
bit change rate to analyze and find that BPSO is lack of the local searching
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ability; The runtime of BPSO is investigated and the lower bound for swarm
polynomial size has been presented, but the results are hardly used to improve
the BPSO [6]. One of the key components in BPSO is the transfer function. The
original BPSO’s transfer function is sigmoid function which increases over the
velocity like the S shape which is called the S-shaped function. [7] provided a set
of V-shaped functions and verified their effects. The different transfer functions
may show diverse behaviors and have different impacts on the performance of
algorithms [8].

In this paper, based the analysis on the velocity of BPSO with the different
transfer functions [9], the setting of BPSO’s weight is discussed and some exper-
iments on Knapsack Problem are conducted to test the performance. In terms
of the theory of the velocity on the BPSO, the different weight settings for the
different transfer function of BPSO are proposed. The experimental results show
that the transfer function can be adjusted to improve its performance.

The rest of the paper is composed as follows: in Sect. 2, BPSO is introduced
and both of the S-shaped and the V-shaped transfer functions are discussed.
Section 3 introduces the analysis on the velocity of BPSO, some theoretical
results are introduced. In Sect. 4, the weight and the parameter of transfer func-
tion are investigated and the rule of weight and parameter setting is discussed.
In Sect. 5, Knapsack Problem is used to compare with some variants of BPSO
with different transfer function; Sect. 6 is the conclusion of the paper.

2 The Transfer Function of the BPSO

2.1 The Conventional BPSO

Unlike the PSO, the position updating of BPSO switches its values between “0”
and “1” based on the velocity of each dimension, which is a binary bit, of a
particle. At the beginning, each particle in BPSO consists of a string of binary
code, and each binary bit uses Eq. (1) to generate the velocity.

vid = w · vid + c1 · r1 · (pid − xid) + c2 · r2 · (pgd − xid) (1)

where 0 < w ≤ 1 that is the inertia weight, vid denotes the dth bit velocity of
the ith particle, pid is the dth bit of the best position found so far by the ith
particle, pgd is the dth bit of the best position found so far by all particles, c1
and c2 are the acceleration factors and r1 and r2 are random variables following
the uniform distribution within the interval [0, 1]. After being updated by Eq.
(1), the velocity vid is bounded by a threshold vmax as follows:

vid

{
vmax if vid > vmax

−vmax if vid < −vmax
(2)

The velocity of BPSO is mapped to the value in the range of [0, 1] with a sigmoid
function as Eq. (3), which is the so called transfer function.

s(vid) =
1

1 + exp(−vid)
(3)
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The bits of a particle switch their binary value using the following equation Eq.
(4).

xid

{
1 if rand() < s(vid)
0 otherwise

(4)

where rand() is a stochastic value sampled in the interval [0, 1] in uniform
distribution. The particle changes each bit value of its binary string using Eq.
(4), so s(vid) represents the probability of the bit xid being 1 and is called as
transfer function which controls the probability that each bit of BPSO switches
from 1 to 0 and vice versa.

2.2 The Transfer Function of BPSO

In terms of BPSO, the velocity indicates the distance of a particle from the
optimal position. The transfer function of BPSO must map the velocity to the
probability of bit changing. For selecting transfer function, some rules are listed
as follows which are considered [10]:

(1) A large absolute value of velocity must provide a high probability of changing
the bit position with respect to its previous position (from 1 to 0 or vice
versa).

(2) A small absolute value of velocity must provide a small probability of chang-
ing the position. In other words, a zero value of the velocity represents that
the bit position is good and should not be changed.

The above ideas can make particle swarm slowly get close to the global
optimal particle; and the searching behavior can be shifted from the exploration
to the exploitation in the solution space. The curve of the transfer function in
the conventional BPSO, Eq. (2), is shown in Fig. 1. We call the transfer function
S-shaped transfer function. Based on Eq. (3), it can be found that the transfer
function of conventional BPSO is not in accordance with the above ideas.

Fig. 1. The new transfer function of S-shape and V-shape

Another type of the transfer function was proposed with a different position
updating rule [7], which is called the V-shaped transfer function. One of these



The Experimental Analysis on Transfer Function of BPSO 257

new transfer functions is Eq. (5) and its figure is shown in Fig. 2. According
to Eq. (5) and the Fig. 2, the new transfer function basically complies with the
above ideas on the transfer function.

T (vid) = |tanh(vid)| (5)

Based on the V-shaped function, a new position updating scheme was designed
in the [7], where the bit updating equation was changed as the follows:

xid

{
1 − xid if rand() < T (vid)

xid otherwise
(6)

where rand() is a stochastic number which is sampled from the distribution of
interval [0, 1], 1-xid denotes that the bit value should be changed.

2.3 The Analysis on the Velocity of BPSO

In the analysis of BPSO, each dimension of a particle is one bit which switches
its value between “0” and “1” [9]. For analyzing the velocity by just considering
one bit, Eq.(1) can be simplified as follows:

vt+1 = w · vt + c1 · r1 · (p − xt) + c2 · r2 · (pgd − xt) (7)

where w is the weight. In the following section, E[vt] indicates the expected value
of the velocity vt. In [9], theory conclusions are obtained as follows.

Lemma 1. If w=1 and p= g=1, then ∀vmax > v0,∃T > 0,

E[vt] > vmax,∀t > T (8)

Lemma 2. If w=1 and p= g=0, then ∀vmin > v0,∃T > 0,

E[vt] < vmin,∀t > T (9)

Lemma 3. Given 0 < w < 1, p= g=1 and v0 ≥ 0, it can be deduced that

wtv0 < E[vt] < wtv0 +
c1 + c2

2
· 1 − wt

1 − w
(10)

Lemma 4. Given 0 < w < 1, p = g = 0 and v0 ≤ 0, it can be deduced that

wtv0 − c1 + c2
2

· 1 − wt

1 − w
< E[vt] < wtv0 (11)
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3 The Discussion of Transfer Function on BPSO

In this section, we discuss the V-shaped transfer function of BPSO with the
weight based on the theory of the velocity in the above section. For the V-
shaped transfer function, the bit updating formula Eq. (6) is different from the
conventional BPSO updating formula Eq. (4). In terms of Eq. (3), (4), (5) and
(6), the property of the two sets of transfer functions of BPSO can be obtained
as the follows.

(1) For the original BPSO with S-shaped function, the bigger the absolute of
velocity is, the smaller the probability is for the bit to keep fixed. On the
contrary, the bit becomes random when the velocity approaches the zero.

(2) For the BPSO with V-shaped function, the results are contrary with that of
the original BPSO. If the absolute value of velocity is bigger, the bit will be
more random, while the bit will be more constant.

In terms of the Lemma 1 and Lemma 2, when p = g and w= 1, the E[vt] will
reach the maximum threshold (when p = g = 1) or minimal threshold (when
p = g = 0), so the |E[vt]| will approach the largest value at the end. Under this
case, the bit becomes random and switches between “0” and “1” by random for
the V-shaped transfer function. However, for the S-shaped transfer function or
original BPSO, the bit will become constant and approach 1 or 0 under this case.

In terms of the Lemma 3 and Lemma 4, when p = g and 0 < w < 1,
|E[vt]| ∈[0, c1+c2

2 · 1
1−w ] is a monotonically increasing of w. The bigger the w is,

the wider the interval [0, c1+c2
2 · 1

1−w ]. The smaller the w is, the closer the interval
[0, c1+c2

1−w ] is to the zero. Under this condition, for V-shaped transfer function, the
smaller the w is, the nearer the value of function is to zero, so the more constant
the bit becomes. However, for S-shaped transfer function, the bit will be random.
When p �= g, the vt will vary randomly, so the bit will change by random.

The higher random degree of bit changing implies that the power of explo-
ration is stronger while the bit being constant denotes that exploitation should
be taken on. According to the rule of exploration changing to exploitation over
time, the inertia weight w of BPSO with V-shaped transfer function should
decrease over the time, and that with S-shaped transfer function increases over
the time. Therefore, the BPSO with S-shaped transfer function should take on
the increasing weight over time like Eq. (12), while that with V-shaped transfer
function should use the decreasing inertia weight over the time like Eq. (13).

w = wmin + (wmax − wmin)
t

tmax
(12)

w = wmax − (wmax − wmin)
t

tmax
(13)

where wmin and wmax denotes the minimum and maximum of inertia weight
respectively, tmax means the maximum iteration time of the algorithm running.
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4 Experiment Test with 0/1 Knapsack Problem

In order to compare the effectiveness of different schemes of BPSO with different
transfer functions, we solve the combination optimization problem – the Multi-
dimensional 0/1 Knapsack Problem (MKP) with the different schemes. MKP
has been used in the wide application fields. However, it is a NP problem in
the computation theory. MKP can be denoted with 0/1 code and solved by the
BPSO. Hence, MKP is commonly used as the benchmark problem for test binary
optimization algorithms.

In the section, the transfer function and the position updating equation of
S-shaped BPSO are defined in Eq. (3) and Eq. (4), while that of V-shaped BPSO
are shown in Eq. (5) and Eq. (6). The weight increasing and weight decreasing
are described as Eq. (12) and Eq. (13) respectively.

4.1 The Description of MKP

Multi-dimension 0/1 Knapsack Problem (MKP) considers m(m > 1) resources
to be consumed. Each resource has a capacity Cj(j = 1, ...,m). MKP is about
how to produce the n goods with the m resources which each capacity is confined
as constant value. The MKP aims to maximize total profit of goods under the
case of the confined resources capacity. Each good i has a profit pi and a quantity
of the consumption of resource Cij(i = 1, ..., n). The problem is formulated as
the following equations.

max

n∑
i=1

pixi (14)

s.t.
n∑

i=0

cijxi ≤ Cj , j = 1, ...,m. (15)

xi ∈ {0, 1} , i = 1, ..., n. (16)

where x = (x1, x2, ..., xn) can be represented as a scheme of Knapsack Problem,
which xi ∈ 0, 1 denotes whether the good xi is produced. The value x denotes a
particle position and a candidacy solution. The number n is the total dimensions
of a particle and the total number of goods in knapsack problem. The value xj

represents whether the jth goods is selected in a particle. If xi = 1, the jth goods
is loaded in knapsack. Otherwise, the jth goods is not loaded in the knapsack.

Because MKP is a constraint optimization problem, MKP is tracked as the
constraint problem using the penalty faction, which the objective function is
described as follows:

f(x) =
n∑

i=1

pixi + β ·
m∑
j=1

(Q
n∑

i=1

min(0, Cj − cijxi)) (17)

where Q is penalty factor. The value of Q is a positive constant number which is
set as 1e+100. So, the constrained optimization problem Eq. (16) is transformed
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into the non-constraint problem Eq. (17). It needs to note that the maximum of
objective function will be computed, not minimum.

The test datasets of MKP are selected from the website of University of
Nottingham (http://www.cs.nott.ac.uk/jqd/mkp/index.html), that are called as
Sento, Weing and Weish which include 2, 8 and 30 instances respectively. Table 1
describes the parameter settings in the experiments in detail. Note that the
number of particles is set as the number of goods of each instance, n.

Table 2 shows the results about the Sento and Weing instances. By observ-
ing the results collected in the table, it presents an obvious advantage of
“SBPOSIW” over “SPBSODW”, and “VBPSODW” over “VBPSOIW”. For
every instance, the t-test with significance level of 0.05 is carried out between
“SBPODW” and “SBPSOIW”, and between “VBPSODW” and “VBPSOIW”.
“SBPSOIW” obtains significantly better results than “SBPSODW” on 7 out
of the total 10 instances (1 Sento instance and 6 outof 8 Weing instances),
while “VBPSODW” is significantly better than “VBPSOIW” on all 10 instances.
Moreover, “SBPSOIW” performs significantly best among four variants of BPSO
which shows that “SPBOSP” is better than “VBPSODW”. In terms of success
rate of Table 4, “SPSOIW” performs better than “SPSODW”, obtaining the
higher success rate on 9 out of the total 10 instances. “VPSODW” obviously
performs the better than “VPSOIW” for all instances.

Table 1. Parameter settings of the experiments.

Parameter Description Value

wmax Upper bound of w 1

wmin Lower bound of w 0.4

Q Penalty coefficient in Eq. (17) 10100

N Number of particles in the BPSO n

tmax Maximal number of iterations 3000

The position of particle is initialized by the following equation:

xid

{
1 if rand() < 0.5
0 otherwise

(18)

where rand() is the number which is generated in interval [0, 1]. The initial
velocity vij is initialized by following equation:

vij = vmin + rand()(vmax − vmin) (19)

where vmax and vmin represent the maximum and minimum of velocity
respectively.

http://www.cs.nott.ac.uk/jqd/mkp/index.html
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4.2 Experiment and Analysis

In order to compare four variants of BPSO algorithm using MKP instances, 100
independent runs are conducted for each instance with each BPSO algorithm,
and the mean and standard deviation of the 100 corresponding results are calcu-
lated. Tables 2 and 3 present the mean and standard deviation of the results of
the compared algorithms in 100 independent runs on the MKP instances. The
columns “m” and “n” denote the number of resources and goods respectively.
The larger m and n all is, the more complex the instance is. The column “Opt”
indicates the optimal value of each instance, which is given in the datasets.

Table 2 shows the results about the Sento and Weing instances. By observ-
ing the results collected in the table, it presents an obvious advantage of
“SBPOSIW” over “SPBSODW”, and “VBPSODW” over “VBPSOIW”. For
every instance, the t-test with significance level of 0.05 is carried out between
“SBPODW” and “SBPSOIW”, and between “VBPSODW” and “VBPSOIW”.
“SBPSOIW” obtains significantly better results than “SBPSODW” on 7 out
of the total 10 instances (1 Sento instance and 6 out of 8 Weing instances),
while “VBPSODW” is significantly better than “VBPSOIW” on all 10 instances.
Moreover, “SBPSOIW” performs significantly best among four variants of BPSO
which shows that “SPBOSP” is better than “VBPSODW”. In terms of success
rate of Table IV, “SPSOIW” performs better than “SPSODW”, obtaining the
higher success rate on 9 out of the total 10 instances.

Table 3 presents the results on the Weish instances like the Table 2, in which
the similar effect can be observed to the results listed in Table 2. In terms of
both mean profit and standard deviation, “SBPSOIW” performs the better than
“SBPSODW”, and “VBPSODW” is better than “VBPSOIW”. The statistical
test shows that “SBPSOIW” is significantly better than “SBPSODW” in 27 out
of the total 30 instances except 3 instances that the optimal is obtained, while
“VBPSODW” embodies significantly better than “VBPSOIW” for all instances.
Similarly, “SBPSOIW” presents better effectiveness than “VBPSODW”.

Table 2. Mean and standard deviation of the results of the compared algorithms in
100 runs on the Sento and Weing datasets.

MKP m n Opt Mean (STD)

SBPODW SBPSOIW VBPSODW VBPSOIW

Sent01 30 60 7.77E+03 7.71E+03 (5.23E+01) 7.74E+03 (3.02E+01) 7.65E+03 (8.55E+01) 7.17E+03 (3.82E+02)

Sent02 30 60 8.72E+03 8.68E+03 (2.48E+01) 8.70E+03 (1.50E+01) 8.65E+03 (4.92E+01) 8.53E+03 (9.28E+01)

Weing1 2 28 1.41E+05 1.41E+05 (1.33E+02) 1.41E+05 (7.03E+01) 1.41E+05 (6.28E+02) 1.38E+05 (3.79E+03)

Weing2 2 28 1.31E+05 1.31E+05 (3.94E+01) 1.31E+05 (4.36E+01) 1.30E+05 (8.38E+02) 1.24E+05 (5.59E+03)

Weing3 2 28 9.57E+04 9.51E+04 (6.01E+02) 9.53E+04 (4.27E+02) 9.44E+04 (1.32E+03) 8.38E+04 (7.61E+03)

Weing4 2 28 1.19E+05 1.19E+05 (9.01E+02) 1.19E+05 (2.74E+02) 1.18E+05 (1.57E+03) 1.13E+05 (4.76E+03)

Weing5 2 28 9.88E+04 9.79E+04 (1.52E+03) 9.86+04 (8.83E+02) 9.69E+04 (2.05E+03) 9.14E+04 (5.70E+03)

Weing6 2 28 1.31E+05 1.30E+05 (1.99E+02) 1.30E+05 (1.93E+02) 1.30E+05 (6.67E+02) 1.24E+05 (5.37E+03)

Weing7 2 105 1.10E+06 1.09E+06 (2.00E+03) 1.10E+06 (1.12E+03) 1.09E+06 (3.92E+03) 1.08E+06 (7.47E+03)

Weing8 2 105 6.24E+05 6.04E+05 (1.36E+04) 6.18E+05 (4.95E+03) 5.94E+05 (1.91E+04) 5.36E+05 (3.55E+04)
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Table 3. Mean and standard deviation of the results of the compared algorithms in
100 runs on the Weish datasets.

MKP m n Opt Mean (STD)

SBPODW SBPSOIW VBPSODW VBPSOIW

Weish01 5 30 4.55E+03 4.54E+03 (2.64E+01) 4.55E+03 (1.11E+01) 4.52E+03 (4.79E+01) 4.37E+03 (1.76E+02)

Weish02 5 30 4.54E+03 4.53E+03 (8.09E+00) 4.53E+03 (3.58E+00) 4.50E+03 (3.97E+01) 4.38E+03 (1.75E+02)

Weish03 5 30 4.12E+03 4.09E+03 (2.99E+01) 4.11E+03 (1.17E+01) 4.07E+03 (4.47E+01) 3.90E+03 (1.71E+02)

Weish04 5 30 4.56E+03 4.56E+03 (0.00E+00) 4.56E+03 (0.00E+00) 4.55E+03 (3.76E+01) 4.24E+03 (3.23E+02)

Weish05 5 30 4.51E+03 4.51E+03 (0.00E+00) 4.51E+03 (0.00E+00) 4.49E+03 (8.04E+01) 4.11E+03 (3.57E+02)

Weish06 5 40 5.56E+03 5.53E+03 (2.34E+01) 5.54E+03 (1.00E+01) 5.51E+03 (4.22E+01) 5.37E+03 (1.19E+02)

Weish07 5 40 5.57E+03 5.56E+03 (1.60E+01) 5.56E+03 (8.50E+00) 5.53E+03 (5.60E+01) 5.37E+03 (1.43E+02)

Weish08 5 40 5.60E+03 5.59E+03 (2.14E+01) 5.60E+03 (6.67E+00) 5.57E+03 (4.16E+01) 5.42E+03 (1.23E+02)

Weish09 5 40 5.25E+03 5.24E+03 (2.26E+01) 5.24E+03 (9.70E+00) 5.20E+03 (7.00E+01) 4.94E+03 (2.35E+02)

Weish10 5 50 6.34E+03 6.31E+03 (3.19E+01) 6.33E+03 (1.97E+01) 6.28E+03 (6.56E+01) 6.05E+03 (2.17E+02)

Weish11 5 50 5.64E+03 5.60E+03 (4.95E+01) 5.61E+03 (4.34E+01) 5.56E+03 (7.75E+01) 5.33E+03 (2.23E+02)

Weish12 5 50 6.34E+03 6.32E+03 (3.79E+01) 6.33E+03 (1.78E+01) 6.26E+03 (8.90E+01) 6.00E+03 (2.72E+02)

Weish13 5 50 6.16E+03 6.13E+03 (4.50E+01) 6.16E+03 (1.87E+01) 6.08E+03 (7.85E+01) 5.82E+03 (2.26E+02)

Weish14 5 60 6.95E+03 6.92E+03 (3.57E+01) 6.94E+03 (2.10E+01) 6.85E+03 (8.98E+01) 6.59E+03 (1.86E+02)

Weish15 5 60 7.49E+03 7.47E+03 (2.49E+01) 7.48E+03 (1.97E+01) 7.43E+03 (7.54E+01) 7.11E+03 (3.08E+02)

Weish16 5 60 7.29E+03 7.26E+03 (3.09E+01) 7.27E+03 (1.84E+01) 7.22E+03 (6.90E+01) 7.00E+03 (1.77E+02)

Weish17 5 60 8.63E+03 8.62E+03 (1.09E+01) 8.63E+03 (6.16E+00) 8.61E+03 (2.40E+01) 8.49E+03 (1.04E+02)

Weish18 5 70 9.58E+03 9.54E+03 (2.80E+01) 9.56E+03 (1.86E+01) 9.51E+03 (5.56E+01) 9.33E+03 (1.47E+02)

Weish19 5 70 7.70E+03 7.64E+03 (4.72E+01) 7.68E+03 (2.92E+01) 7.58E+03 (9.25E+01) 7.25E+03 (2.33E+02)

Weish20 5 70 9.45E+03 9.42E+03 (3.04E+01) 9.44E+03 (1.70E+01) 9.37E+03 (6.81E+01) 9.06E+03 (2.11E+02)

Weish21 5 70 9.07E+03 9.03E+03 (3.40E+01) 9.06E+03 (2.71E+01) 8.99E+03 (6.54E+01) 8.65E+03 (2.50E+02)

Weish22 5 80 8.95E+03 8.87E+03 (4.86E+01) 8.91E+03 (3.37E+01) 8.79E+03 (1.22E+02) 8.45E+03 (2.44E+02)

Weish23 5 80 8.34E+03 8.26E+03 (5.95E+01) 8.32E+03 (2.92E+01) 8.19E+03 (1.07E+02) 7.84E+03 (1.93E+02)

Weish24 5 80 1.02E+04 1.02E+04 (3.26E+01) 1.02E+04 (2.36E+01) 1.01E+04 (6.03E+01) 9.95E+03 (1.23E+02)

Weish25 5 80 9.94E+03 9.90E+03 (2.31E+01) 9.92E+03 (1.26E+01) 9.86E+03 (6.47E+01) 9.58E+03 (1.70E+02)

Weish26 5 90 9.58E+03 9.48E+03 (6.22E+01) 9.54E+03 (2.58E+01) 9.44E+03 (1.07E+02) 8.94E+03 (2.72E+02)

Weish27 5 90 9.82E+03 9.70E+03 (8.05E+01) 9.78E+03 (5.98E+01) 9.61E+03 (1.45E+02) 9.16E+03 (2.17E+02)

Weish28 5 90 9.49E+03 9.37E+03 (8.94E+01) 9.47E+03 (3.72E+01) 9.32E+03 (1.22E+02) 8.89E+03 (2.32E+02)

Weish29 5 90 9.41E+03 9.28E+03 (7.20E+01) 9.36E+03 (4.08E+01) 9.23E+03 (1.10E+02) 8.76E+03 (2.43E+02)

Weish30 5 90 1.12E+04 1.11E+04 (2.35E+01) 1.12E+04 (1.69E+01) 1.11E+04 (4.67E+01) 1.08E+04 (1.76E+02)

From four tables, it can be found that the increasing weight setting is better
than the decreasing weight setting for the original BPSO which utilizes the S-
shaped transfer function. However, the decreasing weight setting is better than
the increasing weight setting for BPSO with V-shaped transfer function.

Furthermore, one can obtain that the BPSO with S-shaped transfer function
has better performance than that with V-shaped transfer function, which can be
derived from the comparisons between “SBPSOIW” and “VBPSODW” in terms
of four tables whether observing the mean profit or the success rate of 100 run
times.

In order to compare the efficiency of different algorithms, the normalized
deviation Δ(Mean,Opt) of mean profit to optima of each instance is defined
in Eq. (20), and then the mean Δ(Mean,Opt) of difference algorithms on each
MKP Dataset can be calculated.

Δ(Mean,Opt) =
Opt − Mean

Opt
(20)

Figure 2 shows the boxplots of Δ(Mean,Opt) for the compared algorithms
over 100 runs of a subset of instances selected from the Sento, Weing and Weish
MKP datasets, which are representative instances in terms of problem size.
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(a) Sento2 (b) Weing03 (c) Weing07

(d) Weish03 (e) Weish08 (f) Weish13

(g) Weish18 (h) Weish23 (i) Weish28

Fig. 2. The normalized deviation of the mean profit of the compared algorithms to the
optimal profit on some MKP instances selected from the datasets.

The figures clearly show that the distribution of the normalized deviation
of “SPSOIW” are below that of “SPSODW” and “VBPSODW” is lower than
that of “VBPSOIW” for these instances. For Weish03, weish08 and Weish13, the
median of “SBPSOIW” reaches zero, indicating that “SBPSOIW” is more likely
to achieve the optimal solutions than the other algorithms on these instances.
These figures can further show the same results as that of the previous tables
with more visual method.

5 Conclusion

In this paper, in terms of the theory of the velocity on the BPSO, the S-shaped
transfer function and V-shaped transfer function are analyzed. It is obvious
that the different weight setting is appropriate to the different transfer function.
The increasing weight setting is suit for the S-Shaped transfer function, while
decreasing weight setting is favor for the V-shaped transfer function. Although
the experimental results show that BPSO with S-shaped transfer function per-
forms better than BPSO with V-Shape transfer function, the transfer function
can be adjusted to improve its performance. It is important that the weight
setting should imply with the conclusion obtained in the paper.
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Abstract. In this study, based on the characteristics and the transmission mech-
anism of COVID-19, SEIR epidemiological model is employed for modeling
and analysis, utilizing the data of Hubei Province. To optimize the key epidemic
parameters of the proposed SEIR model, a stochastic computational intelligence
approach, the Particle SwarmOptimization (PSO) is introduced. To better analyze
the epidemic, the data between January 20, 2020 toMarch 25, 2020 is selected and
divided into four stages. The parameters are dynamically changeable at different
stages of the epidemic, which shows the effectiveness of public health prevention
and control measures. Moreover, the Genetic Algorithm (GA) and the Bacterial
ForagingOptimization (BFO) are also executed for comparison. The experimental
results demonstrate that all swarm intelligence algorithms mentioned above can
help forecast COVID-19, and PSO shows the advantages of faster convergence
speed and the capability of finding a better set of solutions in fewer iterations,
particularly.

Keywords: COVID-19 · SEIR Model · Swarm Intelligence · Particle Swarm
Optimization · Prevention and Control Measures

1 Introduction

Anovel coronavirus disease (COVID-19) has rapidly spread, attractingworldwide atten-
tion since late 2019. Since the outbreak of the epidemic, three methods, i.e., curve fitting
[1, 2], epidemic dynamics modeling and artificial intelligence algorithms [3] have been
widely employed for prediction [4].

Epidemic dynamics modeling is a basic mathematical method in infectious disease
research. In particular, the compartment model [5] is largely applied. It defines several
states and tells the spreadmechanism by simulating the transformation between different
states. At present, the SEIR model, one of the classic compartment models, is frequently
used to study COVID-19. Wu et al. [6] estimated the initial infected cases imported
from Wuhan in the baseline scenario through an SEIR epidemiological model. Peng
et al. [7] proposed a generalized SEIR model, introducing a new quarantined state to
analyze the epidemic. Wang et al. [8] set the parameters of the SEIR model based on
previous experimental results, which shows the limitation that these static parameters is
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unsuitable to analyze the situation at different stages. To avoid the limitation mentioned
above, Fang et al. [9] revised the parameters artificially through grid search, whichmight
inevitably cause deviations.

Via simulation of herd animals such as birds, Kennedy and Eberhart introduced PSO
[10], which is now a classic computational intelligence algorithm. And it has become
a popular optimization method in medical research by virtue of its high convergence
speed, simple mathematics and good accuracy. For instance, Zeng et al. [11] developed
PSOwith switching delay, then applied it for optimization of the support vector machine
(SVM)model’s parameters, developing an effective method to diagnose the Alzheimer’s
disease. Navaneeth and Suchetha [12] put forward a combined architecture and also
introduced PSO for parameter optimization, which help detect and classify diseases.

Motivated by above discussion, our major objective is model modification based on
the characteristics and transmission mechanism of COVID-19. Meanwhile, we try to
use the PSO algorithm as an available stochastic approach to optimize a set of model
solutions. The goal of the optimization solver is to minimize the errors between the
actual data and the predicted data by varying the improved SEIR model’s parameters.
The PSO algorithm provides a stochastic method instead of the standard deterministic
method in solving SEIRmodel. Then, impact of public health initiatives on the epidemic
can be further analyzed through the changes of key parameters. Moreover, the Genetic
Algorithm (GA) and the Bacterial Foraging Optimization (BFO) are also executed for
comparison.

2 SEIR Modeling of COVID-19

2.1 Data Sources

Data of Hubei Province are gathered from the National Health Commission of the Peo-
ple’s Republic of China (abbreviated as NHC) [13], including current quarantined cases
and cumulative cases of infection, death and cure. It is noteworthy that the Wuhan
Municipal Health Commission has released two statements [14]: The number of newly
confirmed cases on February 20, 2020 has been revised to 631, and the cumulative
number of confirmed, recovered and dead cases on April 16, 2020 have been revised to
50333, 46335, 3869 respectively.

2.2 Modified SEIR Model of COVID-19

The classical SEIR model [15] simulates the dynamic transformation of people between
four different states of an epidemic phenomenon (seeFig. 1), i.e., susceptible (S), exposed
(E), infectious (I) and removed (R). The constant N = S + E + I + R means the entire
local population. The classic SEIR model does not consider the changes in the mobility,
birth and mortality rate of the population, providing a basic model for the study of
infectious diseases [15].

According to transmission mechanism and characteristics of COVID-19, we
improved the classic SEIR model to better study the epidemic (see Fig. 2), introduc-
ing six different states to generalize the classical model, i.e., S(t), E(t), I(t), H(t), R(t)
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and D(t). These six different states denote the respective number of the susceptible
cases, exposed cases, infectious and unconfirmed cases (with infectious capacity and
without intervention), hospitalized cases (confirmed and treated), recovered cases and
death cases at time t. The major parameters of the improved model are defined as Table
1. Details are as followed.

• January 19th, 2020, human-to-human transmission was confirmed. Since then, the
Chinese government has applied rigorous isolation measures, including centralized
isolation and self-isolation, to stem the spread of the virus from person to person.
Thus, another new state of the exposed category is considered in the improved model,
stimulating the situation where the uninfected people re-convert into the susceptible
category after a prescribed quarantine period.

• The symptoms of COVID-19 are similar to some common cold, so it is difficult for
patients to detect the bad condition in time. Besides, the epidemic is highly contagious,
and ifmedical resources fail tomeet the needs, it would also be difficult for the infected
person to be diagnosed and treated in time. Referring to Peng et al. (2020) [7], the
modified model adds the category of confirmed and hospitalized people, which is
supposed not to contact with others. It is linked to the infective category through a
parameter of the time reciprocal from infection to treatment.

• As COVID-19 has a certain fatality rate, the modified model separates the original R
state into the recovered category and the death category. The two new states are linked
to the confirmed and hospitalized category through the cure rate and the mortality rate
respectively.

• With the continuous improvement of prevention and control measures, the domestic
epidemic has gone through several stages, which means that the parameters of the
model should be dynamically changeable.

Fig. 1. The classic SEIR compartment model.

The prospective evolution is: under a certain probability (β), the susceptible category
(S) is distinctly possible to turn into the exposed (E) after contacting with the infectious
and unconfirmed cases (I). The exposed category has two states. Individuals with a
probability (PE) pass into the infectious and unconfirmed category after an incubation
time (1/σ 1), while the rest (1− PE) goes back to the susceptible category after a quaran-
tine time (λ). The infective persons are hospitalized and treated (become H) after being
detected (normally in a time lag 1/σ 2). Then they involve into the recovered category or
the death category through the recovery rate (μ) or the mortality rate (κ), respectively.
The mathematical description of the improved SEIR model is shown below:

dS(t)

dt
= −βI(t) · S(t)

N
+ 1

λ
(1− PE)E(t) (1)
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Fig. 2. The improved model.

Table 1. Definition of parameters.

Parameters Meaning of parameters

β Social contact transmission rate

λ Quarantine time

σ 1 Inverse of the average incubation period

PE Proportion of virus carriers among exposed persons

σ 2 Inverse of the time lag from infection to treatment

μ Recovery rate

κ Mortality rate

dE(t)

dt
= βI(t) · S(t)

N
− 1

λ
(1− PE)E(t) − σ1PEE(t) (2)

dI(t)

dt
= σ1PEE(t) − σ2I(t) (3)

dH (t)

dt
= σ2I(t) − μ(t)H (t) − κ(t)H (t) (4)

dR(t)

dt
= μ(t)H (t) (5)

dD(t)

dt
= κ(t)H (t) (6)
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3 Parameter Estimation of the Model

3.1 The PSO Algorithm

In PSO, particles reach the searching space with random initialized locations. Then, in
order to find the optimal positions of the population and the particle itself, each particle
keeps moving around. For each iteration, by tracking the determined optimal positions,
position and velocity of each particle are prepared to be updated. The formulas of the
update behavior are defined by:

Vid (t + 1) = ω(t)Vid(t) + c1r1[Pb,id − Xid (t)] + c2r2[Pg,d − Xid (t)] (7)

Xid(t + 1) = Xid (t) + Vid (t + 1) (8)

At iteration t, in dimension d of the particle i, the position and velocity can be
respectively described by Xid (t) and Vid (t). As previously introduced, Pg,d and Pb,id

are the optimal positions of the population and particle i, respectively. c1 and c2 are
coefficients, which are generally considered as learning factors. Besides, in each update
of velocity, r1 and r2 are randomly generated from interval [0,1]. In order to regulate
the search process, ω(t) is introduced as inertia weight. ω(t) is determined by Eq. (9)
below, where ωmax is 0.9 and ωmin is 0.4 [16], and iter and itmax respectively represent
the number of current and maximum iteration.

ω(t) = ωmax − (ωmax − ωmin) × iter

itmax
(9)

3.2 Modified SEIR Model Optimized by PSO Algorithm

Root Mean Square Error (RMSE) is regularly employed in prediction problems for
evaluation. The objective function is set as the sum of the RMSE between the actual data
and the predicted data of S, E, I, H, R and D in this paper. The calculation formula of
RMSE is as follows, where Actuali and Predicti respectively represent the actual data
and the predicted data of a certain category on the i-th day in a certain stage, and T
represents the total number of days in a certain stage.

RMSE =
√∑T

i=1 Actuali − Predicti
T

(10)

The PSO-SEIR algorithm is described as follows, with the goal of minimizing the
objective function.

• Step 1. Initialize particles’ positions and velocities. Both of them are n × d matrices,
where n and d represent the number of individuals and model’s dimensions, respec-
tively. Particularly, d can also be considered as the four main output parameters, i.e.,
β, PE , σ 1, σ 2 of the modified SEIR model.

• Step 2. For each particle with all dimensions, calculate the objective function value.
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• Step 3. Update the best personal position.
• Step 4. Update the best global position.
• Step 5. Update each of the particles’ position and velocity using the Eqs. (7) and (8).
Importantly, make sure that the updated positions and velocities are all within the
limitation.

• Step 6. Repeat Step 2–5 until the end condition is satisfied, which happens when the
iteration reaches the maximum number or the fitness value is less than the previously
determined value.

• Step 7. Each dimension of the final global position Pg,d is corresponding to β, PE , σ 1

and σ 2. Substitute them into the model to calculate data series {S, E, I, H, R, D}.

3.3 Parameter Estimation and Analysis

On January 23, 2020, to stem the virus from spreading, Wuhan City was decided to seal
off. Afterwards, the same initiativewas followed by several cities inHubei Province.And
in late March, outbound travel restrictions in Hubei were lifted. To avoid the influence of
population mobility, data between Jan. 20 and Mar. 25 are selected to study COVID-19.
The epidemic process is divided into four stages according to the epidemic prevention
measures. The first stage is the outbreak period between Jan. 20 and Jan. 31; the second
stage is the rapid spread period between Feb. 1and Feb. 11; the third stage is the initial
containment period between Feb. 12 and Feb. 25; the fourth stage is the orderly recovery
period between Feb. 26 and Mar. 25.

Initial value of each category is set to execute the modified SEIR model. N is set to
59170000, which is the population of Hubei Province. The calculation of E0 is based on
the infectious cases and their daily effective number of contacts. Yang et al. [3] proposed
that the number of contacts is 3 after Jan. 23 and 10 after Mar. 1. I0 is calculated based
on the newly confirmed cases over a period of time. Besides, the settings of H0, R0 and
D0 can be determined from the actual data.

As previously introduced, {β, PE , λ, σ 1, σ 2, μ, κ} are major parameters of the
model. According to the requirements of epidemic prevention, the λ parameter is set to
14. Parameters μ and κ can be calculated based on actual data, and the fitting results of
them are shown in Fig. 3 respectively.

The initial setting of PSO algorithm is: population size PN = 40, dimensionDi= 4,
learning factors c1 = c2 = 2, maximal velocity vmax = 0.2, maximal iteration itmax =
1000 and the search space is [0,1]. Utilizing the PSO algorithm, the system parameters
are calculated, see Table 2.

In Table 2, it could be observed that the range of 1/σ 1 (the inverse of the average
incubation period) is approximately from1.4 to 6.8,which is basically in linewith reality.
β (social contact transmission rate) and PE (the proportion of the virus carriers in the
exposed) are greatly reduced while 1/σ 2 (the inverse of the time lag from infection to
treatment) is increased, which can be explained by the prevention and control measures
proposed at each stage. At the first stage, government issued public health first-level
response and cancel mass gatherings, which help to reduce the possibility of healthy
people coming into contact with the infected people.With themedical support fromother
regions and two newly built hospitals at the second stage, the time lag of infected people
to be diagnosed and hospitalized could significantly decrease. What’s more, people have
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Fig. 3. Actual recovery rates, mortality rates and their fitting results.

Table 2. System parameters at different stages.

Stage β PE σ 1 σ 2

Jan. 20 to Jan. 31 0.9984 0.9901 0.1461 0.1648

Feb. 1 to Feb. 11 0.3230 0.3668 0.2667 0.2394

Feb. 12 to Feb. 25 0.0653 0.2725 0.6935 0.3940

Feb. 26 to Mar. 25 0.0014 0.2089 0.2855 0.4959

an obligation to improve their self-protection capabilities, such as minimizing outings,
wearing masks when traveling and keeping hands clean, etc., which can significantly
help stem the virus from human-human transmission. The third stage is the most critical
stage, where experts predicted that the epidemic was about to reach its peak. Since
then, the implementation of epidemic prevention and control strategies has gradually
normalized.

With all the required parameters, data series {S,E, I,H,R,D} can be predicted by the
modified SEIR model. The prediction results of the current confirmed cases, recovered
cases and death cases at each stage are shown in Fig. 4. In the same time, the GA-SEIR
model and the BFO-SEIRmodel are also executed for comparison. The predictive ability
is evaluated utilizing the Mean Absolute Error (MAE) function. The comparison results
are presented in Table 3, and the fitness curves at each stage are shown in Fig. 5.
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Fig. 4. Prediction results of the current confirmed, recovered and death cases at each stage.

Table 3. MAE values of each model at each stage.

Jan. 20 to Jan. 31 Feb. 1 to Feb. 11 Feb. 12 to Feb. 25 Feb. 26 to Mar. 25

PSO GA BFO PSO GA BFO PSO GA BFO PSO GA BFO

H 321.4 262.0 380.6 419.5 343.6 672.0 305.3 202.4 427.9 232.0 240.5 234.3

R 3.78 3.10 3.84 12.46 14.64 23.58 92.90 90.60 97.08 586.1 552.3 617.4

D 6.25 9.52 8.62 10.20 10.17 7.29 32.08 33.89 30.42 4.65 4.19 5.06

Note: The bold value represents the minimum MAE of a certain category in a certain stage

Figure 4 shows that PSO, GA, BFO are capable to be implemented for the epidemic
prediction based on the proposed SEIR model. Meanwhile, from Table 3, it is intuitive
to see that the predictive abilities of PSO-SEIR and GA-SEIR are better than BFO-SEIR
overall. And the PSO algorithm also shows the advantages of faster convergence speed
and accuracy (see Fig. 5).
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Fig. 5. Fitness curve of each model at each stage.

4 Conclusion

In this study, with a focus on Hubei Province, China, an SEIR epidemiological model
is proposed to analyze COVID-19, a novel coronavirus disease spread across the world
at the beginning of December 2019. Data from January 20, 2020 to March 25, 2020 are
selected to avoid the impact of the population mobility rate on the epidemic model.

Based on the classic SEIR model, this model properly considers the intrinsic impact
of isolation measures, taking into account the quarantine period. Thus, another new state
of the exposed category is considered in the improved model to simulate the situation
where the uninfected people re-convert into the susceptible category after a prescribed
quarantine period.

Moreover, PSO is introduced for optimization of the key parameters of the improved
model, providing a stochastic method instead of the standard deterministic method to
solve SEIR model. The parameters are dynamically changeable at different stages of the
epidemic, which shows the effectiveness of prevention and control initiatives.

The GA and the BFO algorithm based on the proposed SEIRmodel are also executed
for comparison. The experimental results demonstrate that based on the proposed SEIR
model, the PSO, GA and BFO can be applied for COVID-19 prediction. Particularly,
the PSO algorithm shows the advantages of faster convergence speed and the ability to
find the best set of model solutions in less iteration.
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Abstract. The Particle Swarm Optimisation (PSO) algorithm has
undergone countless modifications and adaptations since its original for-
mulation in 1995. Some of these have become mainstream whereas others
have faded away. A myriad of alternative formulations have been pro-
posed raising the question of what the basic features of an algorithm must
be to belong in the PSO family. The aim of this paper is to establish what
defines a PSO algorithm and to attempt to formulate it in such a way
that it encompasses many existing variants. Therefore, different versions
of the method may be posed as settings within the proposed unified
framework. In addition, the proposed formulation generalises, decouples
and incorporates features to the method providing more flexibility to the
behaviour of each particle. The closed forms of the trajectory difference
equation are obtained, different types of behaviour are identified, stochas-
ticity is decoupled, and traditionally global features such as sociometries
and constraint-handling are re-defined as particle’s attributes.

Keywords: Particle Swarm Optimisation · Coefficients’ settings ·
Types of behaviour · Trajectory · Learning strategy · Unstructured
neighbourhood

1 Introduction

Proposed in 1995 [20], the Particle Swarm Optimisation (PSO) method is a
global optimiser in the sense that it is able to escape poor suboptimal attrac-
tors by means of a parallel collaborative search. The overall system behaviour
emerges from a combination of each particle’s individual and social behaviours.
The former is manifested by the trajectory of a particle pulled by its attractors,
governed by a second order difference equation with three control coefficients.
In the classical (and in most) versions of the algorithm, there is one individual
attractor given by the particle’s best experience, and one social attractor given
by the best experience in its neighbourhood. The social behaviour is governed
by the way the individually acquired information is shared among particles and
therefore propagated throughout the swarm, which is controlled by the neigh-
bourhood topology. The individual and social behaviours interact through the
c© Springer Nature Switzerland AG 2021
Y. Tan and Y. Shi (Eds.): ICSI 2021, LNCS 12689, pp. 275–286, 2021.
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update of the social attractor. Thus, the two main features of the algorithm are
the trajectory difference equation (and the setting of its coefficients) and the
neighbourhood topology (a.k.a. sociometry).

In the early days, numerous empirical studies were carried out to investigate
the influence of the coefficients in the trajectory difference equation on the overall
performance of the method, and to provide guidelines for their settings [21,28].
Early theoretical work [5,25,30] provided insight into how the method works and
interesting findings of practical use such as constriction factor(s) [5] to ensure
convergence. These pioneering studies were a source of inspiration and set the
foundations for an explosion of theoretical work [2–4,9,10,14,17,22,27].

1.1 Trajectory Difference Equation

In classical PSO (CPSO), three forces govern a particle’s trajectory: the iner-
tia from its previous displacement, the attraction to its own best experience,
and the attraction to the best experience in its neighbourhood. The importance
awarded to each of them is controlled by three coefficients: the inertia (ω), the
individuality (iw), and the sociality (sw) weights. Stochasticity is introduced to
enhance exploration via random weights applied to iw and sw. The behaviour of
a particle, and by extension of the PSO algorithm as a whole, is very sensitive to
the settings of these control coefficients. The system of two 1st-order difference
equations for position and velocity updates in the CPSO algorithm proposed in
[29] is rearranged in (1) as a single 2nd-order Trajectory Difference Equation:

x
(t+1)
ij = x

(t)
ij + ω

(t)
ij

(
x
(t)
ij − x

(t−1)
ij

)

+ iw
(t)
ij U(0,1)

(
xb

(t)
ij − x

(t)
ij

)
+ sw

(t)
ij U(0,1)

(
xb

(t)
kj − x

(t)
ij

) (1)

where x
(t)
ij is the coordinate j of the position of particle i at time-step t; xb

(t)
ij is

the coordinate j of the best experience of particle i by time-step t; k is the index
identifying the particle with the best experience in the neighbourhood of particle
i at time-step t; ω, iw and sw are the inertia, individuality, and sociality weights,
respectively (which may depend on i, j, t); and U(0,1) is a random number from
a uniform distribution within [0, 1] resampled anew every time it is referenced.

In the original formulation [20], ω = 1 and iw = sw = 2. This leads to an
unstable system, as particles tend to diverge. The first strategy to prevent this
was to bound the size of each component of a particle’s displacement, which helps
prevent the so-called explosion but does not ensure convergence or a fine-grain
search. Instead, the coefficients in (1) can be set to ensure that.

1.2 Neighbourhood Topology

The original PSO algorithm [20] presented a global topology in which every
particle has access to the memory of every other particle in the swarm. Local
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Fig. 1. Three classical neighbourhood topologies in PSO.

topologies were proposed soon thereafter [8]. Since then, a plethora of sociome-
tries have been proposed [1,23,24]. Three classical ones are shown in Fig. 1.

The global topology tends to lead to a rapid loss of diversity, which may
lead to premature convergence to a poor suboptimal solution. Whilst this can
be controlled to some extent by the settings of the coefficients in the trajectory
equation, numerous neighbourhood topologies have been proposed reducing con-
nectivity to delay the propagation of information throughout the swarm.

1.3 Other Features

Other important features of the PSO algorithm are the initialisation of the par-
ticles [11,18,19], the synchrony of the memory updates, the size of the swarm
[7,26], and the handling of constraints [16].

The PSO algorithm is an unconstrained search method, therefore requiring an
external constraint-handling technique (CHT) to be integrated to handle these
types of problems. A straightforward CHT is the Preserving Feasibility Method
[12], in which infeasible experiences are banned from memory. Another one is
the Penalty Method, in which infeasible solutions are penalised by augmenting
the objective function and treating the problem as unconstrained. Some authors
propose adaptive penalties by using adaptive coefficients in the penalty function
[6] or by adapting the tolerance relaxation [15]. Innocente et al. [13] propose
using a Preserving Feasibility with Priority Rules Method, in which the objective
function values and the constraint violations are treated separately.

Since its original formulation in 1995, countless PSO variants have been pro-
posed. Some of them have become mainstream whereas many others have faded
away. Thus, a myriad of alternative formulations have been proposed raising the
question of what the basic features of an algorithm must be to belong in the
PSO family. The aim of this paper is to establish what defines a PSO algorithm,
and to attempt to formulate it in such a way that it encompasses many existing
variants so that different versions may be posed as settings within the proposed
unified framework. In addition, the proposed formulation generalises, decouples
and incorporates new features providing more flexibility to the behaviour of each
particle. The remainder of this paper is organised as follows: the overall pro-
posed Reformulated PSO is introduced in Sect. 2, with the Global Features, the
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Individual Behaviour Features and the Social Behaviour Features discussed in
more details in Sects. 3, 4 and 5, respectively. Conclusions are provided in Sect. 6.

2 Reformulated Particle Swarm Optimisation

The proposed Reformulated Particle Swarm Optimisation (RePSO) method is
structured in three sets of features: 1) Global Features (GFs), 2) Individual
Behaviour Features (IBFs), and 3) Social Behaviour Features (SBFs). Figure 2
shows a high-level description of RePSO, where IBFs and SBFs are both viewed
as individual attributes of a particle (Particle Attributes).

Fig. 2. High-level description of the proposed Reformulated PSO (RePSO).

3 Global Features

Despite being a swarm-intelligent method, some characteristics must still be
defined at the swarm level. We define here three main subsets of global features:
1) Global Settings, 2) Initialisation, and 3) Termination Conditions. The first
one consists of scalar settings like maximum search length (tmax) and swarm
size (m), whereas the other two involve methods.
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3.1 Initialisation

It is important to identify two aspects of the initialisation in PSO: 1) the sampling
method to place m points over the search-space, and 2) what variables are to
be initialised. Note that the particle’s position update in RePSO is a 2nd order
difference equation as opposed to the classical system of two 1st order difference
equations (position and velocity). Therefore, the variables potentially involved
in the initialisation are the initial, the previous, and the memorised positions
(x(1), x(0), xm(1)) instead of two positions and one velocity (x(1), xm(1), v(1)).

Sampling Method. Originally, initialisation was purely random from uniform
distributions: x

(1)
ij = xmin ij + U(0,1) (xmax ij − xmin ij). Random Sampling is

easy to implement but does not usually result in good coverage of the search-
space. More advanced sampling methods may be used, such as Latin Hypercube
Sampling, Orthogonal Sampling or a range of different Tesselations.

Initial Conditions. Four types are proposed here:

1. Stagnation: x(1) = x(0) = xm(1)

This requires the sampling of each particle’s position at the initial time-step
(x(1)). Stagnation implies that the previous position x(0) = x(1), and that the
particle has converged to its attractor: xm(1) = x(1). Thus, movement starts
purely due to cooperation (no inertia, no individual attractor).

2. Two Positions: x(1) �= x(0) and either xm(1) = x(1) or xm(1) = x(0)

Two positions per particle are sampled and compared, with the better one
becoming x(1), the other becoming x(0), and xm(1) = x(1). Thus, movement
starts both due to cooperation and to inertia (no individual attractor).

3. One Position and One Memory : x(1) = x(0) �= xm(1)

Two positions per particle are sampled and compared, with the better one
becoming xm(1) and the other x(1) = x(0). Movement starts due to both
cooperation and acceleration towards its individual attractor (no inertia).

4. Two Positions and One Memory x(1) �= x(0) �= xm(1) �= x(1)

Three positions per particle are sampled and compared, with the best one
becoming xm(1). Thus, movement starts both due to all three sources: coop-
eration, inertia, and acceleration towards its individual attractor.

Initialised Variables Relation. For all initial conditions other than stagna-
tion, more than one position is to be sampled per particle. The question is then
whether these should be somehow related. Three alternatives are proposed here:

1. Perturbation: x(0) is generated from controlled perturbations on x(1). If appli-
cable, xm(1) is also generated from perturbations on x(1).

2. Independent : Each population of positions is sampled independently.
3. Simultaneous: All populations of positions are sampled at once. For instance,

if using the Latin Hypercube Sampling, there would be one single sampling
with as many points as twice or three times the swarm size, as applicable.
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3.2 Termination Conditions

The population-based nature of the method enables termination conditions dif-
ferent from the classical ones in numerical optimisation: 1) maximum number
of iterations, and 2) convergence. Three types of conditions are identified here:
1) based on search length (or maximum number of iterations), 2) based on clus-
tering measures (diversity loss), and 3) based on measures of convergence.

4 Individual Behaviour Features

These are the features of the algorithm which control the individual behaviour
of a particle. Each particle has its own set of IBFs, which are viewed as particle
attributes. The individual behaviour of a particle is materialised by its trajectory
as it is pulled by its attractor. This is governed by a second order difference
equation and the setting of its coefficients. The IBFs are grouped here in two
main families, namely Deterministic Features and Stochastic Features.

4.1 Deterministic Features

Instead of viewing PSO as a guided random search method, it is viewed as a
randomly-weighted deterministic search method. Thus, its desired deterministic
behaviour is defined, adding only as much stochasticity as deemed beneficial.

By formulating the position update as in (5), it is clear that any given particle
at any given time is pulled by a single attractor which results from a randomly
weighted average of the components of the individual and social attractors. Thus,
the Trajectory Difference Equation in (1) may be expressed as in (5).
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Trajectory Equation. Since we are dealing with a single particle, sub-index
i is dropped. For simplicity, let us assume (ω, φ) constant in every dimension
and ∀t, dropping sub-index j and super-index (t). If stochasticity is removed,
the deterministic coefficients (ω̂, φ̂) are referred to as Reference Trajectory Coef-
ficients.
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CPSO Recurrence Formulation. The CPSO Recurrence Formulation is as in (6),
which is the deterministic version of (5). The generation of the overall attractor
p(t)
i is now decoupled, comprising a Social Behaviour Feature (SBF).

x
(t+1)
ij = x

(t)
ij + ω̂

(
x
(t)
ij − x

(t−1)
ij

)
+ φ̂

(
p
(t)
ij − x

(t)
ij

)
(6)

CPSO Closed-Form Formulation. This is obtained by solving the difference equa-
tion in (6). The roots of the characteristic polynomial are as in (7) and (8). The
solution is per dimension and per particle (therefore dropping indices i and j),
and the attractor p is stationary.

r1 =
1 + ω̂ − φ̂

2
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γ

2
; r2 =

1 + ω̂ − φ̂

2
− γ

2
(7)

γ =
√

φ̂2 − (2ω̂ + 2) φ̂ + (ω̂ − 1)2 (8)

Case 1 (γ2 > 0). The two roots of the characteristic polynomial are real-valued
and different (r1 �= r2). Therefore the closed-form for Case 1 is as in (9).
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Case 2 (γ2 = 0). The two roots of the characteristic polynomial are the same
(r1 = r2), as shown in (10). Therefore the closed-form for Case 2 is as in (11).
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Case 3 (γ2 < 0). The two roots are complex conjugates.
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Using polar coordinates (ρ, θ), the closed-form for Case 3 is as in (16).
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ρ =
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Thus, the chosen trajectory equation in RePSO may be given by the Recur-
rence Formulation in (6) or by the Closed-Form Formulations in (9), (11) and
(16). Other recurrence formulations as well as some considerantions to be taken
into account for the closed-form formulation are left for future work.

Reference Trajectory Coefficients Settings. An analysis of the trajectory
closed-forms shows that the magnitude of the dominant root r = max (‖r1‖ , ‖r2‖)
controls convergence. Fastest convergence occurs for (φ̂, ω̂) = (1, 0), where r = 0
(see Fig. 3(a)). The resulting convergence conditions are shown in (17), which
define the area inside the convergence triangle (r < 1) shown in Fig. 3.

1 > ω̂ >
φ̂

2
− 1

φ̂ > 0
(17)

Whilst the magnitude of the dominant root controls the speed of convergence,
the existence and sign of the dominant root controls the Type of Behaviour :

1. Oscillatory : Roots are complex conjugates (no dominant root).
2. Monotonic: Dominant root is real-valued and positive.
3. Zigzagging : Dominant root is real-valued and negative.

These Types of Behaviour are bounded within specific Sectors in the (ω̂, φ̂)
plane, each associated with one edge of triangular isolines (same r). These three
Sectors are shown in Fig. 3(b), where the white triangle separates the Conver-
gence (inside) and Divergence regions. The settings of (ω̂, φ̂) can be chosen so as
to achieve the desired behaviour and convergence speed. For example:

1. Choose Type of Behaviour : e.g. Oscillatory.
2. Set Convergence Speed :

√
ω̂ ∈ [0, 1], with fastest convergence for

√
ω̂ = 0.

3. Set Reference Acceleration Coefficient : φ̂ ∈
((√

ω̂ − 1
)2

,
(√

ω̂ + 1
)2

)
.
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Fig. 3. On the left, magnitude of the dominant root. Settings inside red triangle ensure
convergence (r < 1). On the right, Sectors for three Types of Behaviour in CPSO: black
region is Oscillatory, dark grey region is Monotonic, and light grey region is Zigzagging.

4.2 Stochastic Features

The random weights in (1) affect the trajectory of a particle towards the overall
attractor whilst also affecting its generation as a stochastic convex combination
of the individual and the social attractors, as shown in (4). These two features are
decoupled here. The Stochastic Features are concerned only with the former.

Stochastic Scaling. This refers to whether the stochastic variables in (5) are
sampled once per particle position update (vector scaling) or resampled anew per
dimension as well (component scaling). The former is often used by mistake.

Stochastic Sampling. In classical PSO, ω = ω̂ (deterministic) whereas the
probability distribution of φ results from the sum of two stochastic terms sampled
from uniform distributions: φ = ι+σ as in (3). If they are sampled from the same
interval, the resulting distribution of φ is triangular. Otherwise, it is trapezoidal.
In RePSO, the user is allowed to choose any distribution for (ω, φ).

Trajectory Coefficients Sampling Settings. Once the distributions have
been chosen, the parameters defining them must be set. For example, (φmin, φmax)
for a uniform distribution, or the standard deviation for a normal distribution.

5 Social Behaviour Features

These are the features of the algorithm which control the social behaviour of a
particle. Despite being SBFs, they are defined as Particle Attributes in RePSO. A
particle’s social behaviour is governed by its access to other particles’ memories
(Local Sociometry) and by how it handles this information (social influence).
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5.1 Local Sociometry

In classical PSO, the sociometry is a global feature. It can be defined as a regular
graph, or irregulary by defining one connection at a time. In the latter case, the
structure cannot be automatically generated nor is it scalable. In RePSO, a Local
Sociometry is defined for each particle, with the Global Sociometry resulting from
their assembly. This has the advantange that sociometry is a particle attribute,
facilitating object-oriented implementation. Also that different social behaviours
can be exhibited by different particles, and that irregular global sociometries are
possible without renouncing automation or scalability.

The Local Sociometry is generated by defining the Neighbourhood Topology
and the Neighbourhood Extent. Examples of the former are the Global, Ring, For-
ward and Wheel topologies. The Topology defines a methodology to generate con-
nections from the particle informed to its informers. The Extent defines the neigh-
bourhood size (number of neighbours, distance of influence). An example of an
unstructured neighbourhood is shown in Fig. 4, where the Local Sociometry of
particle 1 is the Global topology whilst that of particle 2 is the Ring topology.
Other aspects may be considered, such as whether a particle’s memory is part of
its neighbourhood (X in the connectivity matrix in Fig. 4).

Fig. 4. Unstructured sociometry emerging from local sociometries.

5.2 Current Information Update

Any particle holds two types of information: current and memorised. The update
of the former takes place by gathering information, generating an overall attrac-
tor using the information gathered, and applying the trajectory equation. A par-
ticle may access the information currently held, the one memorised, or both from
its neighbours (Information Gathering). This is an extension to classical formu-
lations, where a particle can only access their memorised information.

5.3 Memorised Information Update

This controls the update of a particle’s memory when it accesses new informa-
tion. This is performed directly rather than through a trajectory equation. The
question is what Type of Information is accessible to a particle’s memory.

Another feature affecting this update is the Synchrony, which defines whether
a particle’s memory is updated immediately after its currently held information
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is updated (asynchronous) or only after the currently held information of every
particle is updated (synchronous). Typically, the update is synchronous.

RePSO also proposes to include the CHTs here. Thus, different particles may
have different CHTs, and therefore may value a given location differently.

6 Conclusions

A general framework has been proposed aiming to encompass many variants of
the PSO algorithm under one umbrella so that different versions may be posed as
settings within the proposed unified framework. In addition, some extensions to
the classical PSO method have been made such as the decoupling of the stochas-
ticity that affects both the acceleration coefficient (φ) and the generation of the
overall attractor; an extended treatment of the swarm initialisation; the particle
trajectory closed forms; the identification of three types of deterministic behaviour
to inform the setting of the control coefficients; and the global sociometry result-
ing from assembling local sociometries defined as particle attributes. Due to space
constraints, most of these features are discussed only superficially.
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9. Fernández Mart́ınez, J.L., Garćıa Gonzalo, E.: The PSO family: deduction, stochas-
tic analysis and comparison. Swarm Intell. 3(4), 245 (2009)
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Problem and a Hybrid Ant Colony

Algorithm for Its Approximate Solution
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Abstract. The bicriteria optimization problem of many projects devel-
opments’ schedules with many competitive constraints on resources and
interval constraints on the execution time and cost of operations is for-
mulated in this article. Optimization is carried out according to the max-
imizing performance and the total cost of project execution criteria. The
problem is NP-hard MILP and an efficient hybrid parametric algorithm
that combines the critical path algorithm and ant colony optimization
has been developed for its approximate solution. The actual performance
and solutions’ quality of the hybrid algorithm’s software implementation
have been compared with the results of IBM CPLEX on test problems.
The effectiveness of the toolkit is confirmed experimentally by testing.

Keywords: Schedules’ optimization · Multi-project development ·
MILP · Hybrid algorithm · Ant colony optimization

1 Introduction

Currently, there is a rapid development of the project approach to planning pro-
duction activities. With the increase in the scale and complexity of projects being
implemented among software developers, production departments of industrial
enterprises and real estate developers it is becoming increasingly important to
solve problems of efficient use of resources while simultaneously implementing a
multitude of competing on resources projects.

Formalization and development of an algorithm for an approximate solution
to one of these problems are the subject of this article. Briefly, it can be des-
ignated as the problem of optimal management in multi-project developments
(OMMPD). The problem has a significant background. A brief description of its
modifications and an overview of publications on this topic are presented next.

There is a set of projects, each contains many interdependent operations with
a certain order of execution within the project, known intervals of execution time
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and corresponding intervals of the execution cost. Each operation consumes one
or many resources. All available resources are limited and some of them can not
be divided between operations; therefore, operations involving such a resource
cannot be executed simultaneously. In a number of such formulations [1], the
minimization criterion of the total execution time of all projects is applied, which
requires a determination of an execution order of operations that use the same
resources.

The availability of resources can be represented both as a binary value (the
resource is fully utilized when performing an operation) and as an additive value
(the resource is considered to be continuously shared and consumed when several
operations are performed simultaneously). All continuously shared resources can
be aggregated and taken into account by applying interval constraints on the
execution time and cost of operations [10,11]. The presence of interval constraints
on the execution time and cost of operations defines the application of two
criteria, minimizing total completion time and cost of project implementation.
In this case, the problem has many Pareto-optimal solutions. The bicriterial
formulation of OMMPD is applied in this article.

It can be shown that in most cases the problem is NP-hard and does not
have effective algorithms for the exact solution. Therefore, at the moment, the
most promising tool for the OMMPD problem are effective heuristic algorithms
that are able to obtain approximate solutions with polynomial dependence of
the computation time on the dimension.

The idea of an ant colony algorithm application for solving the problem of
managing the execution of a single project has already been researched [2] in
the following formulation. The project consists of many operations, the execu-
tion time and used resources are known for each operation. The operations are
interdependent, their technological order of execution is known. Resources are
limited and reusable after the completion of operations. At any given time, the
sum of the resources used to perform operations should not exceed their avail-
able volume. It is necessary to determine the execution order of operations so
that the project execution time is minimal.

Constraint programming (CP) is also seen as a promising approach to solving
the problem of optimal control of project implementation. For the problem in
the above formulation [2], a constrained programming model was developed in
the CHIP V5 software environment [3].

The topic of the evolutionary algorithms application for the problem of opti-
mal management in multi-project developments was studied in [4,5] with the
formulation simular to [2]. A similar formulation of the problem was suggested
in one of the resent works, in which the use of the algorithm based on multi-agent
systems and problem decomposition is proposed [6].

Studies of the effectiveness of various heuristic algorithms for solving this
problem are partially presented in [7]. Based on the results of the analysis, a
genetic algorithm was identified as promising, but the ant colony algorithm was
not included in the comparison.
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Despite the numerous works on this problem in different formulations, it
is still relevant for research. In one of the latest works, the application of the
meta-heuristic algorithms for the project scheduling optimization was considered
in formulation similar to [1], but with the criteria of contractor’s Net present
value maximization. A comparison of the efficiency was provided for the genetic
algorithm (GA), particle swarm optimization (PSO) and simulated annealing
(SA) on the automatically generated problems. The results show that GA has
better performance than SA and PSO but SA needs less time to solve the problem
than GA and PSO [8].

Mixed-integer linear programming (MILP) is one of the classical solving tools
for the considered problem. In its common form, it is barely applicable for real-life
high dimensional problems, which is confirmed by test results presented in part 6
of this paper. However, in one of the latest works [9], an effective parallel cutting
plane algorithm for the problem in formulation similar to [1] was presented. This
new algorithm is based on MILP and uses five additional types of cuts: lifted
precedence and cover cuts, cliques, odd-holes and strengthened Chvatal-Gomory
cuts. According to the presented test results, the parallel cutting plane algorithm
is much more efficient than the classical MILP, but the authors admit that it
still demands further improvement.

Based on the analysis of previous studies, we can conclude that the most
promising tools for solving the problem of scheduling multi-project developments
are hybrid algorithms based on random search and modern metaheuristics. In
some formulations, ready-made software complexes, for example, IBM ILOG CP
Optimizer or CHIP V5, are also able to find solutions to the problem in ques-
tion. However, CP does not guarantee the optimality of the obtained solutions,
especially for high-dimensional problems. And it does not generate an effec-
tive solution algorithm, only partially removing the dimensionality problem. For
large-scale OMMPD, this toolkit is barely applicable. Expert estimates deter-
mine a substantional increase in the admissible dimension for CP in comparison
with exact methods with an uncertain estimate of the accuracy of solutions.

2 Substantial Problem Statement

The problems and algorithms for optimal control of the execution of individual
projects have been studied for a long time. In most cases, to formalize and solve
them, the network planning and management (NPM) approach is used [11].
Initially, the problems of the NPM under consideration were mostly polynomially
solvable and consisted in determining the time characteristics of the project
while observing the constraints on resources, most often reflected by the cost
characteristics of their expenditure [10].

As noted above, computational difficulties have increased during the attempts
of accounting for non-shared or discretely shared resources (equipment, labour,
for example). At the same time, it turned out that the emergence of such resource
constraints translates the NPM problems into the class of intractable ones. The
generalization of the problem of management in single project development to
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multi-project developments leads to a significant complication which makes new
problem unsolvable for exact methods in real-life conditions.

A set of projects is considered, the execution of which requires a range of
resources. Each project from the entire set contains a finite set of operations
connected by precedence-succession relations, for the execution of which a finite
set of resources are consumed. Arguably this resources can be categorized in two
types.

The first type is continuously shared (stockpiled and non-stockpiled)
resources. The intensity of their use can be taken into account through the
estimates of spending per unit of time. For any operation of any project, such
an estimate will be the cost of execution for a given time. Based on the common
idea of the OMMPD tasks, we consider the estimates of the cost and perfor-
mance time of individual operations in normal and maximum intensive modes
as known. And we also assume that the unit cost of accelerating the operation
on the entire set of modes of execution of any project (from normal to the most
intensive) is constant.

Consumable resources of the second type (non-shared or discretely shared)
will be assumed to be used exclusively. The case of their discrete separation is
not considered in this work. The exclusive use condition immediately leads to
the execution of any operation of any project without interruption. The latter
means that such a resource, consumed by any operation of any project, cannot
be transferred until this operation completion to perform another operation. In
turn, exclusive use leads to conflicts of operations on resources of the second type.
And the resolution of such conflicts becomes the most time-consuming procedure
for finding solutions, regardless of the formulation and algorithms used.

Management efficiency measures should take into account the efficiency of
using both types of resources. In this case, the efficiency of using resources of
the first type will be measured by means of cost characteristics, and the efficiency
of using resources of the second type - by means of time characteristics. Thus,
we obtain two criteria: minimizing the cost of implementing all projects and
minimizing the total implementation time of all projects.

It is quite simple to show that, in this formulation, the OMMPD problem
belongs to the NP class. Indeed, with the utmost simplification of the structures
of the entire set of projects to sequential chains, limiting the modes of operations
to the only normal one, considering the set of devices as resources of the second
type, and not taking into account the resources of the first type at all, excluding
the criterion of minimizing the total cost of operations, one of the scheduling
theory classical problems is obtained - the job shop problem (JSP). The JSP
has been proven to belong to the NP class. For it, there are also no approximate
algorithms with a proven a priori accuracy of approximations to the optima.
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3 Formal Problem Statement

There are I projects containing J operations in total. For each operation j = 1, J
it is known:

tnj - execution time in normal mode;
tcj - limit execution time with maximum acceleration;
Cn

j - cost of execution in normal mode;
Cc

j - cost of execution with maximum acceleration;
ej - number of the resource involved in the execution;
pj - project number.

The technological order of operation execution in projects is known. If the
start of operation i is possible only after the end of operation j, then dij = 1,
otherwise 0, for i = 1, J , j = 1, J .

Operations that involve the same resource cannot be executed simultane-
ously. If the same resource is used to perform operation i and j (ei = ej and
i �= j), then if operation i precedes operation j, then wij = 1 otherwise 0, for
i = 1, J , j = 1, J .

It is necessary to find a set of Pareto-optimal solutions to the problem with
the following criteria:

1. the minimum cost of performing all operations;
2. minimum completion time for all projects.

In this case, the formal statement of the problem is:
Objective function:

Z =
J∑

j=1

(Δj ∗ xj + Cn
j ) → min (1)

D ∈ [Tn
k ;T c

k ] (2)

Tk → min (3)

Constraints:
Tk ≤ D (4)

Tj + tnj − xj ≤ Ti if dij = 1 with i = 1, J, j = 1, J (5)

Tj + tnj − xj ≤ Tk with j = 1, J (6)

Tj ≥ 0 with j = 1, J (7)
{

Tj − Ti − B ∗ wij ≤ −(tni − xi)
Ti − Tj + B ∗ wij ≤ B − (tnj − xj)

if ei = ej , i �= j, dij = 0, dji = 0 (8)

0 ≤ xj ≤ tnj − tcj with j = 1, J (9)
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where:

Tj - start time of operation j;
xj - value of acceleration of operation j;
Δj = Cc

j −Cn
j

tn
j −tc

j
is the unit cost of accelerating operation j;

Tk - completion time of the last of the projects;
Tn

k - time of completion of all projects in normal mode;
T c

k - time of completion of all projects with maximum acceleration;
D - directive time of completion of all projects.

4 Hybrid Algorithm

The developed hybrid algorithm is based on the use of the ant colony algorithm
to find the execution order of operations that using the same resources and the
critical path method to find solutions to the problem with the acceleration of
projects. A variant of the Max-min Ant System algorithm [12] was chosen as
the basis for the implementation of the ant colony algorithm. The ant colony
algorithm is a parametric iterative algorithm, at each iteration of the algorithm
Ψ ants are created, each ant determines the execution order of operations in a
random way, depending on the probability of their following. For the developed
hybrid algorithm, the following parameters are set:

ι - number of iterations;
Ψ - is the number of ants;
α - coefficient of significance of the start time;
β - pheromone significance coefficient;
φmax - maximum pheromone level;
φmin - minimum pheromone level;
ρ - coefficient of pheromone weathering.

If operations i and j use the same resource, then the probability of the exe-
cution of operation j following operation is calculated by the formula:

pij =
F (i, j)α ∗ φβ

ij

F (i, j)α ∗ φβ
ij + 1

F (i,j)α ∗ φβ
ji

(10)

F (i, j) =

⎧
⎪⎨

⎪⎩

2, if Tj > Ti

1, if Tj = Ti

0.5, if Tj < Ti

(11)

where:
φij - pheromone level corresponding to the operation j following after oper-

ation i;
After determining the sequence of each pair of operations, the start time

of all operations is recalculated. After determining the succession of all pairs
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of operations involving the same resources by each of the ants, the process of
weathering of pheromones occurs according to the formula:

φij = max((1 − p) ∗ φij ;φmin) (12)

At the end of each iteration, the concentration of pheromones is increased
according to the best solution Smin found for the entire time, which is described
by the formula:

{
φij = min((φmax − φmin) ∗ p + φij ;φmax), if Tj > Ti

φij = min((φmax − φmin) ∗ p + φji;φmax), if Tj < Ti

i, j = 1, J, ei = ej

(13)
After passing through all the iterations, the best sequence of operations Smin

with the total execution time of all projects Tk from those obtained at all iter-
ations is selected. The cost of performing operations is calculated using the
formula:

C =
J∑

j=1

Cn
j (14)

To find a set of accelerated solutions, the critical path method is used:

1. The value of the discrete step ε is set.
2. The new directive execution time of project is determined:

Td = Tk − ε (15)

3. All critical paths are found in the current solution.
4. If at least one critical path cannot be accelerated, then go to point 9.
5. The cost of acceleration is determined for each of the operations included in

the found set of critical paths by the formula:

Δk
j =

Δj

k
, if xj < tnj − tcj (16)

where:
k - the number of critical paths that include operation j.

6. The operation j with the lowest acceleration cost Δk
j is selected and acceler-

ated in the amount calculated by the formula:

σ = Tk − Td and xj = xj + σ (17)

7. The total time Tk and the total costs C for the implementation of all projects
are determined, the solution is fixed:

C =
J∑

j=1

(Δj ∗ xj + Cn
j ) (18)
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8. If Tk ≤ Td then go to item 3, otherwise to item 2.
9. The end of the algorithm, a set of accelarated solutions have been found.

The hybrid algorithm has polynomial complexity. The approximate compu-
tation time of a problem can be calculated by the formula:

ct = N ∗ Ψ ∗ Π ∗ μ + A ∗ K ∗ μ (19)

where:

N - number of iterations;
Ψ - number of ants;
Π - number of operation pairs where ei = ej , i �= j, dij = 0, dji = 0 with
i = 1, J, j = 1, J ;
μ - time of the problem’s network graph values calculation;
A - total acceleration of all projects completion time;
K - middle number of critical paths in all accelerated solutions.

5 Example Problem “data-j8-p2-r4”

The number of projects I = 2, the number of operations J = 8, data on opera-
tions are presented in Table 1.

Table 1. Initial data of the problem “data-j8-p2-r4”

Operation Depend on Project Resource tn tc Cn Cc

1 - 2 4 18 5 17 32

2 - 1 2 10 9 18 41

3 2 1 2 14 6 14 29

4 1 2 1 20 12 19 34

5 1 2 3 25 11 35 49

6 1 2 2 10 6 20 39

7 2,3 1 3 11 8 20 36

8 4,1 2 4 9 8 14 48

The problem “data-j8-p2-r4” is presented in the form of a network diagram
(see Fig. 1). At the top of the node, we can see “operation number/project
number/resource number”. The execution time of operation is at the bottom of
the node.
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Fig. 1. Problem “data-j8-p2-r4” as a network diagram.

The solutions of the problem “data-j8-p2-r4” received by IBM ILOG CPLEX
and a hybrid algorithm are presented on the first line of the Table 3. The hybrid
algorithm is based on the ant algorithm for constructing solutions and the critical
path method for obtaining accelerated solutions.

The normal execution time of all projects is 54 with a price of 157. The
maximum accelerated execution time of all projects is 25 with a price of 265
(prices rounded off).

The part of the set of Pareto-optimal solutions found by IBM ILOG CPLEX
is presented in Table 2. The same solutions have been found by the hybrid
algorithm.

Table 2. Solutions of the problem “data-j8-p2-r4”

T1 T2 T3 T4 T5 T6 T7 T8 Tk x1 x2 x3 x4 x5 x6 x7 x8 w26 w36 w57 C

0 0 21 18 18 35 43 38 54 0 0 0 0 0 0 0 0 1 1 1 157

0 0 28 18 18 18 42 44 53 0 0 0 0 1 0 0 0 1 0 1 158

...

0 0 10 5 5 16 16 17 26 13 0 8 8 14 0 1 0 1 1 1 221.33

0 0 10 5 5 16 16 17 25 13 0 8 8 14 1 2 1 1 1 1 265.42

6 Test Results

The test results for all sample problems are presented in Table 3. The calcu-
lation of the solutions with the hybrid algorithm is carried out 5 times since
the algorithm is based on the generation of random numbers. The number of
calculation attempts of the solutions with the hybrid algorithm has been cho-
sen empirically. The maximum duration of the task calculation is 6 h. For the
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Table 3. Test results for all sample problems

Problem name Accel. CPLEX Hybrid Algorithm

Time Cost Comput. Time Time Range Cost Range Comput. Time

data-j8-p2-r4 No 54 157 00:00:02 54–54 157 00:00:00

Max 25 265 25–25 265–265

data-j50-p5-r10—1 No 146 1228 00:00:26 155–161 1228 00:00:11

Max 105 1446 109–117 1480–1533

data-j50-p5-r10—2 No 186 1308 00:13:24 186–186 1308 00:00:15

Max 126 1677 138–138 1609–1615

data-j50-p5-r10—3 No 156 1213 00:43:32 156–156 1213 00:00:18

Max 86 1775 98–98 1767–1779

data-j50-p5-r10—4 No 152 1172 00:03:26 152–159 1172 00:00:14

Max 101 1449 101–104 1508–1592

data-j50-p5-r10—5 No 191 1240 00:00:26 191–191 1240 00:00:18

Max 113 1473 114–121 1465–1546

data-j100-p10-r20—1 No 173 2437 04:36:43 178–185 2437 00:00:47

Max 110 2812 127–132 2779–2957

data-j100-p10-r20—2 No 204 2343 over 6 h 214–223 2343 00:01:18

Max 202 2346 143–155 2887–2990

data-j100-p10-r20—3 No 229 2476 over 6 h 229–235 2476 00:01:07

Max 203 2509 148–166 2896–3225

data-j100-p10-r20—4 No 167 2445 over 6 h 175–177 2445 00:00:54

Max 154 2473 126–132 2888–3069

data-j100-p10-r20—5 No 166 2656 over 6 h 176–183 2656 00:01:02

Max 155 2682 131–141 2987–3064

data-j150-p10-r30—1 No 184 3646 over 6 h 215–220 3646 00:02:33

Max 150 3767 149–149 4343–4364

data-j150-p10-r30—2 No 196 3799 over 6 h 202–210 3799 00:02:54

Max 163 3850 131–145 4393–4734

data-j150-p10-r30—3 No ? ? over 6 h 203–212 3506 00:02:25

Max ? ? 149–151 4060–4095

data-j150-p10-r30—4 No 182 3668 over 6 h 212–212 3668 00:02:44

Max 169 3696 141–142 4545–4571

data-j150-p10-r30—5 No 181 3695 over 6 h 202–205 3695 00:02:46

Max 170 3705 137–143 4289–4354

data-j200-p30-r30—1 No 277 4864 over 6 h 277–277 4864 00:06:34

Max 277 4864 183–192 5544–5665

data-j200-p30-r30—2 No 208 4816 over 6 h 237–242 4816 00:07:33

Max 207 4816 162–165 5719–5805

data-j200-p30-r30—3 No 213 5093 over 6 h 213–217 5093 00:09:15

Max 211 5094 140–150 5978–6046

data-j200-p30-r30—4 No ? ? over 6 h 229–248 4799 00:09:57

Max ? ? 156–161 5605–5608

data-j200-p30-r30—5 No ? ? over 6 h 264–264 4875 00:09:34

Max ? ? 156–184 5631–5814

problems, all solutions of which were not found in 6 h, the solutions found in the
allotted time are presented.

According to the test results for the “data-j8-p2-r4” problem, consisting of
8 works, 2 projects and 4 resources, (see illustrative example above), the hybrid
algorithm is able to find the entire set of Pareto-optimal solutions in all counting
attempts.



On One Bicriterion Discrete Optimization Problem 299

Analysing the results obtained for the medium-dimensional problems, it is
clear that for the examples “data-j50-p5-r10—2” and “data-j50-p5-r10—4” the
hybrid algorithm is able to optimal solutions without projects execution acceler-
ation in all tests. It should be noted that for the problems of average dimension
“data-j50-p5-r10—x” (50 operations, 5 projects and 10 resources), the hybrid
algorithm is not able to find a complete set of Pareto-optimal solutions, since
the application of the critical path method for the acceleration of the opera-
tions’ execution conflicts with the possibility of changing their execution order.
However, the deviation of solutions obtained with the hybrid algorithm, both
in terms of projects’ execution time and the cost of executing from the optimal
solutions does not exceed 10%. At the same time, the calculation time of solu-
tions with the hybrid algorithm within the same dimension varies slightly from
problem to problem and does not exceed 18 s, while the time to find solutions in
IBM ILOG CPLEX can range from 26 s to more than 43 min.

In high-dimensional test problems, the hybrid algorithm demonstrates simi-
lar accuracy of the obtained solutions relative to IBM ILOG CPLEX. In some
problems, it can even find optimal solutions without acceleration. The comput-
ing time for problems “j100-p10-r20—x” does not exceed 1.5 min, for problems
“j150-p10-r30—x” does not exceed 3 min and for problems “j300-p30-r30—x”
does not exceed 10 min. In comparison, IBM ILOG CPLEX can not find the
whole set of Pareto optimal solutions for more than 6 h and for some problems
it can not find even solutions without acceleration by this amount of time.

Analyzing the results obtained, it can be concluded that the hybrid algorithm
is promising in real-time project planning systems. In a dynamically changing
situation, it is necessary to quickly search for optimal or close to optimal solu-
tions, which are not able to provide accurate optimization algorithms.

7 Conclusions

The article deals with the problem of optimal management in multi-project
developments. A review of scientific works on this topic is made, a substantial and
formal statement of the problem of optimal control in multi-project developments
is presented. It is shown that this problem belongs to the NP class.

The effective hybrid algorithm presented in the work is able to find close
to optimal solutions for the considered problem of optimal control in multi-
project developments quickly. The hybrid algorithm is based on modifications to
the ant colony algorithm to determine the execution order of operations and the
critical path method to find a set of accelerated solutions close to Pareto-optimal
solutions based on cost and performance criteria.

The efficiency of the algorithm has been confirmed empirically by comparing
the speed of problem solving and the quality of solutions obtained with the
hybrid algorithm and the solutions obtained with the implementation of integer
linear programming tools in the IBM ILOG CPLEX software product on sets of
test problems of different dimensions. In a sample test problem “data-j8-p2-r4”,
the hybrid algorithm is able to find the entire set of Pareto-optimal solutions. In
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medium-dimension and high-dimension test problems, the hybrid algorithm is
able to find solutions approximate to the solutions from the set of Pareto-optimal
ones.

However, the great advantage of the developed hybrid algorithm is the stable
high speed of finding solutions. For medium-dimensional problems, finding solu-
tions takes less than 20 s, while finding optimal solutions in IBM ILOG CPLEX
can take up to 43 min. In high-dimensional problems, the time to find solutions
is less than 10 min, while finding optimal solutions in IBM ILOG CPLEX can
take more than 6 h, which is unacceptable for practical use.

Considering the advantages and disadvantages of the hybrid algorithm, we
can predict its effective application in decision support systems in the field of
project planning in real-time.
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Initializing Ant Colony Algorithms by Learning
from the Difficult Problem’s Global Features
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Abstract. Deception, which stems from the tackled problem instance and algo-
rithmic structure, has a tremendous negative impact on the algorithmic perfor-
mance. An improved ACO called GFL-ACO with a global feature learning strat-
egy is proposed to process the algorithmic initialization. The strategy consists of
two parts: a greedy random walking of ant colony and a mean value approach.
With the former part, some initialized ants are launched to step forward by a greedy
rule till finished a tour. A statistical manner of edge-based relative frequency is
used to initial pheromone trails and ants’ starting positions. With the latter part, a
mean value calculated from edge-based relative frequency is used to generate ant
population size. The experiments on the TSPLIB benchmark show that GFL-ACO
can achieve a rather better performance on the standard benchmark.

Keywords: Ant colony optimization · Deception · Algorithmic difficulty ·
Global feature · Parameter initialization

1 Introduction

Traveling Salesman Problem (TSP), especially Large-scale TSP, is a well-known NP-
hard problem, which is an often-used model of a series of combinatorial optimization
problems. There are considerable researchers employ ant colony optimization (ACO) to
solve it all the time, because ACO has a positive feedback mechanism and is intrinsic
parallel, self-organizing and adaption, etc. [1]. For example, Kaplar et al. improved an
agent-based ACO to solve large-scale TSP with the use of distributed computing [2].
LIAO et al. fused the density peaks clustering algorithm with an ACO and proposed a
hierarchical hybrid algorithm for TSP [3]. In addition, for the larger instances, scien-
tists gave some strategies of hybrid multi-populations [4], Cooperative Co-evolutionary
Metaheuristics [5], Co-Evolution Mechanism [6], etc. The above methods are all con-
centrating on the improvement of algorithm but not on the problem features. In fact, a
difficultly solved problem, often called a deceptive problem, is usually resulting in the
disability of algorithms.

Deception is a critical problem of meta-heuristic algorithms all the time, because
it plays a key role in the algorithmic performance and brings the algorithms difficulty.
ACO algorithms are without exception [7]. D.Merkle et al. firstly discussed the bias phe-
nomenon and showed that the behavior of an ACO algorithm is strongly influenced by

© Springer Nature Switzerland AG 2021
Y. Tan and Y. Shi (Eds.): ICSI 2021, LNCS 12689, pp. 301–310, 2021.
https://doi.org/10.1007/978-3-030-78743-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78743-1_27&domain=pdf
https://doi.org/10.1007/978-3-030-78743-1_27


302 X. Deng et al.

the pheromone model. Moreover, it was shown that the bias may decrease performance
of an ACO algorithm during a run, because in general this worsens the probability
of finding better and better solutions [8]. After that, a comprehensive discussion on
deception of ACO algorithms was given by Dorigo [9], which defined the deception by
modeling an ACO algorithm applied in a problem instance, and proposed the concepts
of first-order deception system (FODS) and second-order deception system (SODS).
Moreover, it gave an example of SODS and considered that the SODS would be the
most important issue to be investigated in the future ACO algorithm design. And then,
they provided a way to distinguish fair and unfair competitions between solution com-
ponents, and presented a competition balanced system to avoid construction bias caused
by second-order deception effects [10]. For better describing second-order deception
effects, Montgomery et al. introduced two types of bias caused by the structural aspects
of a problem instance, and studied different pheromone mechanisms to achieve better
performance [11]. The above researches indicate that the deception is the root cause of
the difficulty of problems, and an effective artificial pheromone mechanism can lead to
a better solution.

As an important component of ACO algorithms, the artificial pheromonemechanism
without a doubt plays a critical role in a specific ant colony algorithm [12]. It includes
mainly two parts: static pheromone structure and dynamic pheromone structure. The
static pheromone structure often contains the pheromone trail graph and their initial
values which respectively represent the acquired experiences and the prior knowledge.
The pheromone trails are often updated by somebest iteration elite ants in the ant colony’s
searching procedure. They are commonly combined with heuristic information, which
is derived from the tackled problem instance, to bias the ants’ solution constructing
processes. The dynamic pheromone structure usually contains some updating rules.
Most of ACO variations predominantly pay attention to improvements on the above
pheromone mechanism, proved having a great effect on the algorithmic characteristics
and solution construction performance.

Usually, when the pheromone trail graph is selected associated with tackled prob-
lem instance, the ACO algorithmic structure is basically determined. Except for the
pheromone initialization, in the solution construction steps, the pheromone trails as a
kind of numeric information as heuristic information are used to calculate the transition
probability between two neighbor cities. The pheromone mechanisms are mainly acti-
vated in the iteratively searching procedure. In this paper, the pheromone initialization
belongs to the first phase of an ACO algorithm referred as algorithmic initialization
procedure (AIP phase), and other pheromone-related issues belong to the second phase
referred as algorithmic running procedure (ARP phase).

As another important numeric information, heuristic not only forms the basis of
pheromone mechanisms, but also represents the specific structure of a problem instance.
Similar to the pheromone mechanism, the heuristic information is also more often
employed at the ARP phase. Except participating in the ant individual one step moving
decision, the heuristic information is widely used to generate neighbor structures, which
can be well coupled with the global update rule to obtain high-quality algorithmic solu-
tion. The neighbor structure is substantially a kind of local searching structure, which
is often directly used to construct a more efficient partial solution because of its best
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utilization of heuristic information. The iterated local search approach introduced in [13]
utilized a simple rule of conducting iteratively perturbation steps to improve the locally
optimal solution, and it could progressively obtain an optimized neighborhood. Kara-
petyan et al. [14] dealt with traveling salesman problem (TSP) and generalized TSP on
behave of local heuristic information algorithms. In fact, ACO algorithms were proved
to the best solution for a number of combinatorial optimization problems, when cou-
pled with local search methods [15]. Duan et al. [16] utilized the natural niche ideology
to generate a reachable cities array for each node, which could create a kind of local
optimization approach.

A large number of researches have indicated that the heuristic information has a wide
influence on the algorithmic performance.But,most of the time, the heuristic information
is coupled with pheromone trails at the ARP phase, while there is rarely utilization of
heuristic information at the AIP phase. Even though the literature [13] showed that it
can be used to generating an initial solution, it only referred the heuristic information
as a local neighborhood, but not as a representation of global features of the tackled
problem instance. In this paper, we conduct a greedy random walking of ant colony at
the beginning to process the global structure of heuristic information, so that the ant
colony can learn from the global features of the heuristic of tackled problem instance to
performa highly efficient algorithmic initialization.With the greedy randomwalking, ant
colony takes a statistical samples of the global solution space, and an edge-based relative
frequencymatrix is generated used to calculate the initial pheromone values. In addition,
with a mean value approach based on the relative frequency matrix, a certain amount
of important solution components is selected to initialize the ant colony and their initial
positions. Giving an example based on the standard TSP bench, combined with iteration-
best update (IB-update) rule, a serious of experimental tests with an improved ACO
algorithm abbreviated as GFL-ACO are carried out, and demonstrate high efficiency.

2 Learning from the Global Features

2.1 The Global Features of Solution Space

Travelling salesman problem (TSP) is a common model of enormous practical and
theoretical problems. The solution is a Hamiltonian tour of minimal length labeled
as π = {π1, . . . , πi, . . . , πn}t an all permutation of the n nodes, where πi is the i
th component of the solution at iteration t. A feasible solution is obtained by a tour
completed ant of visiting each city exactly once. When solved by an ACO algorithm, it
should be modeled as a graph G = (N ,E) is given with n = |N | nodes, a set E of edges
fully connecting the nodes, and the distances between the nodes are given by a distance
matrix D = {

dij
}
(dij is the distance between node i and j), which represent the linking

relationships between nodes. Generally, for two nodes of a tackled problem instance,
the larger the value of dij is, the closer the relationship of node i and j gets. When they
have an extraordinary weak relationship, the dij is absent or an infinite value that means
the two nodes are independent of each other.

In the graph G, the edges linking to a node i are denoted as C =
{
cij

}
, j ∈ N\{i},

which represents its nearest neighborhood. If j represents one of the one-jump reaching
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nodes of node i, C represents a first order neighborhood. When it is one of the second-
jump reaching nodes of node i, C represents a second order neighborhood. It can be
showed in Fig. 1.

Fig. 1. The central node has five one-jump reaching nodes marked yellow, and four two-jump
reaching nodes marked deep blue. (Color figure online)

In most cases, only the first order neighborhood is used to construct a local opti-
mization strategy, because a first order neighbor node sometime can not only represent
a short term dependency showed as in Fig. 1, but also a long term dependency on one
solution instance. It can be showed in Fig. 2.

Fig. 2. In partial optimal solution πp = {
π i−2, π i−1, π i, π i+1, π i+2, π j

}
, the node j is a three

jumps node of the central node i, while it is a first order neighborhood node at the time.

That is to say, a normal first order neighborhood is not always only a representation
of local connection relations, but also occasionally a representation of global connection
relations. The global features of a tackled problem instance are implied in amore complex
connection map of nodes.

For a first order neighborhood C1 of node i, the distance subset D1 = {
dij|j ∈ C1

}

can only be seen as unchangeable heuristic information of the nearest neighbor nodes,
and they are determined at problem’smodeling phase. Though a first order neighborhood
can indicate a local connection relation at the same time a global connection relation, its
numeric descriptions D1 can only provide a short term heuristic representation. What’s
more, for a second order neighborhood or a higher order neighborhood, the finite rep-
resentative capability of distance matrix D can’t provide a better expression of complex
correlativity, even though D is created by some more complex distance structures such
as Hausdorff distance [17], geodesic distances defined between two points on a topolog-
ical manifold [18], etc. In ACO algorithms, the pheromone mechanism provides a more
effective solution that can represent a global features of the complex connection map,
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via an indirect communication mechanism of ant colony individuals. The pheromone
trails are updated by ant colony’s iteratively searching behaviors gradually integrating
the lower-order and higher-order correlativity of different edges, and conversely affect
the ant colony’s searching behaviors. By means of the relative pheromone depositing on
the edges belonging to an iteration-best path, pheromone trails can express the complex
global relationships of different nodes. The integrating effect can be shown in Fig. 3.

Fig. 3. Pheromone on an edge deposited coupled with several relative edges stores the searching
behaviors of ants.

In Fig. 3, the pheromone on the edge out from node N2 is generated by the ants
entering N2 along the edge N0N2 and N1N2. The pheromone should be deposited on the
edge N0N2 and N1N2 would also be relatively deposited on the node N2, making the
changes of pheromone trails on the node N2 are more obvious. At the same time, the
mutual effect among the searching behaviors of ant colony is closer.

2.2 Edge-Based Relative Frequency

To study the communication of ant colony, Deneubourg et al. [19] ever designed a
double-branch bridge experiment to demonstrate ants’ decisions of selecting a branch
(Fig. 4), and they came to a conclusion that the pheromone density on a branch is in
direct proportion to the number of ant individuals which passed the branch. And then, the
following ant individuals select the branch based on the pheromone density (the more
pheromones there are on a branch, the more possible the ants will select the branch).

Fig. 4. Double-branch bridge experiment.
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They proposed an approximate model to describe it. Suppose the short branch is A,
the long branch isB.Am andBm represent the number of ants which have passed the short
branch and those which have passed the long branch respectively. If the number of ants
which have passed branch A is m, the next ant will select branch A with the probability
as follows:

PAm = (Am + t)α

(Am + t)α + (Bm + t)α

where α and t are parameters to match the experimental data. The model indicates
that the more ant individuals passed a branch, the more possible it is for the branch to
be selected. That is to say the number of ants traversed a branch denotes its importance
of constructing a complete tour.

Considering the solution space model of graphG of a particular instance, we specify
a numeric value sij for each edge eij ∈ E, used to count the traversed ant individuals.
When an ant crosses the edge eij, sij pluses one. If there is an ant colony walking on the
graph G randomly or with another specific rule, for example greedy rule. After a while,
a counter matrix S composed of elements

{
sij

}
can be obtained, and then is normalized

by the following formulas:

Snorm = S + 1

sum(S + 1)

where Snorm is the normalized counter matrix. Because it is possible that there are
some nodes have no ants traversing it, conduct a plus one process can avoid appearing
zero valued node. In addition, for each edge eij, the corresponding element snormij of
matrix Snorm multiplies the counter sij as following:

rfij = snormij × (1 + sij)

where rfij denotes the edge-based relative frequency of an edge, and accordingly
obtain an edge-based relative frequency matrix RF = {

rfij
}
. According to the Good-

Turing Estimate [20], if there is a quite big number of ant colony, and iterates enough
times, the above plus one process corresponds to distribute a very small probability to
the zero valued edges from the probability mass.

3 Initializing GFL-ACO

GFL-ACO is a successor of Ant Colony System (ACS) which was proposed by Dorigo
and Gambardella [21]. With a TSP instance, the main steps of G-ACS are as follows:

• Initializing algorithmic parameters.
• Conducting a greedy-random walking of ant colony. At the beginning, place an ant at
each node, the ants move from one node to another with a tabu rule and a greedy rule.

• Initializing the pheromone trails.
• Initializing the ant colony and their positions.
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• Begin main iterative procedure. The ants use a pseudo-random proportional rule to
select an edge and move to the next node.

• Repeat selecting and moving until perform a complete tour.
• Evaluate the ant colony and select out the iteration-best path according to the
evaluation function.

• Update the pheromone trails by IB-update rule.
• Complete or transfer to step 5).
• End the algorithm.

At the step 3, the initialization of pheromone trails is conducted by following:

phromoneij = Lrbest × rfij

where Lrbest denotes the shortest path produced by the random walking ant colony.
At the step 4, firstly, a mean value m of the counter matrix S is calculated by:

m = mean(S + 1)

Second, a subset of edges E′ included in E is selected if the counter sij ∈ E′ satisfies
sij > m. When the iteration starts, the nodes belonging to the edges included in E′ will
be placed by an ant, whose next node is the other node of the same edge.

At the step 5, if pkij represents the state transition probability of ant k transferring
from node i to node j:

pkij =
⎧
⎨

⎩

τα
ij ×η

β
ij

∑
l∈allowned

[
τα
il ×η

β

il

] , if j ∈ allowned

0, otherwise

where α is the information heuristic factor, representing the relative importance of
the trajectory, and β is the desired heuristic factor, representing the relative importance
of the visibility. τij is the pheromone density on edge eij, and ηij is the value of the
heuristic function on edge eij, and is often equal to 1/dij.

At the step 8, update the pheromone trails at the end of each iteration according to
the following rules:

τij = (1 − ρ) × τij + ρ × 1

Literation_best

where ρ represents the pheromone evaporation coefficient, and Literation_best is the
length of the best path of the iteration, and 1/Literation_best represents the pheromone
increment on specific edges belongs to the best iterative path.

4 Experimental Tests

In order to test the validity of GFL-ACO, a standard TSP bench set is used to eval-
uate it, which contains a total of 111 instances and their so-far best solutions. As the
global optimum of some TSP instances is uncertain, a lower bound is used instead. The
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tested TSP instances include ulysses22.tsp, att48.tsp, eil51.tsp, berlin52.tsp, eil76.tsp,
pr124.tsp, ch150.tsp, and gr666.tsp.

GFL-ACO was implemented in MATLAB R2014a, and all codes were executed on
a personal computer with an Intel Pentium 2.5 GHz processor and 4GB RAM. To verify
the effectivity of the algorithm, there are eight parametric combinations are discussed
as follows (Table 1):

Table 1. The parametric combinations

ID α β m q0 ρ ID α β m q0 ρ

1 2 1 30 1 0.9 5 3 2 35 0.8 0.9

2 2 2 30 1 0.9 6 3 2 35 0.9 0.8

3 2 2 30 1 0.85 7 3 3 40 0.8 0.8

4 3 2 30 0.9 0.85 8 3 3 40 0.6 0.75

q0 refer to a ratio of a fixed value as the initialized pheromone concentration. Each
combination is tested 5 times, then they are ranked by the mean values of 5 tests. After
that, the best one is selected, which is marked as: α = 3, β = 2, m = 35, q0 = 0.9, and ρ

= 0.8. In the final experiment, each TSP instance iterates 500 times, and the results were
averaged over 10 trials. The results are list in the Table 2, and the eight TSP instances
are respectively demonstrated in Fig. 5.

Table 2. The experimental results

TSP
instances

Best Opt Mean Convergence

ulysses22.tsp 75.59 70.13 75.59 59

att48.tsp 34801 – 34805 49

eil51.tsp 426 426 427 86

berlin52.tsp 3123.43 – 3127.6 76

eil76.tsp 538 538 539.7 87

pr124.tsp 59083.1 59030 59108.45 79

ch150.tsp 6543.3 6528 6549.3 71

gr666.tsp 3129.30 2943.58 3183.28 498

The experimental tests show that GFL-ACO with each tested TSP instance has a
quick exploiting procedure and achieve convergence steadily in the rather shorter time.
The main improvement of the greedy random walking of ant colony plays a critical role
in gaining the important edges and keeping them cross the different generations.
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(a) ulysses22.tsp (b) att48.tsp (c) eil51.tsp

(d) berlin52.tsp (e) eil76.tsp (f) pr124.tsp 

(g) ch150.tsp (h) gr666.tsp

Fig. 5. The algorithm-best solution and the iteration-best fitness value curve of all TSP instances.

The greedy random walking of ant colony can be described as a population parallel
sampling procedure, which can help the ant colony gain a global perception of the tackled
problem instance. By means of heuristic information, a statistical approach extracts the
long term relationships, equivalent to a high order correlativity, and stores them in the
pheromone trails, so that an edge-based relative frequency matrix can be obtained at the
end.With thematrix,GFL-ACOcan achieve a better balanced condition thanbeforeACO
algorithms, and find a best equilibrium point of exploring and exploiting. Furthermore,
GFL-ACO can obtain a better solution in a shorter time.

5 Conclusion

The paper focus on reducing the neglect impact of the problem instance’s deception
on the ACO based algorithmic performance. By means of autonomous learning the
global heuristic structure of the tackled problem, and applying it in the algorithmic
initialization of pheromone trails and ant colony and their beginning points, we obtain
good performance of a new novel ant colony optimization algorithm (GFL-ACO). This
new feature makes the initial pheromone trails become more balanced and meanwhile
find the important edges.Moreover, we can gain amoremeaningful amount of ant colony
and initialize them. With the higher efficiency initialization, GFL-ACO achieves a good
balance of exploring ability and exploiting ability.

If can be combined with some local optimization technology, GFL-ACO can gain a
better performance in the real engineering situations. About some large scale optimiza-
tion problems, finding more fundamental global structure to couple with local searching
approaches is a feasible way in the future.
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An Ant Colony Optimization Based Approach
for Binary Search

N. K. Sreelaja(B) and N. K. Sreeja

PSG College of Technology, Coimbatore, India

Abstract. Search is considered to be an important functionality in a computa-
tional system. Search techniques are applied in file retrievals and indexing. Though
there exists various search techniques, binary search is widely used in many appli-
cations due to its advantage over other search techniques namely linear and hash
search. Binary search is easy to implement and is used to search for an element in
a large search space. The worst case time complexity of binary search is O (log

2 n) where n is the number of elements (search space) in the array. However, in
binary search, searching is performed on the entire search space. The complexity
of binary search may be further reduced if the search space is reduced. This paper
proposes anAnt ColonyOptimization based Binary Search (ACOBS) algorithm to
find an optimal search space for binary search. ACOBS algorithm categorizes the
search space and the key element is searched only in a specific category where the
key element can exist thereby reducing the search space. The time complexity of
ACOBS algorithm is O (log 2 c) where c is the number of elements in the reduced
search space and c< n. The proposal is best suited for real time applications where
searching is performed on a large domain.

Keywords: Ant colony optimization · Binary search · Optimal search space

1 Introduction

Swarm Intelligence [2], is an algorithm that models the collective behavior of
autonomous agents. An autonomous agent may be regarded as a subsystem that interacts
with its environment consisting of other agents, but acts relatively independent of the
other agents. The autonomous agent does not follow commands from a leader, or some
global plan [3]. Nature-inspired algorithms are based on Swarm Intelligence, which in
turn forms the foundation ofmetaheuristics [11]. Swarm intelligence algorithms includes
Genetic Algorithms (GAs), Ant Colony Optimization (ACOs) [1], Particle Swarm Opti-
mization (PSO) [4], cuckoo search [5], firefly algorithm (FA) [6], bee algorithm [7], fish
schooling search (FSS) [8], fireworks algorithm (FWA) [10], brain storm optimization
(BSO) [9]. PSO is widely used for real-parameter optimization while ACO has been
successfully applied to solve combinatorial optimization problems.

Ant System is a Swarm Intelligence algorithm to solve optimization problems. Arti-
ficial Ants [3] have some characteristics which do not find counterparts with real ants.
The ants live in a discrete world and the moves consist of transitions from discrete state
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to discrete states. They have an internal state which contains the memory of the ant
agent’s past action. They deposit a particular amount of pheromone, which is a function
of the quality of the solution found. An Artificial Ant’s timing in pheromone deposition
is problem dependent and often does not reflect real ant’s behavior.

The ant agent moves by applying a stochastic local decision policy based on two
parameters, called trails and attractiveness. The solution is constructed incrementally by
the ant agent while moving. The ant computes the solution either during the construction
phaseof the solutionor after completing the solution.The trail valueon the components of
the solution is modified by the ant agent when the evaluation of the solution is complete.
In addition, an ACO algorithm includes two more mechanisms such as trail evaporation
and, optionally, daemon actions. Trail evaporation reduces all trail values over time, in
order to avoid unlimited accumulation of trails over some component [1].

Search is considered to be an important functionality in a computational system.
Search techniques are applied in file retrievals, indexing etc. Though there exists various
search techniques, binary search is widely used inmany applications due to its advantage
over other search techniques namely linear and hash search. Binary search is easy to
implement and is used to search for an element in a large search space. The worst case
time complexity of binary search is O (log 2 n) where n is the number of elements in the
array (Search space). However, in binary search, searching is performed on the entire
search space. The complexity of binary searchmay be further reduced if the search space
is reduced.

Zeeshan et al. [12] have proposed a binary search algorithm based on checkpoint.
The drawback is that it performs badly in a worst case when compared to binary search
algorithm. Mehmood et al. [13] have proposed ASH search. ASH search works only
for numbers and to search a string, it needs to be converted into numbers using a hash
function which increases the computational complexity.

This paper proposes anAntColonyOptimization based approach to reduce the search
space of binary search. In this proposal termed Ant Colony Optimization based Binary
Search (ACOBS), the set of elements sorted in ascending order are categorized and
the ant agent finds the reduced search space by computing the count and last positions
of occurrence of elements belonging to each category. ACOBS algorithm reduces the
search space of binary search thereby reducing the time complexity of binary search.
The proposal is best suited for real time applications where searching is performed on a
large domain. The proposal achieves better computational complexity than the existing
search algorithms.

The paper is organized as follows. Section 2 describes the model of the system.
Section 3 describes ACOBS algorithm. Section 4 discusses a case study. The experi-
mental results are discussed in Sect 5. A comparison of ACOBS algorithm and other
search mechanisms is discussed in Sect. 6. Section 7 discusses the Mathematical Model
of the system. Section 8 discusses the computational complexity of ACOBS algorithm
and Sect. 9 presents the concluding remarks.

2 Model of the System

The elements sorted in ascending order are categorized based on the nature of the ele-
ments. For instance, if the elements are numbers and are of varying length, then the
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categorization is based on the number of digits. If the elements are strings and are of
varying length, then the categorization is based on the first varying digit. If all elements
in the array are of the same length, then the elements are catrgorized based on the first
varying digit. The ant agent stores the number of elements belonging to each category
and the position of last occurrence of elements of each category in its tabu-list. To search
for the key value, the ant agent finds the category of the search key. The ant agent deposits
pheromone and chooses the position value and the count value from the tabu-list of the
corresponding category and the reduced search space is found. A binary search is per-
formed in this reduced search space. If the search space does not exist, the key value is
not present and the process is stopped. Figure 1 shows the model of the system.

Fig. 1. Model of the system

3 Ant Colony Optimization based Binary Search

Let X = [X1, X2….Xn] be a set of elements in ascending order. Let Ky be the key value
to be searched. The elements are grouped based on a specific category. If the elements
are numbers or strings of varying length, then the categorization is based on the length
of the elements or based on the first varying digit respectively. If all elements in the
array are of the same length, then the elements are categorized based on the first varying
digit. The ant agent has a tabu-list denoting its memory. The tabu-list has a position list
P and count list C. The number of the elements belonging to each category are found
and stored in the count list as shown in Eq. (1).

C = {C1, C2, C3, . . . ., Ck} (1)
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where Ci denotes the number of elements belonging to category ‘i’. The position of
last occurrence of the elements (Pi) belonging to each category is found using Eq. (2).

Pi =
{∑i

j=1 Cj if Cj �= 0
0 if Cj �= 0

(2)

The position list [P1, P2, P3, ……, Pk] is stored in the tabu-list of the ant agent.
The ant agent has a low position lp and a high position hp. Initially, the values of lp

and hp are zero. The search space denotes the subset of elements in which the key value
Ky is searched. To find an optimal search space, the ant agent deposits pheromone by
choosing the position value Pi corresponding to the category ‘i’ to which Ky belongs.
If Pi is zero, the search space is not found and the ant agent stops the process. If Pi is
greater than zero, the count value Ci corresponding to the category ‘i’ of Ky is chosen
from the count list. The position value Pi is stored in hp. The count value Ci is subtracted
from the position value Pi and the subtracted value (Pi – Ci) + 1 is stored in lp of the
ant agent as shown in Eq. (3).

lp = (Pi − Ci) + 1 (3)

The range [lp, hp] denotes the optimal search space in ich the key value Ky has to
be searched. The pheromone deposition evaporates and the ant agent moves to the next
trail. The ant agent deposits pheromone by computing the mid value as shown in Eq. (4).

midvalue = int

(
lp + hp

2

)
(4)

The ant agent chooses the element at the position denoted by the pheromone depo-
sition. The ant agent computes the energy value by comparing the key value Ky with
the element denoted by the pheromone deposition. The energy value is +1, if the Ky is
less than the element at the position denoted by the pheromone deposition and the ant
agent updates hp to (midvalue − 1). The energy value is −1, if Ky is greater than the
element at the position denoted by the pheromone deposition and the ant agent updates
lp to (midvalue + 1). The energy value is 0, if Ky is equal to the element at the position
denoted by the pheromone deposition as shown in Eq. (5).

Energy(Ant agent) =
⎧⎨
⎩

+1 if Ky < X [midvalue] set hp = midvalue − 1
0 if Ky = X [midvalue]

−1 if Ky > X [midvalue] set lp = midvalue + 1
(5)

If the energy value of the ant agent is zero, the key value Ky is found. If the key
value is not found, the pheromone evaporates and the ant agent moves to the next trail
and the process continues until either a match occurs or lp > hp. lp > hp indicates Ky
is not found. Figure 2 shows the pseudocode ACOBS algorithm.

4 Case Study

Consider an array of sorted numbers {1, 2, 10, 20, 22, 23, 34, 124, 148, 150, 1458, 2900,
3500, 10000}. Since the numbers are of variable length, the category is defined based
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on the number of digits in the number. Assuming the maximum number of digits in a
number to be 10, the categories are classified as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. It is found that
the count of the numbers having 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 digits are {2, 5, 3, 3, 1, 0, 0,
0, 0, 0} respectively. Therefore the count list C in the tabu-list of the ant agent contains
{2, 5, 3, 3, 1, 0, 0, 0, 0, 0}. The position list (P) in the tabu-list of the ant agent contains
the last positions of occurrence of the numbers belonging to each category. Therefore,
P = {2, 7, 10, 13, 14, 0, 0, 0, 0, 0}. A case study is discussed for two different cases (i)
Existence of a search space in which the key value may be found and (ii) Non-existence
of a search space.

Fig. 2. Pseudocode for ACOBS algorithm

4.1 Existence of a Search Space in Which the Key Value May Be Found

Let Ky= 146 be the key value to be searched. Since Ky is a 3 digit number, the category
of Ky is 3. The ant agent deposits pheromone by choosing the position value P3 = 10
corresponding to the category of Ky (i.e) 3 from the position list. Since P3 is greater
than 0, the ant agent chooses the count value C3 = 3 corresponding to the category of
Ky (ie) 3 from the count list C. The ant agent assigns the value in P3 to hp and (P3–C3
+ 1) to lp. Hence the values in lp and hp are 8 and 10 respectively. Thus the optimal
search space in which the key has to be searched is [8, 10]. The highlighted rows in Table
1 denotes the reduced search space. Table 2 shows the ant agent searching for the key
value 146 in the reduced search space. It is found that the key value Ky does not occur
in the reduced search space. It may be noted that out of 14 elements, only 3 elements
are searched using ACOBS algorithm thereby reducing the number of searches.
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Table 1. Ant agent finding the search space

Values Count of values belonging to each
category (Ci)

Position of last occurrence of values in a
category (Pi)

1

2 2 2

10

20

22

23

34 5 7

124

148

150 3 10

1458

2900

3500 3 13

10000 1 14

Table 2. Ant agent finding a match using Binary search in the reduced search space

Ant agent Trail Low position High position midvalue Pheromone Energy value

1 1 8 10 9 148 1

1 2 8 8 8 124 −1

1 3 9 8 – – –

4.2 Non-existence of a Search Space

Let Ky = 100034 be the key value to be searched. Since Ky is a 6 digit number, the
category of Ky is 6. The ant agent deposits pheromone by choosing the position value
P6 = 0 corresponding to the category of Ky (ie) 6 from the position list. Since the value
in P6 value is 0, the search space does not exist and therefore Ky is not found in the
array. Thus the number of searches using ACOBS is 1.

5 Experimental Results

Experiments were performed to search the information about a country based on the zip
code. The experiment was performed using the dataset [15]. The dataset had 42522 zip
codes in sorted order. The zip codes were categorized based on the length. The number
of zip codes in the dataset of length 3, 4 and 5 are 194, 3475 and 38853 respectively.
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Table 3 shows the position of the zip codes in the database and the number of searches
required to locate the zip code in the database.

6 Comparison Between ACOBS and Search Techniques

6.1 Comparison Between ACOBS and Binary Search

Experiments were performed to show the efficiency of ACOBS algorithm in searching
a dictionary dataset [16] which consisted of 370103 elements. The number of searches
for every word in the dictionary dataset [16] was found. The words are in sorted order
and are categorized based on the first letter in the word. Figure 3 shows a comparison
of the total number of searches using ACOBS and binary search for searching all words
beginning with the alphabets ‘a’ to ‘z’ with the dictionary dataset [16]. It is shown that
ACOBS performs better compared to Binary Search. Figure 4 shows the comparison
between the number of searches using ACOBS and binary search to compare each zip
code in Table 3 with the zip codes in the dataset [15]. Figure 5 shows the total number
of searches using ACOBS and binary search for searching all zip codes in the dataset
[15].

6.2 Comparison Between ACOBS and Sequential Search

The set of elements {1, 2, 10, 20, 22, 23, 34, 124, 148, 150, 1458, 2900, 3500, 10000}
used in Sect. 4 was chosen and a comparisonwasmade for searching each key value from
the set. It is observed from Fig. 6 that ACOBS performs better compared to Sequential
Search.

6.3 Time Complexity of ACOBS and Other Search Techniques

The Time complexity of ACOBS algorithm and other existing search algorithms have
been shown in Table 4. It may be noted from Table 4 that the time complexity of ACOBS
algorithm is O(log c) where c is the number of elements in the reduced search space and
c < n.

7 Mathematical Model of the System

The problem is modelled as an optimization problem. The optimization problem may
be represented as a pair O = (S, f ) where S denotes the search space with S �= Ø and f: S
→ R is the objective function where R denotes the reduced search space. Let (x1,…, xn)
∈ S be a feasible solution of the optimization problem. The solution to the optimization
problem (S, f ) is to find a minimal search space Sj ∈ S such that f (Sj)< f (Si) ∀ Si ∈ S.

8 Computational Complexity

Let X = [X1, X2, X3,…, Xn] denote a set of ‘n’ elements sorted in ascending order. The
number of elements belonging to category j is denoted as Cj. The positions of the last
occurrence of the elements in a particular category is denoted as Pj. Figure 7 shows the
method of finding reduced search space to search a key value belonging to category 2.
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Table 3. Number of searches using ACOBS

ZipCode Position Number of searches

501 1 8

794 108 6

795 109 8

9020 3254 10

5449 1885 9

24557 10267 14

33469 14639 14

33470 14640 15

44422 19161 12

48110 20969 15

99950 42522 15

796 NOT FOUND 8

999555 NOT FOUND 1

617 15 7

631 20 8

987 193 8

Fig. 3. Comparison between ACOBS and Binary Search for searching words in a dictionary
dataset

8.1 Successful Search Space

Let Ky be the key value. The category j to which the key value belongs is found. The
position Pj and the count value Cj corresponding to category j is retrieved. Hence the
search space to find Ky is in the range [Pj – Cj + 1, Pj]. A binary search is performed in
this search space. Thus the number of searches to compare a key value with the stored
elements is log(Cj) where Cj is the number of elements belonging to a category j where
j < n.
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Fig. 4. Comparison between ACOBS and Binary
Search for zip codes

Fig. 5. Comparison between total number
of searches using ACOBS and Binary
Search for zip codes

Fig. 6. Comparison between ACOBS and Sequential Search

Table 4. Time complexity of various search algorithms

Search algorithms Input size Time complexity

Worst case Average case

Exponential Search n O(log n) O(log n)

Fibonacci search n O(log n) O(log n)

Ubiquitous Binary Search n O(log n) + 1 O(log n)

Hash Search n O(n) O(1)

Ternary Search[14] n O(2 log 3 n) -

ACOBS n O(log c), c < n O(log c), c < n

8.2 Unsuccessful Search Space

Let Ky be the key value. The category j to which the key value belongs is found. If the
position Pj is zero, the search space does not exist and the number of searches is 1.
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Fig. 7. Finding the reduced search space

9 Conclusion

Search techniques are used in file retrievals and indexing. Binary search is preferred
for many applications due to its low computational complexity. However, binary search
algorithmworks on the entire array (search space) to search for a key element. Reduction
in search space would further reduce the time complexity of binary search. This paper
proposes an Ant Colony Optimization based Binary Search (ACOBS) algorithm to find
the optimal search space for binary search. The proposal has less time complexity com-
pared to other search techniques and is best suited for applications in which searching
is performed on a very large search space. It is also shown that ACOBS algorithm is
efficient than sequential search when the search space has very few elements.
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Abstract. In this paper, a novel algorithm of slime mold fractional-
order ant colony optimization (SMFACO) for travelling salesman prob-
lems (TSPs) is proposed. The newly developed algorithm, SMFACO,
takes full use of the long-term memory characteristics of the fractional
calculus to balance exploration and exploitation. In addition, it consid-
ers the property of the slime mold model, which retains the critical path
to avoid trapping into the local optima. To evaluate the performance of
the SMFACO, we conduct comprehensive experiments on various data
sets. According to the experimental results, the proposed algorithm out-
performs its peer algorithms on solution quality, search efficiency and
convergence speed.

Keywords: Ant colony optimization · Slime mold · Fractional-order
calculus · Traveling salesman problems

1 Introduction

Travelling salesman problems (TSPs), one of the most classical combinatorial
optimization problems, have been attracting considerable interests since the
1970s [1,2]. However, deterministic traditional methods are less competitive,
due to the NP-hard nature of TSPs [3,4]. Meta-heuristic algorithms are pro-
posed to find the optimal solution within a reasonable time and escape the need
of infinitely exploring all combinations of a problem [5–7]. Meanwhile, meta-
heuristic algorithms have been intensively researched and successfully applied
to a great number of areas [8–10]. In the filed of meta-heuristic algorithms, ant
colony optimization (ACO) is a powerful tool in dealing with TSPs [11,12]. A
number of ACO variants have been developed to balance between exploration
and exploitation, which can be roughly classified into: adjustment of parameters,
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modification of pheromone updates, and integration with other search technolo-
gies [13,14]. Although these variants performs well, there still exists some prob-
lems such as premature convergence and weak robustness still exist. Recently,
fractional-order ACO algorithms have been proposed in [15,16], and shown a
good balance between fast convergence and global search ability.

Most recently, slime mold (SM), a single-celled organism which resembles an
amoeba, has attracted researchers’ attention due to its unique biological mecha-
nism, as well as its intelligent behavior with the strong ability to design networks
and find paths [17–21]. In SM, the positive feedback mechanism and the char-
acteristic of preserving critical path are major contributors to find the short-
est path. When the protoplasmic flow continues increasing, the tube becomes
thicker; otherwise, the tube becomes thinner or even disappears. Ultimately the
critical paths are remained. Recently, researchers attempt to find more applica-
tions of SM, such as graph-optimization problem [22], community mining [23],
route optimization [24], the user equilibrium traffic assignment problem [25],
supply chain network design [26,27], and the dark matter network prediction
between galaxies [28].

After reviewing the previous researches of the slime mold, we find that it is
particularly suitable for tackling shortest-path-finding-related problems, which
is accorded with the main target of TSPs. Therefore, the slime mold algorithm is
supposed to be a good candidate for addressing TSPs. Inspired by the fractional
ant colony optimization algorithm and the intelligent behavior of SM, in this
paper, we put forward a modified ACO algorithm, slime mold fractional-order
ant colony optimization (SMFACO), which takes advantage of slime mold and
fractional calculus in pheromone updating strategy. In addition, the fractional
state transition probability is used to improve the search accuracy. The main
contributions of this paper are summarized as follows.

A) We modify the classic slime mold model with multi-pair inlet and outlet,
which can overcome the shortcoming of ignoring some crucial tube connec-
tions in single-entry-outlet models.

B) An algorithm called SMFACO is proposed for solving TSPs. In order to
obtain long term memory and preserve critical paths, the Grnwald-Letnikov
fractional difference and protoplasm flow of SM is used in updating the
pheromone formula. In addition, a fractional transition probability is devel-
oped to determine the transition to the next city.

C) The substantial experiments are conducted, and experimental results indi-
cate the superior performance of the proposed algorithm. Numerical experi-
ments and comparisons tested on a series of standard TSP datasets demon-
strate the validity and rationality of the proposed algorithm.

The rest of this paper is organized as follows. In Sect. 2, we briefly introduce
ACO, fractional-order calculus, and the conventional slime mold model. The
details of the modified SM model and the proposed SMFACO algorithm are
presented in Sect. 3. Section 4 discusses the simulation results in comparison
with other peer algorithms. The conclusions are drawn in Sect. 5.
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2 Related Work

In this section, we briefly review the framework of ACO, the relevant background
of fractional calculus, and the mathematical model of classic SM.

2.1 Ant Colony Optimization Algorithm

Hypothesizing the number of cities and ants are N and M , respectively. Ant
a (a = 1, 2, . . . ,M) in city i selects the next arriving city j according to the
probability of state transition, which is defined as:

pa
ij =

⎧
⎨

⎩

[τij ]
α[ηij ]

β

∑

u∈Ja
i

[τiu]α[ηiu]β
, if j ∈ Ja

i ,

0, otherwise,
(1)

where τij is the pheromone concentration, ηij = 1
dij

is the heuristic information;
α and β are weight coefficients related to heuristic information and pheromone
concentration, respectively; Ja

i represents an optional set of the next cities.
After each iteration, ants release pheromones according to the length of the

constructed path. Considering the evaporation of pheromones in practice situa-
tion, the updating formula is described as follows:

τij = (1 − ρ) · τij +
M∑

a=1

Δτa
ij , (2)

where

Δτa
ij =

{
(la)−1

, if (i, j) ∈ ra,
0, otherwise,

(3)

where ρ represents the rate of pheromone evaporation, 0 < ρ < 1; Δτa
ij is the

amount of pheromone increment, which is released by the ant a on its visited
edge; la is a function related to the length of the path constructed by the ant a.

2.2 Fractional-Order Calculus

The Fractional-order calculus is a generalization of the integral calculus, and
its order can be any complex number, which can achieve a continuum of the
calculus orders. As a new tool, it has attracted researchers’ attention in many
application fields. In this paper, we use the fractional-order calculus in the form
of Grünwald-Letnikov [29]. The fractional derivative of order v is defined as:

G−L
a Dv

xh (x)= lim
H→∞

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
x − a

H

)−v

Γ (−v)

H−1∑

l=0

Γ (l − v)
Γ (l + 1)

h

[

x − l

(
x − a

H

)]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (4)
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where Γ (α) =
∫ ∞
0

e−xxα−1dx is the Gamma function, x−a
H is the sampling step,

G−L
a Dv

x is a fractional differential operator, and [a, x] denotes the domain of x.
Let Δx = x−a

H , in domain [x − HΔx, x], then (4) is derived as:

G−L
a Diff v

xh (x) =
1

(Δx)v

H−1∑

l=0

Γ (l − v)
Γ (−v)Γ (l + 1)

h(x − lΔx)

=
1

(Δx)v

[

h(x) +
N−1∑

l=1

Γ (l − v)
Γ (−v)Γ (l + 1)

h(x − lΔx)

]

,

(5)

when v = 0, the first-order difference expression is obtained:

G−L
a Diff 1

xh (x) =
1

Δx
[h(x) − h(x − Δx)] . (6)

The comparison between (5) and (6) indicates that the fractional calculus
has the characteristic of long-term memory.

2.3 Slime Mold Model

In SM model, the fluid that flows in a network tube is defined as Hagen-Poiseuille
flux [30]. Therefore, the fluid Qij is written as:

Qij =
πr4ij
8ω

pi − pj

Lij
=

pi − pj

Lij
Dij , (7)

where ω is the viscosity coefficient of the flux, Dij = πr4ij/8ω is called conduc-
tivity, and pi is pressure.

According to the Kirchhoff’s law [31], the flux in the network must be con-
served, which satisfies the following expression:

∑

i

Dij

Lij
(pi − pj) =

⎧
⎨

⎩

−I0, for j = entry,
I0, for j = outlet,
0, otherwise,

(8)

where I0 is the fixed flow from entry to outlet in the entire network.
By setting poutlet = 0, all pressure values are calculated by (8), then Qij is

derived from (7). The adaptive formation process of the network is described by
the following expression:

d

dt
Dij = f (|Qij |) − γDij , (9)

where f (|Qij |) denotes a monotonic increasing function with f (0) = 0, and γ
represents the decline rate of the tube.
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3 Algorithm Description

3.1 Modified Slime Mold Model

Referring to [32], the classical single-entry-outlet model is modified to obtain
a more suitable multi-entry-exit slime mold to deal with TSPs. The core idea
of the modified SM model is to utilize each pair of nodes in the network as
an entrance/exit to form a sub-network, and divide-and-conquer. Therefore, the
pressure of each node is calculated with the Poisson equation:

∑

i�=j

Dij

Lij
(pi − pj) =

⎧
⎨

⎩

−I0
F , for j = entry,

I0
F , for j = outlet,
0, otherwise,

(10)

where F and I0 are the number of tubes and the initial flux flowing in the
network, respectively. The flow Qij is expressed as:

Qij =
F∑

f=1

qf
ij , qf

ij =
Dij

Lij
(pi − pj) . (11)

The conductivity of the next moment can be derived as:

Dij(t + 1) =
F∑

f=1

df
ij(t + 1), (12)

where
dij(t + 1) = f (|qij(t)|) + (1 − γ)dij(t), (13)

where f (|qij(t)|) = φ |qij(t)|; φ and γ are coefficients that control the influence
of qij and the decline rate of dij , respectively.

3.2 SMFACO State Transition Probability

The traditional ACO state transition probability as known in (1) only considers
the information of next optimal. In our work, the fractional calculus is considered
in the path selection, since its long-term memory can make full use of neighboring
information of the current terrain. By considering a series of unselected city
combinations, it can improve the shortcoming of trapping into local optima.
The fractional state transition probability is defined as:

vpa
ij(t) =

1

C

⎧
⎨

⎩

pa
ij(t)+

N1−1∑

k=1

| Γ (k−v)
Γ (−v)Γ (k+1)

|p(j+k−1)(j+k)(t), if j∈Jm
i (t),(j+k)∈Jm

i (t),

0, if j/∈Jm
i (t),

(14)

where C =
N1−1∑

k=0

∣
∣
∣

Γ (k−v)
Γ (−v)Γ (k+1)

∣
∣
∣ is a normalization component; Γ (k−v)

Γ (−v)Γ (k+1) is a

nonlinear decreasing function over k; (N1 − 1) denotes the number of optional
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Algorithm 1. SMFACO Algorithm
Input: Distance Matrix D of TSP; The maximum number of iterations Tmax;
Output: The optimal solution Smin;
1: t = 0;
2: Initialization parameter, and place each ant in n cities randomly;
3: while Termminal condition is not met do
4: Calculate fraction-order state transition probability;
5: Each ant completes the whole travel;
6: Use 3-Opt algorithm to local optimize;
7: Computer and rank path length, find the optimal solution;
8: Apply modified SM algorithm;
9: Update conductivity;

10: for each edge do
11: According to SMFACO pheromone update rule to updating pheromone;
12: end for
13: t = t + 1;
14: end while
15: Use 3-Opt algorithm to local optimize;
16: Return shortest travel path.

cities near to the city j; pa
ij(t) and pa

(j+k−1)(j+k)(t) follow the definition (1).
When k > 1, ant a uses the linear combination probability of N1 cities to carry
out the next city transfer. Therefore, it can be seen that the fractional-order
addition allows the algorithm to make full use of the neighborhood information.
The fractional-order state transition probability has the nature of foresight by
utilizing the information of next (N1 − 1) steps, which achieves a good balance
between exploration and exploitation.

3.3 SMFACO Pheromone Updating Rule

The traditional pheromone updating formulas (2) and (3) only considers the
increase of elitist ants pheromone, which causes the rapid growth of pheromones
in some paths, leading to premature convergence. In this work, the pheromone
is updated by using the long-term memory of fractional calculus and the critical
path preservation of slime mold.

After t − th iteration, we sort all paths visited by ants as follows:

L1(t) ≤ · · · ≤ La(t) ≤· · ·≤ LN3(t) ≤ · · · ≤ LOa(t), (15)

where Oa represents the number of ants, and La(t) is the total length of the
visited tour of ant a in iteration t.
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Then, the SMFACO pheromone updating formula is performed as follows:

τij(t +1)= (1 − ρ)τij(t) +
N3∑

a=1

∣
∣
∣
∣
Γ (a − v − 1)
Γ (−v)Γ (a)

∣
∣
∣
∣ Δτa

ij + σ(t)Qij(t), (16)

where

Δτa
ij =

{
(la)−1

, if (i, j) ∈ ra,
0, otherwise,

(17)

where N3 (1 < N3 < Oa) is the number of elite ants; σ(t)=1−[1/(1+1.1
Tmax

4 −(t+1))]
is a control factor, which is used for regulating the effect of protoplasm flow in
SM on pheromone. Qij is a stream of protoplasm that flows in SM. From (16),
it can be seen that the pheromone renewal takes into account the pheromone
volatilization, the historical information of the N3 elite ants, and the pheromone
released by the slime molds.

Compared with (2), it is clear that pheromone updating formula (16)
increases the pheromone of elite ants N3, and improves the global search ability
and fast convergence. In addition, the protoplasm flowing in the slime mold is
regarded as pheromone. Since the slime mold can retain critical paths efficiently,
the pheromone on important paths increases, and the convergence speed of the
SMFACO is accelerated.

With the aforementioned descriptions and definitions, the pseudocode of
SMFACO algorithm is given in Algorithm1. In addition, 3-Optimization (3-
Opt) technology [33] is used to locally optimize paths constructed by all ants in
each iteration.

4 Experiments

4.1 Experimental Settings

In order to fairly appraise the performance of the proposed algorithm, the min-
imum solution (Min), the average solution (Ave), the root mean squared error
(RMSE), and the relative error (RE) are recorded throughout the whole experi-
ments. The experiment is conducted 20 runs on eight datasets selected from the
standard TSPs, including att48, eil51, eil101, berlin52, st70, pr76, pr144, and
rat99. The size of population is set to be equivalent to the number of cities. The
parameters α, β and ρ are set to be 1, 5, 0.2, respectively, referring to [34]. As
for the other parameters in SMFACO, the tube decline rate γ is 0.55, φ is set to
0.8, N1 and N3 are both equal to 8, v and Tmax are respectively set to be 0.8
and 300.

4.2 Experimental Results and Analysis

To test the performance of the proposed SMFACO, four meta-heuristic algo-
rithms and two state-of-the-art ACO algorithms are chosen to compare with
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Table 1. Comparisons of SMFACO algorithm with others.

Algorithms Datasets

att48 eil51 eil101 berlin52 st70 pr76 pr144 rat99

BKS 33522 426 629 7542 675 108159 58537 1211

Min MMAS 33522 426 629 7542 675 108159 58537 1212

ACO-Taguchi - 426 640 7542 - 108785 - -

HA 33522 427 633 7542 678 108979 58537 1213

FPSO 33522 427 630 7542 675 108159 58537 1211

[15] 33522 - 629 - 675 108159 - 1211

FACO 33522 426 629 7542 675 108159 58537 1211

SMFACO 33522 426 629 7542 675 108159 58537 1211

Ave MMAS 33576.4 428.1 636.1 7542.0 682.6 109646.0 58560.3 1214.5

ACO-Taguchi - 435.4 655.0 7635.4 - 110420.0 - -

HA 33612.5 430.8 638.9 7617.7 684.4 109898.0 58653.0 1217.3

FPSO 33585.7 430.5 636.5 7542.0 682.3 109470.5 58679.3 1215.2

[15] 33575.1 - 636.3 - 680.7 110420.0 - 1218.4

FACO 33544.7 427.4 635.6 7542.0 680.1 109272.0 58537.0 1213.0

SMFACO 33533.9 427.1 634.0 7542.0 678.1 108666.7 58537.0 1215.0

RMSE MMAS 72.03 2.30 8.03 0.00 8.90 1588.68 23.95 4.76

ACO-Taguchi - - - - - 1617.78 - -

HA 100.46 5.88 10.69 86.99 10.14 1820.42 131.37 7.60

FPSO 33522 5.47 8.91 0.00 8.75 1445.70 148.51 4.75

[15] 65.65 - 3.61 - 4.59 1617.78 - 7.87

FACO 37.01 1.61 7.64 0.00 6.67 1285.59 0.00 2.10

SMFACO 24.23 1.34 3.55 0.00 2.04 513.40 0.00 4.44

RE(%) MMAS 0.16 0.49 1.13 0.00 1.13 1.38 0.04 0.29

ACO-Taguchi - 4.13 2.21 1.24 - 1.50 - -

HA 0.27 1.13 1.57 0.10 1.39 1.21 0.20 0.52

FPSO 0.19 1.06 1.19 0.00 1.08 1.21 0.24 0.35

[15] 0.16 - 1.16 - 0.84 2.09 - 0.61

FACO 0.07 0.33 1.05 0.00 0.76 1.03 0.00 0.33

SMFACO 0.04 0.25 0.64 0.00 0.46 0.47 0.00 0.33

SMFACO : MMAS (2002) [12], ACO-Taguchi (2013) [35], HA (2015) [36], FPSO
(2016) [37], Literature [15] (2020), FACO (2021) [16]. The comparison results
with six other algorithms on eight TSP datasets are shown in Table 1. In Table 1,
the results which are not found in references are denoted by ‘-’, and the best
results are in bold, and BKS represents the best known solution.

First of all, it is easily observed that in terms of the minimum path length, our
algorithm and FACO construct the optimal solutions on all TSP instances, which
shows that the proposed algorithm is effective in finding the optimal path. Then,
results reveal that the optimum searching capabilities of the ACO-Taguchi and
HA algorithms are relatively poor. For the eigeht TSP datasets, the MIN, Ave,
RMSE, and RE are clearly higher than those of other optimization algorithms.
Furthermore, SMFACO generates better solutions than six other intelligence
algorithms except TSP dataset rat99 in term of AV and RMSE. Particularly,
in term of the average solution, SMFACO has improved 0.03%, 0.24%, 0.29%,
and 0.56% on the instances att48, eil101, st70, and pr76 compared with the
suboptimum algorithm, respectively. Finally, the RE of these tours found by
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the SMFACO are minimal for all instances except rat99, which implies that the
SMFACO can obtain solutions with higher accuracy.

Overall, among all performance evaluation indexes, compared with other
algorithms, SMAFCO obtains the minimum value on all data sets, except for
rat99, indicating that the optimized performance of SMFACO is relatively the
best. Furthermore, the proposed algorithm SMFACO outperforms the other
intelligence algorithms in 87.5% on 8 instances. Therefore, experimental results
indicate that SMFACO can effectively solve TSPs with higher quality solutions
and stronger robustness.

5 Conclusion

In this paper, we propose an meta-heuristic optimization algorithm termed
SMFACO, which is based on ACO and two attractive technologies to address
TSPs. The fractional calculus and slime mold model are applied to updating the
pheromone, which makes the algorithm has long-term memory, and the ability of
retaining key information. The fractional state transition probability takes full
use of neighbouring informations. The proposed algorithm SMFACO is tested on
eight standard TSP instances, and the simulation results show that SMFACO
algorithm performs well in terms of all evaluation metrics compared with the
classical meta-heuristics algorithms and state-of-the-art algorithms. In the future
work, we will investigate applications of SMFACO on lager scale TSP instances
and optimize the proposed algorithm.
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Abstract. In this paper, we propose a K-independent average travel-
ing salesman problem (KI-Average-TSP) extended from the TSP. This
is an optimization problem that minimizes the weighted sum of the aver-
age and standard deviation of K circuits’ costs, with mutually inde-
pendent edges. As a method to solve the KI-Average-TSP, we pro-
pose K-independent average ant colony optimization (KI-Average-ACO)
extended from the original ACO. KI-Average-ACO moves K ants simul-
taneously using the following two heuristics to prevent different circuits
from sharing the same edge. The first heuristic uses a degree of possible
options representing the number of vertices that an ant can reach from
its current vertex. The destination of ants is stochastically determined
by this value to reduce the circuit construction failure rate. The second
heuristic, named 2-best-opt, uses a greedy algorithm in reconstructing a
better path to obtain K circuits if circuit construction fails. Comparison
results between the approximate solution obtained using KI-Average-
ACO and the solution obtained using a quadratic programming method
for a binary search showed that the number of circuits for KI-Average-
ACO was higher, and KI-Average-ACO obtained a better approximate
solution than the quadratic programming method.

Keywords: Ant colony optimization · Traveling salesman problem ·
Heuristics

1 Introduction

One of the common combinatorial optimization problems is the traveling sales-
man problem (TSP) [6]. Given distances (edges) connecting cities, the TSP finds
the shortest routes to visit all cities. The TSP is applied to various problems, such
as vehicle routing and job-shop scheduling [5]. However, optimization problems
in the real world are considered more complicated than the TSP. For example,
in a transportation company’s delivery plans, even if the company constructs
the shortest circuits to access cities, these routes may become inaccessible due
to road damage or accidents.
c© Springer Nature Switzerland AG 2021
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Fig. 1. An example of K-Independent paths (with K = 2), where multiple paths do
not share the same edge in N = 8 complete graph.

In this study, we consider constructing mutually independent circuits with no
shared edges to improve reliability and propose a K-independent average TSP
(KI-Average-TSP) that minimizes the weighted sum of the average and standard
deviations of K circuits’ costs, where the circuits are mutually independent, that
is, there are no shared edges among the circuits. Compared to a study to find
multiple independent Hamiltonian paths in a graph [12], this study minimizes
the cost by considering the standard deviation in a complete graph so that the
K circuits act as backup routes. Figure 1 shows an example of K = 2 circuits in
a complete graph of N = 8 vertices.

To solve the problem, we propose an ant colony optimization (ACO)-based
K-independent average ACO (KI-Average-ACO). ACO [2,7] is known as a meta-
heuristic solution to the TSP using ant swarm characteristics and simulates the
pheromone communication of ants on a graph to find the approximate shortest
path. In our optimization algorithm, K ants move simultaneously, making it
possible for K ants to use equally favorable edges and reducing the standard
deviation. However, as the ants move, the number of reachable vertices for the
ants decreases, and the circuit construction failure rate increases. Therefore, we
introduce two heuristics to reduce the failure rate of circuit construction. The
key concept of the first heuristic is a degree of possible options that represents
the number of vertices an ant can reach from its current vertex. The destina-
tion of ants is stochastically determined by this number to reduce the circuit
construction failure rate. The second heuristic, called 2-best-opt, is an algorithm
based on the idea of 2-opt [3,6]. It uses a greedy algorithm in reconstructing a
better path to obtain K circuits if circuit construction fails.

In this paper, we evaluated our proposed method by comparing the approxi-
mate solution obtained using KI-Average-ACO with the solution obtained using
a quadratic programming method for a binary search. Comparison results showed
that the number of circuits for KI-Average-ACO was higher, and KI-Average-
ACO obtained a better approximate solution than the quadratic programming
method.

Related Work. ACO is a search algorithm that is inspired by the process
by which ants use pheromones to discover the shortest path to food [2]. In
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particular, it is known as metaheuristics for finding approximate solutions to
shortest path problems, as typified by the TSP. An application of ACO is the
vehicle routing problem [11], which delivers resources from a depot to customers
through delivery vehicles. Another application is the multiple TSP [4], which
builds a partial traveling circuit in which multiple salesmen share each other’s
visits to cities from a depot.

On the other hand, a few studies have been conducted on algorithms to find
multiple independent circuits in a complete graph. Teng [12] reported properties
such as the conditions for establishing multiple Hamiltonian paths in a given
graph. However, algorithms for constructing circuits that are independent of
each other have not yet been investigated.

Paper Organization. The organization of this paper is as follows. Section 2
defines KI-Average-TSP and a related problem named KI-Total-TSP. Section 3
introduces our optimization algorithm named KI-Average-ACO. Section 4
presents experimental results. Finally, Sect. 5 concludes the paper and presents
future work.

2 Problem Description

In this section, we give the definition of our target problem named K-independent
average traveling salesman problem (KI-Average-TSP). In addition, although
not directly dealt with in this study, we also define K-independent total trav-
eling salesman problem (KI-Total-TSP), which is another optimization prob-
lem related to KI-Average-TSP. The former is the problem of finding the K-
independent circuits that minimize the weighted sum of average and standard
deviation in a given complete graph, while the latter is the problem that removes
the term of standard deviation from the objective function in KI-Average-TSP
and minimizes only the total cost of K-independent circuits.

Here, let G = (V,E, d) (with |V | = N, |E| = N(N−1)
2 ) be a weighted undi-

rected complete graph, where dij is the weight of edge (i, j) and N is the number
of cities.

2.1 K-Independent Average TSP

KI-Average-TSP is a problem to minimize the weighted sum of the average and
standard deviations of K independent circuits’ cost in a graph G. The definition
is as follows.

Definition 1. KI-Average-TSP is a problem to perform the following optimiza-
tion in graph G = (V,E).
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min costavg + γ · costθ
sd (1)

subject to
∑

k∈K

xijk ≤ 1 (∀i, j (i �= j)) (2)

∑

j∈V

xijk = 1 (∀i, k) (3)

∑

j∈V

xjik = 1 (∀i, k) (4)

uik + 1 − (N − 1)(1 − xijk) ≤ ujk (∀i, j, k) (5)
xijk ∈ {0, 1} (6)
0 ≤ uik ≤ N − 1 (7)

where

costavg =
1
K

costsum, (8)

costsd =
√

1
K

(
∑

k∈K

(
∑

i∈V

∑

j∈V

dij · xijk − 1
K

(
∑

i∈V

∑

j∈V

∑

k′∈K

dij · xijk′))2). (9)

The value xijk represents the probability of ant k using the edge connecting
vertex i to vertex j. The value uik is the arc-constraint to excludes subtours based
on the Miller–Tucker–Zemlin formulation [8]. Hereafter, the total cost of the K
circuits is expressed as costsum. The weighted sum is represented as costssd =
costavg + γ · costθ

sd, where costavg and costθ
sd respectively represent the average

and standard deviation of K circuits’ costs. Variables γ, θ are parameters for
weighting the average and standard deviation respectively, and the constraints
are the same as in KI-Total-TSP.

2.2 K-Independent Total TSP

The KI-Total-TSP is a problem to minimize the total cost in K circuits among
the combinations of K independent circuits in the graph G. The definition is as
follows.

Definition 2. KI-Total-TSP is a problem to perform the following optimization
in graph G = (V,E, d).

min
∑

i∈V

∑

j∈V

∑

k∈K

dij · xijk (10)

with the same constraint conditions as in the KI-Average-TSP (i.e., Eqs. 2–7).
We would like to note that the problems introduced above are complementary

to each other. That is, the solution of KI-Average-TSP is useful when finding K
circuits with similar utility values. On the other hand, KI-Total-TSP is useful
when finding K circuits with ranked utility values. Specifically, the former is a
case, where multiple packets are sent simultaneously through K routes, while
the latter is a case, where spare routes should be prepared for a failure of the
current route.
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3 K-Independent Average ACO

3.1 Overview

In this section, we explain the proposed K-independent average ant colony opti-
mization (KI-Average-ACO) algorithm for solving KI-Average-TSP. Considering
that it is difficult to calculate the exact solution to KI-Average-TSP in a feasible
time, we propose KI-Average-ACO to obtain an approximate solution.

Unlike the original ACO, KI-Average-ACO averages the cost of K circuits
by repeatedly moving K ants along one edge at a time. However, because the
construction failure rate increases when K ants move simultaneously, we use two
heuristics. The first heuristic uses a degree of possible options, which indicates
the feasible vertices the ant can reach. Ants move to vertices with fewer destina-
tions using this index, putting off many potential movable vertices. The second
is 2-best-opt, which searches efficiently by reconstructing failed circuits greed-
ily using 2-opt. Using these heuristics, it is possible to reduce the construction
failure rate while averaging the moving cost of K circuits, rather than repeating
ACO. The pseudocode of KI-Average-ACO is presented in Algorithm 1.

3.2 Simultaneous Movement of Ants

KI-Average-ACO differs from the original ACO in moving K ants along one edge
at a time. In the original Ant System [1] and Max-Min Ant System [10], some ants
construct a path. If these algorithms are applied to KI-Average-TSP repeatedly,
some ants construct a circuit using preferable edges greedily. Consequently, the
cost of the circuit in the latter half of the construction increases, the shape
becomes complicated, and the averaging cannot be satisfied. In contrast, in Line
17 in the pseudocode, KI-Average-ACO moves K ants along one edge at a time,
so that all ants can use their preferred edges. In Line 19, ants are arranged in
descending order of moving cost so far after every movement, and the next ants
move in this order. As a result, it is possible to perform the averaging of the cost
in a greedy manner, because ants, which have consumed bigger moving costs
so far, can move to smaller-cost and pheromone-rich edges more preferentially.
We would like to note that the cost of an edge used becomes infinite and the
pheromone value becomes zero to ensure that it is not used as much as possible
again.

3.3 Heuristic with Degree of Possible Options

KI-Average-ACO moves K ants simultaneously. As a result, close to the K-th
movement, there are possibilities that ants may reuse edges used by other ants,
thereby increasing the construction failure. Therefore, to increase the number of
successes, we introduce the heuristic with the degree of possible options. This
is incorporated into the transition probability equation in Line 17 in the pseu-
docode.
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Algorithm 1. KI-Average-ACO
1: function ki_average_aco(G, N, K)
2: aco(G) � init G’s pheromone with Ant System
3: ants = [ ]
4: for i = 1 to K do
5: ants.append(Ant())
6: end for
7: for t = 1 to T do
8: make_tsps(G, N, K, ants)
9: 2_best_opt(G, K, ants)

10: pheromone_update(G, ants)
11: end for
12: end function
13:
14: function make_tsps(G, N, K, ants)
15: for i = 1 to N do
16: for j = 1 to K do
17: ants[j].move_one_edge(G) � use the degree of possible options
18: end for
19: ants.sort(key=ant.costsum, reverse=true) � sort ants in descending order
20: end for
21: end function
22:
23: function 2_best_opt(G, N, K, ants)
24: for i = 1 to K do
25: if ants[i].path has duplicated edge then
26: ant = ants[i]
27: alts = [ ]
28: for j = 1 to N do
29: for k = 1 to N do
30: at = ant.2_opt(ant.path[j], ant.path[k])
31: if at.path has no contradiction then
32: alts.append(at)
33: end if
34: end for
35: end for
36: alts.sort(key=ant.costsum)
37: ants[i] = alts[0] � use best swap reducing cost
38: end if
39: end for
40: end function
41:
42: function pheromone_update(G, ants)
43: if ants has no duplicated edge then
44: update(G, ants)
45: end if
46: end function
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Assume that each of the K ants has already moved t times out of N times, and
the set of vertices visited by ant h is Uh. Here, we define Rt

h(x) ⊆ V as a function
that returns a set of vertices where ant h can move consistently from vertex x to
vertex y. The word “consistent” averages that vertex y ∈ Rt

h(x) satisfies y /∈ Uh

and the edge (x, y) is not yet used by other ants 1, 2, . . . , h − 1, h + 1, . . . ,K.
At this time, transition probability equation Ph

ij that ant h selects the next
vertex j from the vertex i is defined by Eq. 11.

Ph
ij =

[τij ]α[ηij ]β∑
u∈Nt

h(i)
[τiu]α[ηiu]β

× 1
|Rt

h(j)|
, (11)

ηij =
1

dij
(12)

where τij is the pheromone quantity of the edge (i, j) and ηij is the heuristic
value. N t

h(i) is a set of vertices where an ant h can move from vertex i in
the t-th move. In Eq. 11, the transition probability is divided by the number
of vertices |Rt

h(j)| that ant h can move from vertex j. Using this operation,
ants can preferentially move to vertices that have little non-affordably movable
vertices. This reduces the construction failure rate. The time complexity of KI-
Average-ACO with this heuristic is O(KN3), while that without this heuristic is
O(KN2). Although the time complexity is increased by O(N) during the moving
process, the construction failure rate is reduced.

3.4 2-best-opt

In Line 9, we use the heuristic called 2-best-opt to improve paths after con-
structing the circuits to further increase the success probability of constructing
independent circuits and minimizing costssd. Procedures of the 2-best-opt are
depicted from Line 23 to 40.

Assume that in the K paths after the construction, an edge e = (a, b) is
redundantly used in multiple paths of F (> 1) ants. At this time, 2-best-opt is
performed for each of the l1, l2, . . . , lF paths of F ants. 2-best-opt is the following
operation and is shown in Fig. 2 and from Line 23 to 40.

Consider a case where an edge e = (a, b) is redundantly used by other paths
of a certain path l and other N − 1 edges e′ = (c, d) of the path l are exchanged
by 2-opt. At this time, if the two new edges e1 = (a, c) and e2 = (b, d) are not
yet used for any K paths, the number of use of edges can be reduced without
contradiction, and the edge e′ is added to the replacement candidate set S in
Line 30 to 33. Then, among the exchange candidates of these edges, an edge
e′ ∈ S is selected and swapped by e in 2-opt, so that the moving cost of the path
l becomes the smallest by exchanging with the edge e in Line 36 and 37.

The time complexity of KI-Average-ACO with 2-best-opt is O(KN2), how-
ever, experimental results described in Sect. 4 show that the running time of
2-best-opt is smaller than KI-Average-ACO without this heuristic. Using this
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Fig. 2. The example of 2-best-opt which is trying to swap e = (a, b) and e′ = (c, d)
because the edge e is used twice. Swapped edges e1 = (a, c), e2 = (b, d) can reduce
usage count in e = (a, b).

2-best-opt, the overlapping edges causing the failure can be corrected greedily
and the construction failure rate and costssd can be reduced.

3.5 Pheromone Update

After performing 2-best-opt, in Line 10, if K paths are reconstructed and are
independent of each other, the pheromone update equation, Eq. 13, is executed.

τij(t + 1) = ρ · τij(t) +
K∑

h=1

Δh
ij , (13)

Δh
ij =

{
1

Ch+costθ
sd

((i, j) ∈ lh)

0 (otherwise)
(14)

where ρ is the retention rate of the pheromone, Ch is the cost of the circuit
constructed by ant h, lh is the path of ant h, and θ is equal to θ in Eq. 1. However,
if the K paths are not independent of each other, the updating equation for the
pheromone on the graph and the evaporation of pheromone are not performed
from Line 43 to 45. This tries to centralize searching by updating.

4 Empirical Study

4.1 Parameters and Settings

This section presents two experiments to evaluate our algorithm. In the first
experiment, the performance of the two heuristics used in KI-Average-ACO was
evaluated. In the second experiment, KI-Average-TSPs were solved using KI-
Average-ACO and a combinatorial optimization method to compare their solu-
tions and the time taken to obtain these solutions.
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Table 1. Parameter settings.

Parameter Value

α (pheromone rate) 1
β (heuristic rate) 3
ρ (pheromone residual rate) 0.97
Number of ants N

AT (number of the cycles in Ant System) 200
KT (number of the cycles in KI-Average-ACO) 1000
LT (number of trials) 10

The parameters in the experiments are as shown in Table 1. Here, AT repre-
sents the number of cycles to initialize the pheromone using the Ant System on
the graph before starting KI-Average-ACO. KT represents the number of cycles
that KI-Average-ACO executes to build K paths. LT represents the number of
experimental trials performed.

4.2 Performance Evaluation of Heuristics

To evaluate the performance of the heuristics used in KI-Average-ACO, we con-
sidered four cases with and without each heuristic and compared them by solving
KI-Average TSP for each case. In every case, the pheromone was always updated.

As the graphs used for the optimization problems, we selected three graphs
ulysses22, bays29, and att48, which have a different number of vertices from
TSPLIB [9], the dataset often used for performance evaluations of TSP solution
algorithms.

We attempted to construct 6 circuits in each graph. Here, we set K to this
value because it is about half of 10 (= � 22−1

2 �), which is the maximum number of
independent paths for the smallest graph, ulysses22. We measured the weighted
cost costssd, execution time, and construction failure rate. Even if only one edge
is duplicated, this is considered as a construction failure. For example, if the
construction failure rate is 0.48, this means that one or more edges have been
used in duplicates in 480 of 1,000 trials. The results of the above experiments
are shown in Table 2. Here, DPO, 2BO, DPO+2BO, and NONE represent cases,
where only the heuristic with degree of possible options was used, only 2-best-
opt was used, both two heuristics were used, and neither of the two was used,
respectively.

Table 2 shows the comparison results of the heuristic performance in KI-
Average-ACO. These results show that 2-best-opt, in particular, improves the
circuit construction failure rate in all three graphs. Moreover, the execution time
of 2-best-opt is not long, so this heuristic would be feasible. On the other hand,
heuristic with the degree of possible options did not contribute to reduce the cost
of the solution even though the execution time was longer than that of 2-best-opt.
This is because the execution time of this heuristic takes O(N), and costly edges
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Table 2. Performance of heuristics in KI-Average-ACO.

Problem Heuristics Cost of solution Required time Failure rate

ulysses22 NONE 6.39× 104 14 0.999
DPO 5.22× 104 55 0.999
2BO 5.33× 104 16 0.0
DPO+2BO 5.84× 104 57 0.0

bays29 NONE 1.15× 104 32 0.994
DPO 1.01× 104 126 0.970
2BO 8.97× 103 34 0.0
DPO+2BO 9.83× 103 126 0.0

att48 NONE 2.96× 105 70 0.989
DPO 4.12× 105 488 0.964
2BO 2.91× 105 72 0.0
DPO+2BO 3.43× 105 489 0.0

were also selected to give priority to the reduction of the circuit construction
failure rate. However, for ulysses22, the cost of solution was the smallest when
heuristic with the degree of possible options was used. This suggests that this
heuristic may also be useful depending on the problem type.

4.3 Performance Evaluation of KI-Average-ACO

We evaluated the performance of KI-Average-ACO. Specifically, we compared
the costs of solutions obtained using KI-Average-ACO to that obtained using
a combinatorial optimization algorithm. In the experiments, we used the graph
gr17 with N = 17 as a problem to solve. The weighted parameters γ and θ of
the KI-Average-TSPs were set as 1 and 2, respectively. These parameter settings
in Eq. 1 minimized the weighted sum of average and variance.

In general, it is difficult to find the exact solution for KI-Average-TSP. Indeed,
in our preliminary experiments, we observed that exact solutions could be found
only for problems, where the size of the graph is N < 8 and the number of
circuits is K < 3 in a feasible time. Therefore, we evaluated the performance of
KI-Average-ACO and the combinatorial optimization algorithm by comparing
the costs of approximate solutions instead of exact solutions. The combinatorial
optimization algorithm used as the comparison target is as follows. Since the
standard deviation can be calculated from K circuits, a binary search was used
to determine whether the maximum difference d of costs between the K circuits
could be less than or equal to a certain threshold value. Repeating this operation,
while gradually lowering the threshold value within a predetermined time limit,
minimized the maximum difference in the costs of K circuits (thus, the standard
deviation was also approximately minimized). In this case, the time limit was
set to 300 s.



ACO for KI-Average-TSP 343

Fig. 3. Costs of solutions for KI-Average-TSP.

Figure 3 shows the experimental results. The horizontal and vertical axes
of the graph represent the K number of circuits in the problem and the total
costs of the solutions, respectively. “KI-Average-ACO” and “MO” represent the
results obtained using our algorithm and the mathematical optimization algo-
rithm, respectively. Here, the plots of MO for K = 6, 7 are lost because MO did
not find any solution within the time limit. This figure shows that for K = 1, 2, 3,
the total cost of the solutions obtained by the proposed algorithm was almost
the same as that of MO. Furthermore, for K = 4, 5, 6, 7, our algorithm obtained
better solutions. We would like to remark on the result when K = 8. It is con-
sidered that the reason why MO obtained a solution, in this case, is that the
solution has to use all edges, so it is no longer necessary to decide whether or not
to use edges in the solution. On the other hand, this did not bring any benefit
to the solution of our algorithm even though it took more time to calculate as
the problem became more complicated. As a result, no solution could be found.
However, this is a special case, and overall, we have observed that it is useful,
especially when the problems are complicated compared to the mathematical
optimization algorithm.

5 Conclusions and Future Work

In this study, we proposed two problems named KI-Average-TSP and KI-Total-
TSP, which were extensions of the TSP. We also proposed KI-Average-ACO, an
optimization algorithm to solve KI-Average-TSP. The idea behind our algorithm
is to move K ants simultaneously. However, to reduce the failure rate of circuit
construction, we introduced two heuristics with the degree of possible options
and 2-best-opt, a heuristic based on 2-opt. We evaluated the performance of
our algorithm and the effectiveness of the heuristics. In the experiments, we
observed that 2-best-opt significantly contributed to reducing solution costs and
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construction failure rates. In addition, the solution cost of KI-Average-ACO was
reduced when the circuit to be constructed was larger compared to the solution
cost of the mathematical optimization algorithm for a binary search.

One of the important future directions is to apply our algorithm to realistic
problems. In particular, we would like to generalize KI-Average-TSP to formulate
an optimization problem that allows m < K edges to be shared between circuits
and to find its solution algorithm.
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Abstract. Maximum-entropy genetic regulatory networks (GRNs) have been
increasingly applied to infer pairwise gene interactions from biological data.
Most maximum-entropy GRNs inferring methods estimate the inverse covariance
matrix based on the assumption that the network is sparse and the problem can
be approximated via convex optimization. However, the assumption might not be
true in reality. To address this issue, in this paper, we propose an adaptive dif-
ferential evolution (DE) algorithm to directly infer the maximum-entropy GRNs,
which is formulated as a constrained optimization problem with the maximum
entropy being the objective function and the first and second moments being two
penalty terms. A GRN inferred by DE is a fully connected network that can reflect
the gene regulatory relations. The experimental results on both simulated and
real data suggest that the proposed method is robust in inferring the small-scale
maximum-entropy GRNs.

Keywords: Maximum-entropy · Genetic regulatory networks · Constrained
optimization · DE algorithm

1 Introduction

In recent years, a large number of methods have been proposed for inferring gene reg-
ulatory networks (GRNs) from gene expression data. Correlations and other statistical
measures that group genes by profile similarity identify functionally related groups of
genes [1, 2]. Much effort has been devoted to inferring GRNs using varies modeling
approaches, ranging from simple Boolean networks to dynamical models of cellular
processes [3, 4]. However, correlation measures do not provide direct insight into the
identification of the gene interactions that give rise to the observed expression patterns
[5]. For this reason, pairwisemaximum-entropy probabilitymodels have been introduced
to infer the GRNs [6]. The logic of such methods is to determine the probability distribu-
tion governing the microarray data where the entropy-reducing constraint their pairwise
correlations is faithfully encoded [6]. Consequently, the real-valued maximum-entropy
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distribution given first and second moments is found as a Boltzmann-like distribution,
which is determined by themean and the covariancematrix C, and the inverse covariance
matrix M (also known as the precision or concentration matrix) [7].

Statistical inference methods using partial correlations in the context of Gaussian
graphical models (GGMs) have led to similar results. By assuming that the precision
matrix is sparse and the data samples are drawn independently from the samedistribution,
the most commonly used method to infer the maximum-entropy networks are spectral
decomposition [6] and graphical lasso [8].

Although the above methods have been successfully used to estimate the regulatory
relationships amonggenes, their performancemaybe limited in someareas. The inferring
performance of the spectral decompositionmethod is not good enoughwhen the samples
are very few. Although the graphical lasso is better than spectral decomposition on small
samples, its GRNs can not reflect gene regulatory relations (expression and repression)
and it is difficult how to choose the right lasso penalty to fit the sparseness is very difficult
[9].

To address the above problems, in this paper, we proposed a new way to infer the
maximum-entropy GRNs, which is formulated as a constrained optimization problem,
using a differential evolution (DE) algorithm. DE has achieved widely successes on
various complex constrained optimization problems [10]. We set maximum entropy as
the objective function and its subject to the constraint of first and second moment as
the penalty functions based on the pairwise maximum-entropy probability models. To
demonstrate the performance of the proposed method, the method is compared with
other state-of-the-art methods on two synthetic datasets and four real-world datasets.
The GRNs obtained by the DE are fully connected networks that reflect gene regu-
latory relations to identify GRNs involved in diverse cellular processes. Experiment
results demonstrate that our method outperforms the other two state-of-the-art inferring
maximum-entropy GRNs methods on synthetic datasets. In the meantime, the real data
results suggest that the proposed approach is robust to inferring small-scale GRNs.

The rest of this paper is organized as follows. In the Sect. 2, we introduce the
background of the maximum-entropy GRNs. In the Sect. 3, we present our proposed
framework in detail. In the Sect. 4, we describe the performance of our method on
synthetic and real-world datasets. Finally, Sect. 5 concludes this work.

2 Maximum-Entropy GRNs

Pairwise associations between genes can be determined by gene expression and are com-
monly estimated by the sample Pearson correlation coefficient computed for each pair of
genes. However, the Pearson correlation is a misleading measure for direct dependence
as it only reflects the association between two genes while ignoring the influence of the
remaining ones. Therefore, the relevance network approach is not suitable to deduce
direct interactions from a dataset [11].
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To address these problems, maximum-entropy GRNs is proposed. It relies on Boltz-
mann’s concept of entropy maximization to support statistical inference with minimal
reliance on the form of missing information, which can remove the variational effect
due to the influence of the remaining variables.

Let the state vector x = (x1, …, xN ) denote the expression levels of the N genes
that are probed in a microarray experiment, and a series of T measurements then has
associated with it T distinct state vectors. Let ρ(x) denote the probability that the genome
is in the arbitrary state x. We determine ρ(x) by maximizing the Shannon entropy.

S = −ρ(
−→
x) ln(

−→
x) (1)

subject to the ρ(x) is normalized

∑
−→x ρ(

−→
x) = 1 (2)

first moment, <xi>, and second moment, <xi, xj>

<xi> =
∑

−→x ρ(
−→
x)xi = 1

T

∑T

k=1
xki (3)

<xi, xj> =
∑

−→x ρ(
−→
x)xixj = 1

T

∑T

k=1
xki x

k
j (4)

Equation (2) provides the normalization condition that the probabilities of all observ-
able states sum to 1. Equations (3) and (4) ensure that the distribution ρ(x) preserves the
mean expression level of each gene and the correlations between genes. This procedure
leads to a Boltzmann-like distribution:

ρ(x) ∼ e−H

where

H =
1

2

∑
ij
xiMijxj

Note that, because <xi, xj> = <xj, xi>, the number of constraints is 1 + N + N(N +
1)/2. In the same reason Mij = M ji, the number of Mij should be estimated is N(N +
1)/2.

The elements of the matrix M are the effective pairwise gene interactions that repro-
duce the gene profile covariances exactly while maximizing the entropy of the system.
The intensity and type of an element Mij: a positive value denotes expression (facilita-
tion) and a negative value denotes repression while a zero (0) value implies that there is
no interaction between i and j [6, 11].

The matrix of M can be obtained by inverting the matrix of their covariances C.
However, in the high dimensional setting where the number of features p is larger than
the number of observations n, the empirical covariance matrix C is singular and so can
not be inverted to yield an estimate of M. If p ≈ n, then even if C is not singular the
estimate for C will suffer from very high variance [5].
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Spectral decomposition and graphical lasso are proposed to get around this problem
by estimating the inverse covariance matrix based on the assumption that the network
is sparse and the problem can be approximated via convex optimization. However, the
assumption might not be true in reality. The performance of spectral decomposition is
not good enough at solving the small sample problem. Although the graphical lasso
has better inferring performance, its GRNs cannot reflect the gene regulatory relations
(expression and repression). Also, it is difficult to choose a right lasso penalty to control
the sparseness of the inferred networks [9].

3 Method

To address the above problems, in this paper, we proposed a new way to infer the
maximum-entropy GRNs, a constrained optimization problem, by using an adaptive
differential evolution (DE) algorithm.DEas a nature-inspiredmethod has become amore
feasible and popular choice among researchers due to their competitive performance on
complex search spaces to address the constrained optimization problems [10].

However, the performance of the classic DE is still entirely dependent on control
parameters and mutation strategies to both experimental studies and theoretical analyses
[12]. The adaptive and self-adaptive DE algorithms have shown faster and more reliable
convergence performance than the classicDE algorithms formany benchmark problems.

For this reason, themain objectives of thiswork are three-fold. First, we setmaximum
entropy as the objective function and its subject to the constraint of first and second
moment as the penalty functions. Second, the Probability Matching (PM) method is
integrated into DE to implement the adaptive strategy selection. Third, the JADE [13]
is used to set controls mutation factor F and crossover probability CR in an adaptive
manner. Details behind algorithm are elucidated as follows.

3.1 Problem Formulation

The general form of the constrained optimization problem will be expressed as follows:

min f (x)

s.t. gi(x) ≤ 0, i = 1, 2, · · · , j

hi(x) = 0, i = j + 1, j + 2, · · · ,m (5)

where x = (x1, x2, …, xn) are the decision variables of the objective function f (x), gi is
an inequality constraint describing the variable, which role of the inequality constraint
is to form the search area in the feasible domain. hi is equality constraint that forms a
boundary value condition in the feasible domain, which role is to control the boundary
of the search area. Normally, we define the objective function as min f (x) and penalty
function as

Gi(x) =
{
max{0, gi(x)}, 1 ≤ i ≤ j
max{0, |hi(x) − δ|}, j + 1 ≤ i ≤ m
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G(x) =
m∑

i=1

Gi(x) (6)

where δ is a small positive tolerance value. The final fit function would be like

Fit = f (x) + σG(x) (7)

where σ is the punitive coefficient.
In this paper, Eq. (1) is set to the objective function and its subject to the constraint of

first and secondmoment Eqs. (2–4) are set to the penalty functions. Then the optimization
problems (1–4) can convert into the optimization problem (7) that will be minimized by
DE. The initial population {xi = (x1,i,0, x2,i,0, …, xD,i,0)|i = 1, 2, …, NP} is randomly
generated according to a uniform distribution [−1, 1], where D = N(N + 1)/2 (the
number of Mij) is the dimension of the problem and NP is the population size.

3.2 Strategy Selection: Probability Matching

Suppose there are K > 1 strategies in the pool A = {a1, · · ·, aK} and a probability
P(t) = {p1(t), · · · , pk(t)}(∀t : pmin ≤ pi(t) ≤ 1;∑K

i=1pi(t) = 1). In this work, the PM
technique is used to adaptively update the probability pa(t) of each strategy a based on
its known performance and updated by the rewards received. Denote ra(t) as the reward
that a strategy a receives after its application at time t. qa(t) is the empirical estimate of
a strategy a, that is updated as follows [14]:

qa(t + 1) = qa(t) + α[ra(t) . qa(t)] (8)

where α ∈ (0, 1] is the adaptation rate. Based on this quality estimate, the PM method
updates the probability pa(t) of applying each operator as follows:

pa(t + 1) = pmin + (1 − K · pmin) qa(t+1)
∑ K

i=1qi(t+1)
(9)

where pmin ∈ (0, 1) is the minimal probability value of each strategy, used to ensure that
no operator gets lost [13].

In order to assign the credit for each strategy, we adopt the relative fitness
improvement ηi proposed in [12] as follows:

ηi = δ

cfi
· |pfi − cfi| (10)

where i = 1, · · ·, NP. δ is the fitness of the best-so-far solution in the population. pf i and
cf i are the fitness of the target parent and its offspring, respectively. If no improvement
is achieved, a null credit is assigned.

Denote Sa as the set of all relative fitness improvements achieved by the application
of a strategy a (a = 1, · · ·, K) during generation t. At the end of the generation, a unique
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reward is used to update the quality measure kept by the PM method (Eq. 9). The credit
assignment is as follows [14]:

ra(t) =
∑ |Sa|

i=1Sa(i)

|Sa| (11)

where |Sa| is the number of elements in Sa. If | Sa | = 0, ra(t) = 0.
In DE, many schemes have been proposed, applying different mutation strategies

and/or recombination operations in the reproduction stage [15]. In order to constitute the
strategy pool used in thiswork,wehave chosen four strategies: ‘DE/rand/1’, ‘DE/rand/2’,
‘DE/rand-to-best/1’ and ‘DE/current-to-rand/1’.

3.3 Parameter Adaptation

The parameter adaptation is similar to JADE. At each generation g, the crossover prob-
ability CRi of each individual xi is independently generated according to a normal
distribution of mean μCR and standard deviation 0.1 as

CRi = randni(μCR , 0.1) (12)

and then truncated to [0, 1] [13]. Denote SCR as the set of all successful crossover
probabilities CRi’s at generation g. The mean μCR is initialized to be 0.5 and then
updated at the end of each generation as

μCR = (1 − c) · μCR + c · meanA(SCR) (13)

where c is a positive constant between 0 and 1 andmeanA(·) is the usual arithmetic mean.
Similarly, at each generation g, the mutation factor Fi of each individual xi is inde-

pendently generated according to a Cauchy distribution with location parameter μF and
scale parameter 0.1 as:

Fi = randni(μF , 0.1) (14)

and then truncated to be 1 if Fi ≥ 1 or regenerated if Fi ≤ 0 [13]. Denote SF as the set of
all successful mutation factors in generation g. The location parameterμF of the Cauchy
distribution is initialized to be 0.5 and then updated at the end of each generation is as
follows:

μF = (1 − c) · μF + c · meanL(SF ) (15)

where meanL(·) is the Lehmer mean [13].

3.4 Optimization Work Flow

The probability matching method and JADE are used respectively to select the mutate
strategy and set the parameter adaptively. In Algorithm 1, the use of our adaptive DE for
inferring Maximum-Entropy GRNs is illustrated.
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4 Experimental Results

Let θij and θ̂ij denote the elements in the true GRNs and the inferred GRNs, respectively.
Whether the absolute value of a particular element is 0 or 1 can be evaluated by a
threshold defined for the purpose of inclusion of an interaction in a GRN. An edge can
be characterized into four types: true positive (TP), false positive (FP), true negative
(TN), and false negative (FN), with their definitions as follows:

TP: if θij = 1 and θ̂ij = 1; TN: if θij = 0 and θ̂ij = 0.
FP: if θij = 0 and θ̂ij = 1; FN: if θij = 1 and θ̂ij = 0.

Then the metrics based on which the proposed methodology can be evaluated. (1)
True Positive Rate (TPR)/Recall: this signifies the fraction of the total number of existing
edges in the original network, correctly predicted in the inferredGRNs; (2) False Positive
Rate (FPR)/Complimentary Specificity: this signifies the fraction of the total number of
nonexistent edges, incorrectly predicted in the inferred GRNs; (3) Positive Predictive
Value (PPV)/Precision: this signifies the fraction of the total number of inferred edges,
which is correct. (4) F-Score: this signifies the harmonicmean of the precision and recall.
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4.1 Simulation Studies

We first build a random ER random network denoted by its adjacency binary matrix M
with non-zero element substituted by a uniform distribution value on [−0.6, − 0.3] ∪
[0.3, 0.6]. To ensure the positive definiteness of the covariance matrix, the real precision
matrix � is set as

� = M+σ I

σ is the absolute value of the eigenvalues of M, and I is an identity matrix. After this
procedure, the synthetic gene expression data could be generated with zero means and
covariance C = �−1. In order to test the performance of our method with the other two
state-of-art method which can deal with the small sample problem (p ≈ n). We generate
two small-scale groups of samples (group 1 with n = 5 samples and p = 5 genes; group
2 with n = 10 samples and p = 10 genes) to simulate the small-scale GRNs. 10 random
datasets are generated for the above two groups. The empirical covariance matrix C in
each dataset is singular and so can not be inverted to yield an estimate of M.

The gene interaction network comprising the genes showing the strongest couplings
is highly interconnected. For this reason, we choose the top 20% strongest pairwise
interaction to identify the most consistent predicted edges for the construction of the
final GRNs.

Fig. 1. The experiment results on two small-scale groups of samples: (A) 10 datasets of 5 genes
network with 5 samples. (B) 10 datasets of 10 genes network with 10 samples.

Figure 1 presents the average performance on two different scale networks datasets.
For graphical lasso, its sparsity-controlling parameter is chosen automatically by cross-
validation. In particular, we run 10 times of the DE on each dataset and take the best
optimization result as the final inferring result.

We canfind that ourmethod dominates the other twomethods on inferringmaximum-
entropy GRNs. As the number of genes increases, there is a degradation on the perfor-
mance of all threemethods, ourmethod could still achieve competitive performancewith
the other two comparative methods. The results suggest that our approach can effectively
solve the small sample problem while meantime reflecting the gene regulatory relations.
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4.2 Real Data Analysis

In this section, the proposed method for inferring maximum-entropy GRNs has been
employed to identify the causal relationships among the genes from an in vivo (exper-
imental) microarray dataset. The said dataset summarizes the dynamics of the well
illustrated transcriptional network involved in the SOS DNA repair mechanism of E.
coli studied experimentally by Ronen et al. [16]. The study included eight genes heavily
involved in the SOS repair mechanism: recA, lexA (the master repressor), uvrA, uvrD,
uvrY, umuD, ruvA, and polB. The original network has been shown in Fig. 2.

Fig. 2. The original structure of the SOS DNA repair transcriptional network of E.coli. The solid
black lines denote activation, and the dashed red lines denote repression.

We choose the absolute value of Mij > 0.7 as the inferred Maximum-Entropy GRNs
for the 4 datasets. Table 1 displays a comparison of the statistical properties of the
inferred GRNs with those presented in recent investigative work [17–19] for different
experimental datasets. Table 2 shows the top 3 genes in our inferred GRNs.

Table 1. Comparison of results obtained from the E.coli experiments with those presented in a
recent investigative work.

Dataset Precision Recall F-score

[17] [18] [19] DE [17] [18] [19] DE [17] [18] [19] DE

1 0.23 0.36 0.44 0.50 0.43 0.71 1 0.71 0.30 0.48 0.61 0.59

2 0.58 0.26 0.30 0.45 1 0.57 1 0.71 0.73 0.36 0.46 0.55

3 0.31 0.38 0.41 0.56 0.57 0.71 1 0.71 0.40 0.50 0.58 0.63

4 0 0.27 0.25 0.43 0 0.43 0.57 0.43 0 0.33 0.35 0.43

Mean 0.28 0.32 0.35 0.50 0.5 0.61 0.9 0.64 0.36 0.42 0.49 0.55

Experiment results show that our method performs better in Precision than the other
methods in all experiments except themethod [17] in experiment 2. However, themethod
[17] fails to identify any true positive in experiment 4.

We have to concede that the method [19] has a higher Recall than our GRNs, but its
Precision is significantly less than our method. When viewed from the aspect of F-score,
our method performs better by comprehensive considering of the Precision and Recall
in all 4 experiments.
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In Table 2, it should be noticed that lexA (themaster gene) is the nodewith the highest
degree in our inferred GRNs in all four experiments, so our GRNs find the master gene
correctly. In the meantime, the lexA—uvrY and lexA—polB are not predicted in our
GRNs except experiment 2.

Table 2. Top 3 nodes with the highest degree in our inferred GRNs

Dataset Rank1 Rank2 Rank3

1 lexA uvrA recA

2 lexA uvrA recA

3 lexA uvrA uvrD

4 lexA recA ruvA

5 Conclusion

In this paper, we propose a DE based inferring method that can effectively estimate
maximum-entropy GRNs. Unlike the other inferring methods of inverse the covariance
we consider the inferring maximum-entropy GRNs as a constrained optimization prob-
lem and the best individuals searched by our method is the inferred maximum-entropy
GRNs.

First, we assume that the maximum-entropy distribution is a Boltzmann-like distri-
bution. Under this assumption, we set maximum entropy as the objective function and
its subject to the constraint of first and second moment as the penalty functions. Then
the probability matching method and JADE are used respectively to select the mutate
strategy and set the parameter adaptively to improve the success rate of the algorithm.

The GRNs resulting from the DE is a fully connected network that fulfills the
maximum-entropy GRNs reflecting gene regulatory relations (expression and repres-
sion),which graphical lasso can not. For this reason,we can identify connections between
genes involved in diverse cellular processes by choosing the different degrees of pairwise
interactions.

It outperforms the other two state-of-the-art inferring maximum-entropy GRNs
methods on synthetic datasets. In the meantime, the real data results suggest that it
can find the master gene, so the proposed approach is robust to inferring small-scale
GRNs.

The performance of nature-inspired algorithms often deteriorates rapidly as the
dimensionality of the problem increases. Small-scale and large-scale constrained opti-
mization are two completely different problems. There are too few true predictions and
a large number of incorrect predictions [19]. Thus, the methodology implemented in this
paper needs to be enriched further by studying its performance in larger networks. This
provides a vital scope for further research.
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Abstract. The crossover operator plays an important role in Differ-
ential Evolution. However, the choice of proper crossover operator and
corresponding parameters is dependent on the features of the problems.
It is not easy for practitioners to choose the right crossover operator and
associated parameter value. In the newly proposed method, a novel evo-
lution scheme called Variable Fragments Evolution was presented. Dur-
ing the evolution, the roughly fixed fragments of genes of all individuals
were selected in a population for directional variation. Variable Frag-
ments Evolution was compared with commonly used binomial crossover.
Experimental results show that Variable Fragments Evolution exhibits
better performance than the binomial crossover. Thus it can serve as an
alternative evolution scheme for Differential Evolution.

Keywords: Differential evolution · Binomial crossover · Variable
fragments evolution · Crossover-free

1 Introduction

Differential evolution (DE) is a simple yet efficient algorithm for global opti-
mization problems in continuous domain [1]. Due to its simplicity, effectiveness
and robustness, DE has drawn the attention of many researchers all over the
world and it has been widely used in various scientific and engineering fields
[2]. The performance of DE mainly depends on control parameters, mutation
strategies, and crossover operators [3]. Many studies related to the evolution-
ary operators of DE have focused on the mutation operator [4]. Compared with
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mutation operator, there are less studies related to crossover operator in dif-
ferential evolution [5]. Previous studies on the crossover operator in DE can be
classified into two categories: parameter setting and crossover scheme. There are
empirical suggestions for setting parameter for crossover operator; however they
are lack of sufficient experimental justifications. Based on the analysis in [6], DE
with low values of Cr (near 0) results in very small exploratory moves that are
orthogonal to the current axes, while DE with high values of Cr (near 1) makes
large exploratory moves that are at angles to the search axes. In [7], the authors
draw a conclusion that A low value of Cr = 0.1 was often the best chosen. In
[8], a pool of Cr values was taken from the range of [0.1, 0.9]. It is still hard
to set proper parameter for the crossover operator in DE due to lack of theory
analysis.

In this study, a new scheme name variable fragments evolution (VFE) was
proposed and then it was applied in DE. With variable fragments evolution,
DE does not need to depend on crossover operator to search the optimum only
more. During iteration, VFE only needs to select specific gene fragments to
participate in the mutation. Each individual’s genetic fragments involved in the
mutation are roughly the same. In first intention, its aim is to find out whether
the new scheme VFE has adverse effects on the performance of DE, rather than
to propose a new, betterperforming algorithm. For this reason, DE with VFE
will be compared solely to original DE with the binomial crossover, and not to
any other state-of-the-art DE variants.

2 Differential Evolution

This section will give the description of the original DE [1]. To clarify the notation
used in this study, It is supposed that we are going to find the minimization of
the objective function, where x is a vector of n decision variables in a space D.

2.1 Generation of Initial Population

The DE algorithm starts with the initial population X = (xij)NP∗n with the
size of NP and the dimension of n, which is generated by the following way.

xG
ij = xl

j + rand(0, 1) ∗ (xu
j − xl

j) (1)

where G = 0; i = 1, 2, ..., NP ; j = 1, 2, ..., n; xu
j and xl

j denotes the upper
constraints and the lower constraints respectively.

2.2 Mutation Operator

In DE/rand/bin/1 scheme, for each target vector, a mutant vector is produced
by

vG+1
i = xG

r1 + F ∗ (xG
r2 − xG

r3) (2)
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where i, r1, r2, r3 ∈ {1, 2, ..., NP} are randomly chosen and must be different
from each other. And F is the scaling factor for the difference between the
individual xr2 and xr3. Several variants of mutation operator can be referred
in [1].

2.3 Crossover Operator

DE employs the crossover operation to add the diversity of the population. The
commonly used binomial approach is given by (3).

uG+1
ij =

⎧
⎨

⎩

vG+1
ij , if rand < CR or j = rand(i)

xG
ij , otherwise

(3)

where i = 1, 2, ..., NP ; j = 1, 2, ..., n;CR ∈ [0, 1] is the crossover probability
and rand(i) ∈ (1, 2, ..., NP ) is the randomly selected number. The crossover
operator can ensure at least one component of the trial individual comes from
the mutation vector.

2.4 Selection Operator

Selection operation decides whether the trial individual uG+1
i should be a mem-

ber of the next generation, it is compared to the corresponding xG
i . The selection

operation is based on the survival of the fitness among the trial individual and
the corresponding one such that:

xG+1
i =

⎧
⎨

⎩

uG+1
i , if f(uG+1

i ) < f(xG
i )

xG
i , otherwise

(4)

3 Analysis of Crossover Operator in DE

The crossover operator plays an important role in DE. The binomial operator is
frequently employed in most DE variants and applications while the exponential
crossover operator has been demonstrated to outperform binomial operator when
solving hard high dimensional problems [9]. In [9], the authors draw a conclusion
that the classical exponential crossover operator does not scale with scaling of
dimension. Thus, when solving a practical problem, it is not easy to determine
which crossover should be used.

In DE, the parameter CR is associated with the crossover. CR is used to
control the way that the components will be inherited from the vectors which
are produced by the mutation operator. Several researchers attempted to set
the proper value of CR to enhance the performance of DE. In [10], the authors
suggest that A small value of CR (e.g. CR ≤ 0.2) is more appropriate for the
separable functions, while a large CR (e.g.CR > 0.9) value for non-separable
functions is recommended. Montgomery and Chen [11] analyzed how the value
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of CR would influence the exploratory moves of DE. They found that DE with
low values of Cr (near 0) results in very small exploratory moves that are orthog-
onal to the current axes, while DE with high values of Cr (near 1) makes large
exploratory moves that are at angles to the search space’s axes [11]. In order
to set the parameter CR manually, several adaptation and selfadaptation tech-
niques have been developed [12].

Although many researchers focused on setting the value of parameter CR,
we can find that they have different views and there are still lack of sufficient
theoretical and experimental justifications. As the authors in [5] the authors
concluded that the choice of the proper crossover method and its associated
parameters is dependent on the features of the problems. Thus, when tackling
complex black-box optimization problems, the choice of crossover operator and
its associated parameter CR value is still a hard nut to track. This motivates
us to design a new evolution mechanism in DE which does not need crossover
anymore.

4 Variable Fragments Evolution in DE

4.1 Variable Fragments Evolution

In DE algorithm, the binomial operator is used to produce a trial vector from a
pair of target and mutant vectors. However, the binomial operator ignores the
relationship between different variables. Thus DE is relationship-blind. Although
DE can solve the non-separable functions with a high value of CR, DE with a
high CR value may cause premature convergence. In addition, each individual
in DE evolves randomly and independently during every generation. However,
Independent evolution is not conducive to solving non-separable problems.

Essentially, during DE evolution, each individual also selects several coor-
dinates to mutate at a time. This is similar to the Block-coordinate descent
(BCD) method [13]. In BCD, the coordinates are partitioned into N blocks. At
each iteration, local minimum of the problem is found with respect to one of the
coordinate blocks while the other coordinates are held fixed.

Similar to BCD, during one generation evolution of the population, each
individual chooses roughly the same gene bits to evolve. But each individual’s
chosen gene bits are also somewhat different.

Firstly a group of variables called fragment was determined. This group of
variables is just as the fragment of genes which correspond to some coordinates.
Then a variation operator was applied to change the size of the determined frag-
ment. Each time, the selected fragment will be increased or decreased by curtain
step size. In our experiments, the step size is set to one. In this way, the main
body of the selected fragments will remain unchanged. Lastly, all individuals in
the current population only evolve based on the selected fragment while keep
the other variables unchanged. Figure 1 presents the difference between binomial
crossover and VFE. It can be seen clearly from Fig. 1 that during one generation
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of evolution, with binomial crossover, the individual independently chooses vari-
ables to be mutated. Unlike binomial crossover, with VFE, several individuals
choose same variables to be mutated simultaneously.

Fig. 1. Binomial crossover with CR = 0.3 v.s. VFE with 3 fragments.

4.2 DE with Variable Fragment Evolution

In this section, we use variable fragment evolution to construct a new crossover-
free DE variant. The details of DE with Variable Fragment Evolution (DE-VFE)
are presented as follows.

5 Experimental Study

5.1 Experimental Setup

To investigate the performance of the proposed DEVFE, thirteen classic bench-
mark functions [14]are used as test bed. Among the thirteen functions, there are
unimodal problems and multimodal problems. The details of the problems can
be referred in appendix of [14].

In order to make comprehensive comparisons, traditional DE/ran/bin/1 with
different crossover rate CR is used as compared method. In this study, CR is
set to 0.1,0.3,0.5,0.7 and 0.9 respectively. In order to make fair comparisons,
for each method and each test problem, 25 independent runs were conduced
with 5000*D as maximum number of function evaluations. The scaling factor of
mutation operator was set to 0.5.
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Algorithm 1. DE-VFE
1: Set mutation operator Parameter F, Population size NP; Maximum number of

function evaluations MaxFEs.
2: Generation of Initial Population using formula (1)
3: Evaluate the objective function value f for each individuals
4: FEs = NP
5: Shuffle the decision variable series
6: Group the variable series into several fragments
7: while FEs ≤ MaxFEs do
8: Choosing one fragment randomly
9: Variation of the selected fragment

10: for i=1:NP do
11: Generation of a trial vector UG+1

i according to formula (2).
12: Evaluation of the trial vector UG+1

i .
13: Execution of Selection Operator according to formula (4).
14: end for
15: FEs = NP+FEs
16: end while
17: output the individual with smallest objective function value.

5.2 Results on Benchmark Functions

The statistical results of the experiment are given in Table 1. We recorded the
best, worst, median, mean, and standard deviation (Std.) values of solutions
achieved by each method in 25 independent runs. The better values in terms
of Best, Worst, Median, Mean and STD between the compared algorithms are
highlighted in boldface. In Table 1, DE (X), X representing the CR value of 0.1,
0.3, 0.5, 0.7 and 0.9 respectively. From Table 1, we can find that DE-VFE signif-
icantly outperforms the corresponding DE algorithm with different CR values in
all compared terms except for functions f3, f5 and f6. For f3, DE(0.9) is the best
one in all terms considered among the methods. For f5, DE(0.9) wins in term
of Best, while DE(0.3) wins the remainder indexes. For f6, the performance of
DE-VFE equals to that of DE(X) in all terms. Due to limited space, we only
present the convergent curves of the even problems. Figure 2 shows the evolu-
tionary process of the representative ones. Comparing to DE(X), it is clear that
DE-VFE performed significantly better.
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Table 1. The statistical results of DE-VFE and DE WITH different CR VALUES

Problem Methods Best Worst Median Mean Std

f1 DE(0.1) 6.72E-20 1.42E−19 1.15E−19 1.11E−19 1.73E−20

DE(0.3) 3.00E−12 8.78E−12 5.95E−12 6.02E−12 1.38E−12

DE(0.5) 2.88E−05 6.58E−05 4.63E−05 4.61E−05 1.10E−05

DE(0.7) 5.23E−06 2.59E−05 1.15E−05 1.40E−05 6.69E−06

DE(0.9) 2.50E−18 2.72E−17 7.92E−18 9.89E−18 6.63E−18

DE-VFE 1.73E−48 3.75E−30 1.86E−47 1.50E−31 7.50E−31

f2 DE(0.1) 2.03E−12 3.62E−12 2.73E−12 2.70E−12 3.43E−13

DE(0.3) 6.56E−08 9.99E−08 8.00E−08 8.13E−08 9.43E−09

DE(0.5) 1.62E−03 3.24E−03 2.22E−03 2.22E−03 3.86E−04

DE(0.7) 2.30E−03 9.09E−03 4.85E−03 4.88E−03 1.59E−03

DE(0.9) 1.60E−10 7.86E−10 4.12E−10 4.06E−10 1.36E−10

DE-VFE 2.28E−28 4.57E−26 1.23E−27 4.11E−27 9.13E−27

f3 DE(0.1) 1.03E+05 1.66E+05 1.44E+05 1.44E+05 1.25E+04

DE(0.3) 1.57E+05 2.39E+05 2.05E+05 2.07E+05 1.69E+04

DE(0.5) 1.77E+05 2.55E+05 2.18E+05 2.18E+05 1.83E+04

DE(0.7) 1.56E+05 2.40E+05 2.04E+05 2.01E+05 2.00E+04

DE(0.9) 5.38E+03 1.67E+04 1.01E+04 1.05E+04 3.05E+03

DE-VFE 8.52E+04 1.52E+05 1.09E+05 1.11E+05 1.66E+04

f4 DE(0.1) 2.90E+00 3.64E+00 3.23E+00 3.25E+00 1.67E-01

DE(0.3) 1.98E+01 2.32E+01 2.13E+01 2.13E+01 8.64E-01

DE(0.5) 3.96E+01 4.79E+01 4.35E+01 4.39E+01 2.25E+00

DE(0.7) 1.49E+01 2.82E+01 2.07E+01 1.99E+01 3.26E+00

DE(0.9) 1.29E+01 2.53E+01 1.93E+01 1.89E+01 3.35E+00

DE-VFE 2.42E-01 8.73E-01 3.14E-01 3.64E-01 1.51E-01

f5 DE(0.1) 9.40E+01 9.62E+01 9.54E+01 9.53E+01 6.20E-01

DE(0.3) 9.38E+01 9.48E+01 9.41E+01 9.41E+01 1.93E-01

DE(0.5) 1.08E+02 1.69E+02 1.25E+02 1.26E+02 1.37E+01

DE(0.7) 9.42E+01 9.62E+01 9.53E+01 9.53E+01 5.45E-01

DE(0.9) 8.58E+01 1.98E+02 1.43E+02 1.38E+02 3.92E+01

DE-VFE 9.18E+01 2.05E+02 9.55E+01 1.12E+02 2.98E+01

f6 DE(0.1) 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

DE(0.3) 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

DE(0.5) 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

DE(0.7) 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

DE(0.9) 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

DE-VFE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f7 DE(0.1) 4.81E-02 7.08E-02 6.04E-02 5.90E-02 6.38E-03

DE(0.3) 6.76E−02 9.27E−02 8.13E−02 8.14E−02 7.29E−03

DE(0.5) 1.20E−01 1.84E−01 1.50Ev01 1.45E−01 1.62E−02

DE(0.7) 4.68Ev02 9.45E−02 7.02E−02 7.02E−02 1.38E−02

DE(0.9) 2.08E−02 4.12E−02 3.33E−02 3.25E−02 4.68E−03

DE-VFE 1.70E−02 3.28E−02 2.51E−02 2.54E−02 4.15E−03

(continued)
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Table 1. (continued)

Problem Methods Best Worst Median Mean Std

f8 DE(0.1) −4.19E+04 −4.19E+04 −4.19E+04 −4.19E+04 7.16E−08

DE(0.3) −1.97E+04 −1.78E+04 −1.86E+04 −1.86E+04 4.18E+02

DE(0.5) −1.48E+04 −1.34E+04 −1.40E+04 −1.41E+04 3.93E+02

DE(0.7) −1.24E+04 −1.07E+04 −1.14E+04 −1.15E+04 4.41E+02

DE(0.9) −1.49E+04 −9.31E+03 −1.12E+04 −1.17E+04 1.80E+03

DE-VFE −4.19E+04 −4.19E+04 −4.19E+04 −4.19E+04 1.49E−11

f9 DE(0.1) 2.30E+02 2.72E+02 2.59E+02 2.55E+02 1.14E+01

DE(0.3) 5.92E+02 6.56E+02 6.28E+02 6.26E+02 1.54E+01

DE(0.5) 7.63E+02 8.29E+02 8.03E+02 8.01E+02 1.68E+01

DE(0.7) 8.06E+02 8.97E+02 8.55E+02 8.54E+02 2.03E+01

DE(0.9) 2.12E+02 6.94E+02 5.77E+02 5.21E+02 1.40E+02

DE-VFE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f10 DE(0.1) 3.85E−11 5.44E−11 4.47E−11 4.43E−11 3.41E−12

DE(0.3) 2.85E−07 4.11E−07 3.48E−07 3.54E−07 3.07E−08

DE(0.5) 8.13E−04 1.50E−03 1.12E−03 1.10E−03 1.64E−04

DE(0.7) 4.49E−04 1.07E−03 6.56E−04 6.73E−04 1.57E−04

DE(0.9) 2.23E−10 1.19E−09 4.86E−10 5.80E−10 2.60E−10

DE-VFE 7.99E−15 1.51E−14 1.15E−14 1.20E−14 2.96E−15

f11 DE(0.1) 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

DE(0.3) 2.22E−12 9.83E−12 3.63E−12 3.96E−12 1.51E−12

DE(0.5) 1.95E−05 4.14E−05 2.84E−05 2.86E−05 5.68E−06

DE(0.7) 3.21E−06 1.92E−05 6.63E−06 8.03E−06 3.60E−06

DE(0.9) 0.00E+00 2.21E−02 0.00E+00 1.48E−03 4.76E-03

DE-VFE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f12 DE(0.1) 1.59E-20 4.97E-20 2.85E-20 3.04E-20 8.46E-21

DE(0.3) 1.84E−08 2.99E−07 7.95E−08 9.54E−08 6.94E−08

DE(0.5) 5.90E+00 1.98E+01 1.03E+01 1.10E+01 3.93E+00

DE(0.7) 2.10E−05 1.42E−03 2.54E−04 4.18E−04 4.05E−04

DE(0.9) 3.56E−19 3.11E−02 5.68E−17 2.49E−03 8.61E−03

DE-VFE 4.71E−33 6.65E−33 4.71E−33 4.90E−33 5.01E−34

f13 DE(0.1) 1.05E−19 2.73E−19 1.94E−19 1.92E−19 4.57E−20

DE(0.3) 1.03E−08 6.91E−08 3.71E−08 3.94E−08 1.50E−08

DE(0.5) 6.87E+00 8.38E+01 3.99E+01 4.04E+01 2.31E+01

DE(0.7) 2.33E−04 2.22E−02 1.77E−03 3.10E−03 4.46E−03

DE(0.9) 2.48E−17 1.60E+00 1.99E−13 6.43E−02 3.19E−01

DE-VFE 1.35E−32 1.04E−30 1.35E−32 6.40E−32 2.04E−31
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Fig. 2. Convergence figure

6 Conclusions

In order to reduce the task of choosing the crossover scheme of DE and it’s
associated parameter, in this work, a new evolution scheme, which named Vari-
able Fragments Evolution, was proposed. And it was applied in DE to construct
a completely new crossover-free DE. To evaluate the performance of DE-VFE,
it was compared with conventional DE with several CR. Experimental results
of thirteen commonly used benchmark functions show that the performance of
DE-VFE is better than that of conventional DE with different CR values in
terms of quality in most cases. Thus DE-VFE can serve as an alternative for the
traditional DE.

In the future, VFE will be investigated in other DE variants and other
population-based nature-inspired optimization algorithms, particularly, for large
scale optimization problems.
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The Efficiency of Interactive Differential
Evolution on Creation of ASMR Sounds
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Abstract. Autonomous Sensory Meridian Response (ASMR) is a popular movie
content among Internet users. It is a kind of entertainment content, and the users
enjoy positive feelings caused by its binaural sounds in terms of reality. By refer-
ring to previous proposals creating ASMR sounds based on Interactive Evolu-
tionary Computations (IECs), this study constructed a system of the Interactive
Differential Evolution (IDE) creating ASMR sounds suited to the preference of
each user. The purpose of this study is to investigate the efficiency of the IDE,
which is one of IEC: its subjective evaluation is based on the user’s paired compari-
son of the ASMR sounds. A listening experiment was conducted to fundamentally
investigate the efficiency of the IDE. The ASMR sounds were composed of six
natural sounds. Each of the nine subjects participated in the listening experiment,
and they repeatedly compared two ASMR sounds afforded by the IDE system. As
a result of the search process, a shrink in the search space was observed in accor-
dance with generations. After the repetitive comparisons, the subjects scored two
representatives ASMR sounds picked up from the 0th and the 10th generations
respectively. With statistical analysis, a marginal increase in the fitness values was
observed.

Keywords: Differential Evolution · Interactive Evolutionary Computation ·
Sound · Autonomous Sensory Meridian Response · Paired comparison ·
Preference

1 Introduction

We enjoy themany contents of variousmedia types in our daily life. Especially, advances
in the internet progress of this tendency.With the internet, we can easily find content and
enjoy them. As one of the trends of internet content, ASMR content is popular among
users. ASMR is the abbreviation word of Autonomous Sensory Meridian Response, and
it is also known as the contents name of the movie: you can easily find them on the
internet. Previous studies investigated the psycho-physiological effects of the ASMR
contents [1–3].

One of the important points of the ASMR is to use the binaural listening of the
contents via headphones. With the binaural listening, the users can feel strange and
interesting sounds as if they are existing with the movie contents of ASMR. From this
point of view, Miyazaki et al. proposed an interesting approach that creates sounds of
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ASMR with the binaural recording [4]. This approach manually treats multiple binaural
sounds composingASMR sounds with the aim of creatingmuch effective ASMR sounds
for the users.

Referring to the previous study [4], previous studies proposed a method for cre-
ating ASMR sounds for each user by using Interactive Genetic Algorithm (IGA) and
Interactive Differential Evolution (IDE) [5, 6]. IGA is one of Interactive Evolutionary
Computation (IEC) which is a well-known search method creating media content suited
to each user’s preference and feelings. IEC applies an ability of search of evolutionary
computation [7, 8]. Most of the target of IEC studies were computer graphics, and the
second candidate for the media type was related to a sense of hearing [9–14].

In the previous studies [5, 6], the ASMR sound was composed of several sound
sources, and the set of sound sources was the target of optimization (Fig. 1). By listening
to the ASMR sound via headphones, the user feels the sound sources existing around
the user. In the ASMR sounds, a mechanism of binaural recording is an important factor
for establishing the existence of virtual sound, and no other IEC studies treated ASMR
sounds or binaural sounds as optimization target were found. As an evaluation method
of the ASMR sound, the user scored each of them in the IGA [5]. With the IDE, the
user compared two sounds and selected a better one [6], however, the efficiency of the
search with the IDE was not investigated. Differential Evolution [15, 16] is a relatively
recent evolutionary algorithm and is known as having a higher ability of search [17].
Additionally, the subjective comparison by the user in the evaluation process is expected
to an easier evaluation for the users than scoring.

The purpose of this study is to investigate the efficiency of the IDE creating ASMR
sounds as an application of swarm intelligence formedia creation.A listening experiment
was conducted in this study. To have the listening experiment, a basic systembased on the
IDE was constructed by referring to the previous study [5]. In the listening experiment,
the subjects listened to ASMR sounds created by the IDE system for searching for good
solutions for the subjects’ preference.

Fig. 1. A scheme of the search of ASMR sounds with Interactive Differential Evolution. The user
listens to two ASMR sounds and selects a better one.
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2 Differential Evolution and Interactive Differential Evolution

This section describes DE algorithm and IDE with a flow chart. They are the basis of
the proposed approach described in the next section.

2.1 Differential Evolution (DE)

DE is a relatively recent evolutionary algorithm having a simple scheme, and many vari-
ants have been proposed by previous studies. This study employs one of the fundamental
DEs, which is called DE/rand/1/bin [15]. Figure 2 shows a typical flow of DE algorithm.
As same as other evolutionary algorithms, DE’s search is performed with many solution
candidates in the same generation. In DE, the solution candidates in the current gener-
ation are called as target vectors, which have N-variables as a target of optimization.
The start of the search of DE is initializing the variables of target vectors with random
numbers in a certain range.

The evolutionary process for searching better and/or the best solutions is performed
by creating a new vector and comparing it with the target vector. The new vector is called
a trial vector which also has N-variables same as the target vector. Fitness values are
obtained for each of the target and the trial vectors with a certain mathematical function,
and the better one survives as the target vector in the next generation. To create the
trial vector, variables of some target vectors in the same generation are used. In this
process, a differential vector between two target vectors in the same generation is used
with a parameter F which changes the length of the differential vector in DE/rand/1/bin.
Crossover is also used to create the trial vector with another parameter Cr. Detailed
descriptions of DE algorithm are explained in a book [16].

2.2 Interactive Differential Evolution (IDE)

As described above, the evolutionary process of DE is performed by repetitive compar-
isons of the target vector and the trial vector. The selection process in Fig. 2 means the
paired comparison based on the fitness values of the vectors. IDE is an interactive type of
DE, therefore, the human users subjectively evaluate the vectors instead of mathematical
functions. With the subjective evaluation by each of the users, obtaining media contents
suited to each user’s preference is expected: the effectiveness of the adjustment for each
user’s preference was clarified in the previous study [11]. The evaluation can be done
by the user’s scoring.

As an effective IDE, the paired comparison-based IDE [18] was proposed by Takagi
et al., and it has become the basic IDE. The strong point of the paired comparison-based
IDE is the subjective comparison of target and trial vectors by the user. Evaluating each of
the vectors by scoring seems to be a more difficult task for human users than comparing
two vectors. Most of the previous IDEs employed the paired comparison-based IDE.
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Fig. 2. A typical flow of DE. The selection process is applied for each of the target vectors. In
the IDE, the evaluation process is done by the human user.

3 IDE Creating ASMR Sounds

The IDE creating ASMR sounds was proposed in the author’s previous study [6]. As the
target of optimization, the sound set composing ASMR sound is treated in this method.
As shown in Fig. 1, ASMR sound is composed of several sound sources located in
different directions for the user. Each of the source sounds was made its location for the
user by using a sound effector, after that, ASMR sound was composed by combining
them. The number of the sound sources is described as N, and the number corresponds
to N-variables of the target and the trial vectors of DE.

The main purpose of this study is to investigate the efficiency of the proposed IDE in
terms of good ASMR sounds for each user with a listening experiment described in the
next section. A concrete system based on the IDE was constructed based on the paired
comparison-based IDE. Therefore, the user listens to two ASMR sounds sequentially
presented from the IDE system: the sequence of two sounds corresponding to the target
and the trial vectors is randomized by the system. After listening, the user defines a better
one from the two sounds and inputs the decision to the system.

4 Experimental Method

To investigate the efficiency of the IDE, the listening experiment was conducted. Nine
persons participated in the experiments as subjects. The listening experiment included
two steps, a search experiment and an evaluation experiment.
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4.1 Search Experiment

In the search experiment, the subjects repeatedly listened to twoASMRsounds presented
from the IDE system via headphones. After the listening, the subjects selected a better
one from a perspective of their preference. The subjects could control the loudness of
the sounds by themselves and have a rest during the experiment freely when they felt
fatigued.

As shown in Fig. 1, the ASMR sound was composed of six sound sources. Via head-
phones, each subject felt that these sound sources were played from different directions
with the technique of binaural sounds. Ten natural sounds such as bird songs, and water
flow, were employed as the sound sources: the selection of the sound sources referred
to popular contents of ASMR on the Internet. Thus, the target vector had six variables,
and the range of the variable was from 0 to 9 in integer.

As a set of the IDE, eight target vectors were included in each generation. As the
experiment, ten generations from the 0th to the 9th generations were performed. There-
fore, the subjects continuously compared two sounds eighty times. The variables of the
target vectors in the 0th generation were defined with random integers. The parameters
of DE were defined as Cr = 0.6 and F = 0.9, respectively.

4.2 Evaluation Experiment

With only the search experiment, we cannot understand the efficiency of the IDE enough,
because the fitness valueswere not obtained in the search experimentwhere the repetitive
comparisons were performed by the user.

In the evaluation experiment, the subjects evaluated the two representatives ASMR
sounds andmade scoring them by the Semantic Differential method with a 7-point scale.
7 meant extremely like, and 1 meant extremely dislike. Each of the two representative
sounds was selected from the 0th and 10th generations: note that after the comparisons
in the 9th generation, the target vectors of the 10th generation were already obtained in
the search experiment. In each of the 0th and the 10th generations, the representative
target vector was selected in terms of having the smallest Euclidean distance between
target vectors by referring to the previous studies of IDE [11, 14].

5 Experimental Results

5.1 Result of Search Experiment

As a result of the search experiment, Fig. 3 shows the progress of a summation of the
Euclidean distance between the eight target vectors. The summation of the Euclidean
distance was obtained by calculating the Euclidean distances of all combinations of two
target vectors in each generation. As a convergence of the search space, the distance of
the solution candidates often decreases in the successful search in general evolutionary
computations. As shown in Fig. 3, the gradual decrease in the distance was observed
in accordance with the progress of the generations. Besides, by comparing the distance
in the 0th and the 10th generations, the smaller distance in the 10th generation was
observed in all nine subjects.
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5.2 Result of Evaluation Experiment

Figure 4 shows the mean and standard deviation of subjective fitness values in each
of the 0th and the 10th generations. The trend of the increase in the fitness value was
observed by the mean fitness value. A larger standard deviation was observed in the 0th
generation. A statistical test was performed, and a marginal difference was observed
between these generations (P = 0.055).

Fig. 3. The progress of the summation of Euclidean distances in the search experiment.

Fig. 4. Mean and standard deviation of the subjective fitness values obtained in the evaluation
experiment.
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6 Discussion

By referring to the previous IDE studies, the results of the listening experiment were
analyzed. The results of the search experiment showed a gradual decrease in the distance,
which is often observed in the successful search in general evolutionary computation.
Therefore, in the search with the IDE, a successful search in terms of the convergence
of the search space seems to be performed.

As the result of the evaluation experiment, the trend of increase in terms of mean
fitness value was observed as the marginal difference of the statistical test. This result
means that the proposed IDE has a possibility to search the good combinations of source
sounds from a random selection of sounds in terms of establishingASMRsounds. To find
better ASMR sounds by the search with the IDE, the performance of the search should
be resolved with longer search periods: the search with 10 generations is general in
IEC, however, the number of the generations is shorter than general swarm optimization
treats global searches. The previous study proposed a continuous search with IDE [14].
The IDE may be improved its search for finding better ASMR sounds by employing the
continuous search and other variants of DE.

Both results in the listening experiment are considered as showing the efficiency
of the IDE limitedly. By having further experiments, we will gather many samples for
showing the definite efficiency of the IDE. Adding other source sounds to the ten sounds
used in the IDE system and making these sounds move around the user as the binaural
sounds may effective to find better solutions for the users. For example, the previous
study uses whispers as a trigger for eliciting an embodied affective response [3].

7 Conclusion

In this study, the IDE creating ASMR sounds was investigated with the listening exper-
iments composed of the search and the evaluation experiments. In the process of the
search for good solutions with the IDE, the users listen to two ASMR sounds sequen-
tially and select a better one. A concise evaluation with scoring media contents seems
to be difficult for human users, therefore, the comparison in the IDE is expected to be
an easier and concise way of evaluation especially time-domain media such as sound.
The experimental results showed the obvious decrease in the distance between the target
vectors as the convergence of the search space and the marginal increase in the prefer-
ence from the 0th to the 10th generations. By comparing these results, this study could
limitedly show the efficiency of the IDE.

Further experiments are needed to show better performance of the IDE in terms of
showing higher fitness value in the final generation. These experimentswill be conducted
with psycho-physiological measurements as ASMR responses, after improving the IDE
by employing other source sounds and a new variant of DE. The superiority of the IDE
should be shownby comparing the performance of search of IECswith other evolutionary
algorithms, e.g., GA.
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Abstract. In present paper we solve an urgent problem of generating the optimal
set of test data that provides maximum statement coverage of the code when it
is used in the software white box testing process. Formulation of a fitness func-
tion containing two terms, and, accordingly, twoversions for implementing genetic
algorithm (GA) have been proposed. The first termof the fitness function is respon-
sible for the complexity of the code statements executed on the path generated by
the current individual test case (current set of statements). The second term for-
mulates the maximum possible difference between the current set of statements
and set of statements covered by the remaining test cases in the population. Using
only the first term does not make it possible to obtain 100% statement coverage by
generated test cases in one population, and therefore implies repeated launch of
GA with changed weights of the code statements which requires recompiling the
code under test. By using both terms of the proposed fitness function, we obtain
maximum statement coverage in one launch of the GA.

Keywords: Genetic algorithm · Test data generation · Fitness function

1 Introduction

Classic software engineering lifecycle includes such important stages as requirements
engineering, design of the software architecture, implementation (or coding), testing and
maintenance. In this sequence the software testing is a process of investigation of the
software product aimed at checking the correspondence between actual behavior of the
program code and its expected behavior on a special set of tests (the so-called test cases)
selected in a certain way. Testing stage is a very costly taken up to 40–60% of the total
software development time.

The goal of testing is to ensure accordance of the developed program with the speci-
fied requirements, compliance with logic while data processing and obtaining the correct
final results. There are twomajor testing techniques allowing to check the software under
test (SUT) for errors with different levels of access to the code. The latter approaches
are black-box testing and white-box testing [1]. The black-box testing considers the
software as a “black box” investigating functionality without seeing the source code.
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On the contrary, the white box testing considers the internal code structure and behavior
of SUT. The tester chooses inputs to exercise paths through the code and determine the
appropriate outputs. In some cases, the test data is already available, but, in most cases,
it is required to be generated.

Test data generation is a complex and time-consuming process which needs a lot of
effort and budget. Therefore, automation of this process, at least partially, is an urgent
research problem, the solution of which could improve the efficiency of the software
testing. One of the goals of the automatic test data generation is to create such amultitude
of test data that would ensure a sufficient level of quality of the final product by checking
most of the various code paths, i.e. would provide maximum code coverage to satisfy
some criteria (for example, statement or branch coverage).

There are different approaches to solving the problem of automating test data gener-
ation. So, in paper [2], it was proposed to use a constraint-based algorithm for the Mort
system, which uses the so-called error testing in which test data is selected in such a way
that to determine the presence or absence of certain errors. In the work [3] they proposed
using Constraint Logic Programming and symbolic execution to solve the problem. In
paper [4] Constraint Handling Rules are used to help in manual verification of problem
areas in the computer program.

Many researchers use heuristic approach to automate the software testing process
using the Data-flow diagram. Studies of automation methods using this kind of dia-
grams were carried out in papers [5, 6]. Some of the researchers suggest using hybrid
approaches. For example, an approach proposed in [7] combines Random Strategy,
Dynamic Symbolic Execution, and Search Based Strategy. The paper [8] proposes a
hybrid approach based onMemeticAlgorithm for generating test data. Thework [9] com-
pares different methods for generating test data, including genetic algorithms, random
search, and other heuristic methods.

UML diagrams are also used while generating test data, for example, it is proposed
[10, 11] to use genetic algorithms to generate triggers for UML diagrams, which allow
finding the critical path in the program. The paper [12] proposes an improved method
based on genetic algorithm to select test data for many parallel paths in UML diagrams.

In addition toUMLdiagrams, the code can be displayed in the form of Classification-
TreeMethod [13]. Theproblemof constructing the treeswas considered and an integrated
classification tree algorithm was proposed [14] and the developed ADDICT prototype
(AutomateD test Data generation using the Integrated Classification-Tree methodology)
for an integrated approach was studied [15].

As follows from the above, many researchers focus on evolutionary approaches to
solving this problem, in particular, on the genetic algorithm and its hybrid modifications.
However, it should be noted that traditionally genetic algorithm is used to find the most
fitted chromosome,which is a set of test data that ensures passage along themost complex
(long) path in the Control Flow Graph [16]. Many data sets that provide maximum code
coverage can be found by repeating this procedure multiple times with preliminary
zeroing of the code operation weights corresponding to the chromosomes found earlier
[17]. So, the fitness function of the genetic algorithm has a simple form, but the process
of finding all the data sets is quite long and non-optimal. In present paper, we use the
idea of an Improved Genetic Algorithm for Multiple Paths Automatic Software Test
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Case Generation proposed when an additional term responsible for the greatest possible
difference in the paths of the population, alongwith a term responsible for the complexity
of each path, is included into the fitness function [18]. We investigated this approach,
identified its shortcomings, and propose an improved form of the fitness function, as
well as changes in the selection method, allowing us to achieve a more uniform increase
in the percentage of code coverage. Our research confirmed greater effectiveness of the
proposed approach compared to the original version.

The paper is organized as follows. Section 1 gives introduction to the problem and
literature review. Section 2 discusses theoretical issues of the research including descrip-
tion of the algorithm’s basic version. In Sect. 3 we describe case study and results of the
research. Section 4 provides the conclusions.

2 Theoretical Background

2.1 Genetic Algorithm for Test Data Generation

Genetic Algorithm (GA) borrows its idea and terminology from the biological world.
In such a way, it uses different representations for potential solutions referred to as
chromosomes, genetic operators such as crossover and mutation used to generate new
child solutions, and also selection and evaluation mechanisms derived from the nature.

With regard to the problem considered here, a set of generated test data, which best
contributes to the software testing process, can serve as potential solutions. Depending
on the values of the input variables supplied to the SUT input, the code execution process
can follow various paths determined by the sequence of statements, among which there
can be both linear statements following one after another, conditional statements (IF,
CASE) and loops (WHILE, FOR), leading to branching of computations. It is the latter
that ultimately determines the variety of paths of the code execution.

In this paper we assume that input variables var1, var2, . . . , varN of the SUT can
take continuous values from the certain intervals. So, it is the most reasonable to use
continuous (real-valued) GA (unlike the binary GA) where the values of input variables
are the genes included in the chromosomes that determine potential solutions to the
problem of generating input test data. Denoting chromosomes by xi, we obtain test data
population, consisting of m individuals each containing N values of the input variables

{x1, x2, . . . , xm}, where xi = [
var1,i, var2,i, . . . , varN ,i

]
. (1)

The foundation of white box techniques is to execute every part of the SUT at least
once in order to achieve a previously defined percentage of code coverage. Testing theory
distinguishes between the following types of code coverage: statement coverage, branch
coverage, conditions coverage and path coverage. In this research we consider statement
coverage as the quality criterion for the generated test cases population (1) the purpose
of which is to execute as many statements of the program as possible in comparison with
the total number of statements. Thus, the GA fitness function for a certain chromosome
xi has to be formulated to take into account statement coverage requirement. That is,
test case corresponding to the most fitted chromosome traverses the most loaded (more
complex) path containing as many SUT statements as possible.
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A complementary approach to the formulation of the fitness function is the require-
ment for maximum coverage not only by one test case, but also by multiple test cases
at once (preferably 100% coverage by the chromosome population). The latter leads to
the possibility of obtaining the final solution in one GA run, and can be heuristically
provided by the inclusion of special terms into the fitness function ensuring as much
variety of individuals xi and distance between them in the population (1) as possible.

The genetic algorithm includes the following main stages:

1. Initialization. The initial population is formed randomly taking into account
constraints on the values of input variables.

2. Population evaluation. Each of the chromosomes is evaluated by a fitness function.
3. Selection. The best 20% chromosomes are selected for the next generation directly,

the rest 80% chromosomes are obtained as a result of crossover.
4. Crossover. Crossover occurs through the random choice of a certain l-th gene in

the two random parent chromosomes and subsequent blending where single off-
spring gene comes from a linear combination of the two corresponding parent genes
varl,offspring = β · varl,mother + (1 − β) · varl,father , β ∈ [0, 1], [19]. Remaining
genes of the offspring are chosen randomly from one of the two parents.

5. Mutation. In random order, a gene can change a value randomly. The main goal of
mutations is to obtain solutions that could not be obtained from existing genes.

After all the stages have been carried out, it is assessed whether the population has
reached the desired coverage of the solution, or has come to a limit on the number of
populations M .

2.2 Formulation of the Fitness Function for Maximum Statement Coverage

In this section, we will formulate the fitness function of the genetic algorithm in such a
way that to maximize the coverage of SUT statements by both individual test cases and
the whole test cases population.

The first step of white-box testing is to translate the source code into a Control
Flow Graph (CFG). In the CFG, the statements are represented as nodes (boxes) and the
control flows between the statements is represented as edges. Denote the set of nodes of
the CFG by {v1, v2, . . . , vn}, where vj is a separate node of CFG (corresponding to one
or more statements of the code). Note that the order of execution of separate nodes vj
may differ depending on various input data, since the program code contains conditional
statements when computations are branched along several paths. Thus, different initial
data of the program leads to traversing along different paths of the CFP, ensuring the
execution of only quite specific statements of the program. Let us denote g(xi) a vector
that is an indicator of the graph nodes coverage with a path initiated by a specific set of
the test case xi:

g(xi) = (
g1(xi

)
, g2(xi), . . . , gn(xi)), where

gj(xi) =
{
1, if path initiated by xi traverses through the node vj;

0, otherwise
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Assigning weights to edges of the CFG one can take into account the fact that different
paths of executing program code have different complexity. More weights are assigned
to statements that are critical, being a part of the more error-prone paths. Following the
procedure proposed in [19] an initial credit is taken (for example, 100 or 10), if CFG is
dense i.e. large numbers of statements are there than initial credit should be taken as 100
and if CFG is sparse (small code) then it can be taken as 10. At each node of CFG the
incoming credit (sum of the weights of all the incoming edges) is divided and distributed
to all the outgoing edges of the node. For the conditional and loops statements we have
used an 80–20 rule: 80% of weight of the incoming credit is given to loops and branches
and the remaining 20% of the incoming credit is given to the edges in sequential path. If
we encounter a conditional statement with two or more conditions, fulfillment of each
one leads to the execution of certain following statements, the weight of such a statement
is divided by the number of the outgoing edges.

Let us denote by {w1,w2, . . . ,wn} the weights assigned to all the statements in
accordance with the above describedmethod. Then the fitness function for the individual
chromosome xi can be formulated as follows.

F1(xi) =
∑n

j=1
wjgj(xi). (2)

Indeed, the more is the sum of weighted statements covered by a path initiated with the
test case xi, the more fit is the chromosome xi.

On the other hand, the use of formula (2) for the fitness function will lead to a
situation where the most adapted and capable of reproduction will always be individuals
that lead to the most complex pieces of the code, to the detriment of the diversity of
individuals in the population, since the population aspect in this formula not taken into
account. As a result of using GA with such a fitness function, we get the most fitted
individuals, however, if we evaluate the fitness of the resulting population as a whole,
it will not provide maximum code coverage, since the chromosomes of the population
will generate very similar paths.

To ensure a greater diversity of the population, it is necessary to introduce into the
fitness function a term that gives preference to chromosomes that provide the greatest
possible distance from each other all the paths that are generated by test cases of the
population’s chromosomes.

The developed fitness function is based on the idea given in paper [18]. We correct
some inconsistencies in the formulas and propose more balanced relation of terms in the
final formula of the fitness function.

In order to calculate the j - th similarity coefficient simj
(
xi1 , xi2

)
of the two chromo-

somes xi1 and xi2 we compare if the node vj of the CFG is covered or uncovered by both
paths initiated by these two test cases

simj
(
xi1 , xi2

) = gj
(
xi1

) ⊕ gj
(
xi2

)
, j = 1, n. (3)

The more matching bits are there between the two paths, the greater is the similarity
value between the chromosomes. The following formula takes into account weights of
corresponding CFG nodes

sim
(
xi1 , xi2

) =
∑n

j=1
wj · simj

(
xi1 , xi2

)
. (4)
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The value of similarity between the chromosome xi and the rest of the chromosomes
in the population is calculated as

fsim(xi) = 1

(m − 1)

∑m

s = 1
s �= i

sim(xs, xi). (5)

Now we can determine the maximum value of path similarity in the whole population.

fsim = max
i=1,m

fsim(xi). (6)

So, we can formulate the term of fitness function responsible for the diversity of paths
in a population. It is.

F2(xi) = fsim − fsim(xi). (7)

Thus, the fitness function for the chromosome xi is calculated by the formula

F(xi) = F1(xi) + k · F2(xi), (8)

where F1(xi) and F2(xi) are defined by formulas (2) and (7). The first term F1(xi)
determines the complexity of the path initialized by the chromosome xi, and the second
term F2(xi) determines the remoteness of this path from other paths in the population.
The constant k determines relation between the two terms and is chosen depending on
the number of different paths in the SUT.

3 Research

To investigate the GA work with the proposed fitness function (8), a code for testing
was developed containing six conditional statements and two cycles, in such a way
determining sufficient number of different paths of the program code. Figure 1 shows a
block diagram of this code.

The number inside the blocks contains the number of linear statements. Cycle 1
contains most of the statements and conditions, so they will be executed multiple times.
Conditions A, B and C are checked sequentially and require different test cases to
execute. Condition F will only be executed if both D and E are true and then Cycle 2
is completed. So, the code has different approaches to representing conditions, so the
proposed method will generate data under different circumstances.

In the course of our research, we examined two versions of GA, using formula (8)
to calculate the fitness function for the number of individuals in the population m =
100. In the first version, we put k = 0 in formula (8). Since for this version complete
code coverage was never achieved in one population with a single application of GA,
each application of it was used to find one best-fit chromosome. Further, the statements
covered by the graph path initiated by the test case found in the previous step received
zero weight, and the process of searching for the next best fit chromosome continued
in a similar way. The results of studies by this method are presented in Table 1. A
total of five studies were carried out, in each of which we received four test cases that
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completely covered all the statements of the program code. However, these solutions
were not obtained in an optimal way, sincewe had to run theGA four times consecutively
(single path at a time), achieving with each new test case more and more coverage. The
coverage indicators of the graph nodes, colored green, correspond to the nodes already
covered at the moment, either with the current test case, or with the test cases found in
the previous steps.

Input variables: val1, val2, val3

Cycle 1: for (i = 0; i < 100; i++)

A: (val1 > 5 & val1 < 60) | (val2 > 90 | val2 = 10)

B: val1 = 60

C: val3 > 5 & val1 < 30 & weight_count > 1

D: val3 > 50

E: val1 < val3

Cycle 2: while (n < 10)

F: val1 > 50

Cycle 3: for (i = 0; i < output.Count; i++)

Fig. 1. Block diagram of the code under testing
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Table 2 shows the results of studying the GA work with a nonzero value of k = 1 in
formula (8) for the fitness function with the same m = 100, that is, with the presence
of both terms. In the five trials, it was possible to achieve 100% coverage of program
statements in one population, and, as a result, in one pass of the genetic algorithm.
However, this required not four, but five test cases. Therefore, the improvement of the
form of fitness function and other stages of GA remains relevant.

To study the effect of the constant k in (8) on the results, the values of the population
size and the number of generations were specially selected m = M = 35 for which
complete 100% statement coverage of the SUT given in Fig. 1 is achieved quite rare.

Table 1. Results for the multiple launch GA-algorithm.

# # Test sets Statement coverage % 

1 

1 [1, 82,87] 1111111111100000000000000000111111111111111110000000001 52% 
2 [60,44,60] 1111111111100011111111000000000000000000000000000000001 67% 
3 [4, 85, 97] 1111111111100000000000111111111111110000000001111111111 94% 
4 [11,52,51] 1111111111111100000000000000000000000000000000000000001 100% 

2 

1 [83,12,99] 1111111111100000000000000000111111111111111110000000001 52% 
2 [60,40,44] 1111111111100011111111000000000000000000000000000000001 67% 
3 [5, 84, 97] 1111111111100000000000111111111111110000000001111111111 94% 
4 [39,14,78] 1111111111111100000000000000000000000000000000000000001 100% 

3 

1 [68,14,98] 1111111111100000000000000000111111111111111110000000001 52% 
2 [60, 9, 33] 1111111111100011111111000000000000000000000000000000001 67% 
3 [2, 4, 93] 1111111111100000000000111111111111110000000001111111111 94% 
4 [28,81,48] 1111111111111100000000000000000000000000000000000000001 100% 

4 

1 [69,80,90] 1111111111100000000000000000111111111111111110000000001 52% 
2 [60, 2, 76] 1111111111100011111111000000000000000000000000000000001 67% 
3 [0, 49, 94] 1111111111100000000000111111111111110000000001111111111 94% 
4 [83,99,89] 1111111111111100000000000000000000000000000000000000001 100% 

5 

1 [81, 6, 93] 1111111111100000000000000000111111111111111110000000001 52% 
2 [5, 17, 58] 1111111111100000000000111111111111110000000001111111111 80% 
3 [54,47,65] 1111111111111100000000000000000000000000000000000000001 85% 
4 [60,15,17] 1111111111100011111111000000000000000000000000000000001 100% 

Figure 2 shows the average value of the achieved statement coverage for various
values of k from 0 to 50, calculated from 40 GA runs, each time carried out with new
random initial populations and maximum 35 generations.

Thus, we see a non-linear dependence of the average coverage on the value of k,
which determines the ratio between the terms F1 and F2 in the expression for the fitness
function. First, as k grows, the statement coverage increases, reaching its maximum
for k = 10. After that, the value of the fitness function begins to decline, as excessive
attention begins to be paid to F2, which is responsible for the diversity of paths in the
population at the expense of the coverage for each path.
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Table 2. Results for the single launch GA-algorithm.

# # Test sets Statement coverage %

1 1 [41,11,35] 1111111111111100000000000000000000000000000000000000001 100%

2 [2, 85, 86] 1111111111100000000000111111111111110000000001111111111

3 [72, 9, 96] 1111111111100000000000000000111111111111111110000000001

4 [79, 42, 67] 1111111111100000000000000000000000000000000000000000000

5 [60, 88, 48] 1111111111100011111111000000000000000000000000000000001

2 1 [90, 91, 72] 1111111111111100000000000000000000000000000000000000001 100%

2 [3, 75, 48] 1111111111100000000000000000000000000000000000000000000

3 [60, 70, 16] 1111111111100011111111000000000000000000000000000000001

4 [4, 74, 81] 1111111111100000000000111111111111110000000001111111111

5 [67, 70, 78] 1111111111100000000000000000111111111111111110000000001

3 1 [2, 19, 65] 1111111111100000000000111111111111110000000001111111111 100%

2 [61, 92, 12] 1111111111111100000000000000000000000000000000000000001

3 [2, 79, 5] 1111111111100000000000000000000000000000000000000000000

4 [85, 59, 90] 1111111111100000000000000000111111111111111110000000001

5 [60, 50, 37] 1111111111100011111111000000000000000000000000000000001

4 1 [15, 37, 33] 1111111111100000000000000000000000000000000000000000000 100%

2 [81, 84, 24] 1111111111100011111111000000000000000000000000000000001

3 [69, 84, 86] 1111111111100000000000000000111111111111111110000000001

4 [60, 58, 59] 1111111111100011111111000000000000000000000000000000001

5 [3, 4, 84] 1111111111100000000000111111111111110000000001111111111

5 1 [61, 91, 60] 1111111111111100000000000000000000000000000000000000001 100%

2 [88, 38, 29] 1111111111100000000000000000000000000000000000000000000

3 [3, 62, 86] 1111111111100000000000111111111111110000000001111111111

4 [81, 17, 85] 1111111111100000000000000000111111111111111110000000001

5 [60, 38, 72] 1111111111100011111111000000000000000000000000000000001

81.60% 81.51% 
82.46% 82.54% 

83.76% 

85.25% 

84.23% 
83.48% 

k=0 k=0.5 k=1.0 k=2.0 k=5.0 k=10.0 k=20.0 k=50.0
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Fig. 2. Average value of the achieved statement coverage of final population

4 Conclusion

The method considered in present paper permits to generate test data based on two terms
- the complexity of the source code path for a particular test case and the achievement
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of the greatest variety of paths covered with different test cases in one population. This
allows obtaining test cases for many different code paths within a single run of the
genetic algorithm. In the future, it seems promising for increasing the convergence rate
to consider the option of dynamically changing the ratio between both terms of the
fitness function in the process of approaching to optimal solution. Also, a niche GA
seems promising for the task of generating test data, which can also allow combining
the goals of the most complete code coverage with a variety of niches in the population.
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Abstract. In modern manufacturing, defect recognition is an important technol-
ogy, and using recent advances, such as convolutional neural networks (CNNs) to
help defect recognition have addressed many attentions. However, CNN requires
large-scale samples for training. In industries, large-scale samples are usually
unavailable, and this impedes the wide application of CNNs. Ensemble learning
might be a feasible manner for the small-scale-sample problem, But the weight for
different CNNs needs explicit selection, and this is complex and time-consuming.
To overcome this problem, this paper proposes a genetic algorithm (GA)-based
ensemble CNNs for small-scale sample defect recognition problem. The proposed
method uses an ensemble strategy to combinate several CNN models to solve the
small-scale-sample problem in defect recognition, and use GA to optimize the
ensemble weights with 5-fold cross-validation.With these improvements, the pro-
posed method can find the optimal ensemble weight automatically, and it avoids
the complex and explicit parameter selection. The experimental results with dif-
ferent trainable samples indicate that the proposed method outperforms the other
defect recognition methods, which indicates that the proposed method is effec-
tive for small-scale sample defect recognition tasks. Furthermore, the discussion
results also suggest that the proposed method is robust for noise, and it indicates
that the proposed method has good potential in defect recognition tasks.

Keywords: Convolutional neural network · Defect recognition · Genetic
algorithm · Ensemble learning

1 Introduction

In modern manufacturing, defect recognition is an important technology [1]. A good
defect recognition can not only ensure the product quality, but also provide a gist to
optimize the process parameters [2]. Traditionally, defect recognition was performed
manually. But the recognition speed is too slow to satisfy modern manufacturing, and
the results are also unstable. As a replacement, using machine vision to help defect
recognition has become a research hotspot [3]. Machine vision-based defect recognition
employs computer vision techniques to collect and recognize defect images. Comparing
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with manual recognition, machine vision-based defect recognition is cheap for deploy-
ment, and has fast and stable recognition results. Based on these advantages, machine
vision-based defect recognition has been widely used, including steel [4], welding [5],
and fabric [6].

Recently, since some new technologies, such as IoT, digital twin and big data have
developed rapidly, defect collection is fast and convenient inmachine vision-based defect
recognition [2, 7]. Furthermore, the developments of the hardware, such as GPU, also
bring some conveniences for defect recognition. Thus, most of the research is focused
on improving recognition results.

In machine vision-based defect recognition, machine learning is one of the common
methods to recognize defect types, such as support vector machine [8], and artificial
neural network [9]. However, most of these methods require an explicit feature extrac-
tion, and the recognition results highly rely on the feature representation. A good feature
representation will lead to a good recognition result, while the inappropriate represen-
tation might cause poor results. The common feature extractors include local binary
pattern (LBP) [10], grey level co-occurrence matrix (GLCM) [11] and wavelet trans-
formation [12]. But the extractor selection processing is complex and time-consuming,
and it requires explicit knowledge. This impedes the generalization greatly. Recently,
deep learning (DL) has become a research hotspot. With the outstanding performance
on image recognition, using DL, especially convolutional neural networks (CNNs), for
defect recognition has driven many attentions. Gao et al. [2] proposed a semi-supervised
CNNmodel to recognize steel surface defects.Niu et al. [13] used agenerative adversarial
network to generate some fake samples and improve the recognition results. Jiang et al.
[14] developed a CNN-based defect recognition method for welding defects. The most
merit of CNNs is the automatic feature extraction, and it can avoid the explicit selection
processes. However, the automatic feature extraction needs large-scale samples, other-
wise, the CNN might not perform as expected due to the lack of useful information.
In defect recognition tasks, since the defect occurs rarely, it is difficult to collect large
scale samples, and only a few samples are available for model training. Therefore, defect
recognition is a typical small-scale-sample problem, and this limits the application of
CNNs.

To overcome the small-scale-sample problem, ensemble learning, which builds and
combines several models for better results, is a feasible manner. But how to develop
ensemble learning intoCNN is still underdeveloped, and the biggest problem is to find the
optimal ensembleweight for eachmodel. On the one hand, theCNNs are too large to train
together. Thus, ensemble strategies, such as boost and Adaboost might not be feasible
for this situation [15]. On the other hand, setting the weight manually is impracticable
and time-consuming. CNNs with different initializations perform differently so that the
weight is also different. And this is not conducive for generalization. To overcome this
problem, this paper proposes a genetic algorithm (GA)-based ensemble CNNs for defect
recognition. In the proposed method, five CNNs are built and trained individually. After
that, each CNN calculates the recognized results, and a GA is used to optimize the
ensemble weight for each CNN with 5-fold cross-validation. With this improvement,
the proposed method can find the optimal weight automatically, which avoids manual
weight selection and requires less computation source. To evaluate the performances, the
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proposedmethod is tested on a steel surface defect recognition dataset. The experimental
results suggest that the proposed method has better recognition results with different
trainable samples. This result indicates that the proposed method is effective for small-
scale-sample defect recognition tasks. Furthermore, the discussion result shows that the
proposed method is robust for noise, this result also indicates that the proposed method
has good application potential.

The rest of this paper is organized as follows. Section 2 presents the proposed
method. Section 3 gives the experimental results of the proposed method. Section 4
is the discussion and Sect. 5 is the conclusion and future work.

2 Proposed GA-Based Ensemble CNNs

To overcome the small-scale sample problem and improve the recognition result of
CNN, this paper proposes a GA-based ensemble CNNs for defect recognition. In the
proposed method, five CNN models are built and trained individually. After that, the
recognition results of training samples are used to optimize the ensemble weight with 5-
fold cross-validation.And this optimization is performed byGA.More detail is discussed
below.

2.1 Basic CNN Model

In the proposed method, five CNN model is built and trained individually. These mod-
els are used as the basic models for ensemble learning. CNN is a feedforward neural
network, which can extract the feature automatically. A CNN is usually composed of
convolutional layers, pooling layer and classification layer. Convolutional layer performs
a convolution operation that uses sliding windows to map the input into feature maps.
And the sliding windows are also known as convolutional kernels. After the sliding win-
dows, an activation is used to map the feature into a non-linear space, and it might make
the feature more discriminative. Pooling layer performs an un-sampling to reduce the
dimension and avoid over-fitting. Convolutional layers and pooling layers are stacked
alternately, and the combination of them is also known as feature extractor. After the
feature extractor, a classification layer is connected to recognize the feature. Classifica-
tion usually uses multilayer perceptron with softmax activation function to calculate the
probabilities that the defect belongs to each type. A typical CNN architecture is shown
in Fig. 1.

In the proposed method, five CNNs are built and trained as the basic models. The
architectures of these CNNs are the same as Fig. 1, which composes 3 convolutional
layers, 3 pooling layers and a classification layer. The convolutional layer uses 32, 64, and
128 3 * 3 convolutional kernels individually, and uses ReLU,which f (x) = max(0, x), as
activation functions. The pooling layers use the max-pooling strategy to extract the max
value of a 2 * 2 non-overlapped sliding window, and the dimensions will be reduced by a
quarter. Thiswill release the computation source and avoid over-fitting. The classification
layer uses a 3-layer perceptron with softmax to calculate the probabilities. The first two
layers use 512 units and ReLU as activation function, while the last one has m units,
where m means the number of defect types.
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Fig. 1. Architecture of CNN

All the five models use cross-entropy as loss functions. Assuming y is the ground
truth type and y′ is the recognized type, cross-entropy loss function L is defined as:

L = −(ylogy′ + (1 − y)log(1 − y′)) (1)

The loss function L is optimized by Adam with a mini-batch. Each model is trained
individually with different initializations. Furthermore, a dropout technique is used to
improve the generalization of the model, and a global average pooling layer is added for
vectorization.

2.2 GA for Ensemble Weight Optimization

How to find the optimal weight for different models is one of the biggest challenges to
develop ensemble learning into CNNs. CNNs are too large for self-adaption ensemble
strategies, and constant weight is also unfeasible because different CNNs perform differ-
ently. Therefore, the proposed method uses GA to find the optimal weight automatically.
Assuming yi ′ denotes the recognized probabilities in model i, wi is the corresponding
weight, the proposedmethod uses the accuracy of 5-fold cross-validation as fitness value
f .

With this fitness, the proposed method initiates 50 populations, and uses GA to find
the optimal weight w. The optimization involves four steps with 50 iterations. Step 1:
Initialization. This step initiates 50 populations randomly in the range of [0, 1]. Step
2: Selection. This step selects two populations randomly, and save the population with
better fitness value as the new population for the next generation. Step 3: Crossover. This
step also selects two populations randomly, and exchange some points with pcross. Step 4:
Mutation. This step chooses a population and re-initiates some point randomly with pm.
Step 2–4 are performed iteratively until meeting the stop criterion. After optimization,
the optimal ensemble weight w is found to combinate the five CNN models, and the
ensemble model can be deployed for defect recognition.

2.3 Application

The ensemble weight w can be regarded as confidence for each CNN model,
and the final recognition result is voted by each model with this confidence. For
example, in a binary classification problem, the five CNNs give five recognition
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probabilities [0.9, 0.1], [0.4, 0.6], [0.2, 0.8], [0.3, 0.7], [0, 1.0], and the weight w is
[0.5, 0.4, 0.3, 0.2, 0.1]. The overall recognition result with w is [0.73, 1.22]. And the
re-normalized result is [0.374, 0.626], therefore, this sample should belong to the second
type.

3 Experimental Results

3.1 Experimental Setting

Defect recognition is a small-scale-sample problem, and this paper proposes a GA-
based ensemble CNNs to solve this problem. In order to evaluate the performances,
the proposed method is tested on a public defect recognition dataset, NEU [16]. The
dataset contains six types of hot-rolled steel strip, including crazing (Cr), inclusion
(In), patches (Pa), pitted surface (PS), rolled in scale (RS), and scratches (Sc). Each
defect type contains 300 images. The examples of NEU dataset are shown in Fig. 2. In
this experiment, the NEU dataset is divided into a training set and a testing set. Each
set contains 150 images for each defect type, and totally has 900 images. In order to
simulate the situation of the small-scale sample, in the training set, this experiment
chooses different numbers of trainable samples randomly. The numbers include 50, 100,
and 150 per defect.

Fig. 2. Examples of NEU dataset [17]

The experiment contains two parts. The first part is to evaluate if the GA-based
ensemble strategy has better performances than the other strategies or the individual
model. In the second part, the proposed method is compared with the other defect recog-
nition methods, including the traditional machine learning methods and deep learning
methods. In this experiment, the proposed method uses the CNN architecture in Fig. 1
as the basic models, and uses the GA described in Sect. 2.2 to find the optimal ensemble
weight. Each CNNmodel is trained individually and optimized by Adam. The batch size
is 32 and each model iterates 100 epochs. All the methods run 10 times and calculate the
average accuracy to evaluate the performances. All the images are resized into 64 * 64,
and no extra data augmentation is used. The experimental results are discussed below.
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3.2 Experimental Results

The experiment contains two parts. The first part is to evaluate if the GA-based ensemble
strategy has better performances than the other strategies or the individual models. In
this part, this paper compares the proposed method with the individual basic model and
average ensemble strategy, and the results are presented in Table 1.

Table 1. Accuracy compared with the other ensemble strategy and individual model

Methods 50 100 150

Individual CNN 97.37 98.55 99.06

Average ensemble weight 97.65 98.84 99.42

Proposed method 98.06 99.07 99.57

From these results, the proposed method has better results. Comparing with the
individual CNN models, the recognition results are improved greatly by the proposed
method. This result indicates that the ensemble CNNs is more suitable for small-scale
sample defect recognition tasks. Comparing with the average ensemble strategy, the
proposed method also has better results. This result suggests that the proposed method,
which uses GA to find the optimal ensemble weight, is effective. This result also explains
why the average ensembleweight is not suitable forCNN.This is because differentCNNs
with different initializations might perform differently, some CNNs might be stronger,
while the other might be weaker. If it set an average weight, the weaker CNNs might
mislead the recognition result. Therefore, the proposed method uses GA to find the
optimal ensemble weight.

The second part is the comparison with the conventional defect recognition methods,
including support vector machine (SVM) [16], nearest neighbor classifier (NNC) [16],
Bayes classifier [8], Alexnet [17] and Decaf [18]. SVM, NNC and Bayes classifier are
conventional machine learning methods for defect recognition, and Alexnet and Decaf
are DL-based defect recognition methods. The experimental results are presented in
Table 2, and all the comparison results are from the related literature.

Table 2. Comparison with the other defect recognition method

Methods 50 100 150

SVM – – 98.93

NNC – – 97.93

Bayes classifier – – 97.42

Alexnet 89.83 94.21 95.29

Decaf – – 99.27

Proposed method 98.06 99.07 99.57
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From these results, the proposed method has the best recognition results. Comparing
with the machine learning-based defect recognition methods, the recognition results are
improved greatly, and comparing with the DL-based models, the proposed method also
performs better. These results indicate that the proposed method is more suitable for
small-scale-sample defect recognition tasks.

4 Discussion

This section discusses the performances of the proposed method with noisy defect
images. Since noise is an unavoidable problem, this section evaluates the proposed
method under different noise to show its potential for wide applications.

This discussion adds some binary noise to the defect images both on the training set
and testing set, and gives the recognition results under those noisy images. The noise
rates include [0.01, 0.05, 0.1, 0.2, 0.3, 0.4], and all the experimental set is as same as
Sect. 3. The examples of the noisy defect images are shown inFig. 3, and the experimental
results are shown in Table 3.

Fig. 3. Examples of the noisy defect images

From the results, the proposed method has declining performances with the increas-
ing of noise rates. For the 150 samples per defect, it could provide acceptable recognition
results. While For the 100 samples per defect, it can only work as expected with small
noise rates. Once with a large noise rate, the recognition result is declined obviously. For
the 50 samples, the proposed method performs a little poor. This is because the proposed
method cannot learn useful information with such few samples and distributions. All the
discussion results suggest that with a small noise rate, increasing the number of trainable
samples will make acceptable results. While for a large noise rate, it suggests that using
some techniques to rebuild the model or augment the data.
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Table 3. Accuracy with different noise rates

Noise rates 50 100 150

0 98.06 99.07 99.57

0.01 95.86 97.53 98.57

0.05 92.59 95.9 96.87

0.1 91.23 95.18 96.37

0.2 89.46 94.29 95.83

0.3 87.00 93.61 95.13

0.4 85.72 92.61 94.81

5 Conclusion and Future Work

Defect recognition is a small-scale sample problem, and developing ensemble learning
into CNN is a feasible manner to solve this problem. However, the ensemble weight is
difficult to select. To overcome this limitation, this paper proposes a GA-based ensemble
CNNs. The proposed method builds several CNNs, and uses GA and 5-fold cross-
validation to find the optimal ensemble weight. With these improvements, the proposed
method can find the optimal ensemble weight automatically. It can avoid explicit weight
selection, and require less computation source. The experimental results also indicate the
proposed method has better performances than the other ensemble strategy and defect
recognition methods. And it also shows the robustness for noise, which suggests that the
proposed method has good potential for application.

The limitation of this paper contains two aspects. One is the recognition speed.
Because five CNNs are used, the recognition speed might be a little slow. Another is
the recognition results still need to improve further. Therefore, the future work of this
paper will focus on two directions. One is to find a new strategy with fewer models
to accelerate recognition speed. Another one is to use new techniques to improve the
recognition results of the proposed method.
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Abstract. The structure learning of Bayesian networks is a NP-hard
problem, which cannot be easily solved since it is usually a complex
combination optimization problem. Thus, many structure learning algo-
rithms using evolutionary techniques are investigated recently to obtain
a reasonable result. However, evolutionary algorithms may suffer from
a low accuracy and restricts their applications. In this paper, we apply
the Biased Random-Key Genetic Algorithm to solve Bayesian network
structure learning problem since this framework is novely designed to
solve conventional combination optimization problems. Also, we use a
local optimization algorithm as its decoder to improve the performance.
Experiments show that our method achieves better performances on the
real-world networks than other state-of-art algorithms.

Keywords: Bayesian networks · Structure learning · Genetic
Algorithms

1 Introduction

As an important probabilistic graphical model, Bayesian networks (BN) have
gained a lot of attentions in the past two decades, and are broadly applied
in machine learning [4], data fusion [8] and risk analysis [14]. The model of
Bayesian networks contains the structure and parameters, which means that the
learning algorithms of BN can be divided into two parts: structure learning and
parameter learning. As the basis of parameter learning, structure learning takes
an important role in Bayesian networks constructions. The structure of Bayesian
networks is represented by directed acyclic graphs (DAGs), and it is a NP-hard
problem [9] to learn a good DAG from the data only.

The conventional structure learning strategy can be divided into three types:
score-based approach, constraint-based approach and hybrid approach. The
score-based approach uses scoring functions, such as BIC, BDe, MDL, or Struc-
tural Hamming Distance (SHD), to search the solution space and find out DAGs
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with best scores. The constraint approach uses CI tests to determine the inde-
pendent relations between two nodes in a graph. The hybrid approach combines
both of them, which uses the constraint approach to determine part of the struc-
ture and uses the score-based approach to search the remaining solution space.
Besides these classic methods, some researches tried to utilize loss functions to
evaluate DAGs, such as works in [21] and [22].

Many researches have been working on Bayesian network structure learning
(BNSL), which is a non-convex optimization problem that cannot be solved easily.
Recent researches have tried more algorithms to get a solution closer to the exact
one. de Campos et al. [3] used parameter constraints and structure constraints to
reduce search space and applied the branch and bound to find an exact solution.
Jaakkol et al. [15] proposed a method to construct BNSL as a linear optimization
problem, and used the branch and bound to iteratively tighten the outer bound
of this problem. Alovaro et al. [7] proposed a pruning method that can calculate
the upper bounds for BDeu score to help conducting the exact BNSL. Ye et
al. [21] proposed the regularized Cholesky score combining Simulated Annealing
algorithm to search over permutations to optimize the BNSL problem. Bryon et
al. [1] proposed a fast concave penalized estimation for large-scale BNs. Zheng
et al. [22] proposed a method to convert the BNSL problem into a continuous
optimization problem to avoid the combination optimization process. Gu et al.
[13] proposed a penalized estimation of DAGs. Schmidt et al. [17] learned DAGs
using L1-regularization with MDL score. Silander et al. [18] used to use local
scores to find the best sink for variable sets.

However, as a non-convex optimization problem, BNSL cannot be solved
very easily and heuristic algorithms is an effective approach to get a reasonable
solution. Constantinou et al. [5] used a heuristic algorithm called Saiya to obtain
a reliable DAG. There are also many researches on using heuristic algorithms
to solve the BNSL problem, such as Simulated Annealing [16], Particle Swarm
Optimization (PSO) [11], Genetic Algorithms (GA) [6] and so on.

In this paper, we firstly utilized a genetic algorithm called Biased Random-
Key Genetic Algorithm (BRKGA) [12] to solve the BNSL problem, which is a
general framework used to solve combination optimization problems. The overall
mechanism of BRKGA is similar to the original GA, but it contains a decoder to
connect the random initial solutions for the optimization problem and it will help
the solver to find a more reliable solution to BNSL than other random searching
algorithms. It is understandable that the decoder takes a very important role in
BRKGA, and we employed an algorithm called NO TEARS to decode the initial
solutions as it can obtain a local minimum of BNSL problem. By combining both
of them, we can find a more reliable solution to BNSL than the other heuristic
algorithms. It should be noticed that the whole searching space is continuous and
BNSL is actually a discrete problem so that the proposed method will convert
the continuous values into discrete values (0 or 1 for Bayesian networks) at the
end of the searching process.

The paper is organized as follows. In Sect. 2, we introduce the basic knowl-
edge of Bayesian networks and BRKGA. In Sect. 3, we introduce some details



Biased Random-Key Genetic Algorithm for Structure Learning 401

for using BRKGA to solve BNSL, especially for the decoder designed to relate
random generated solutions to BNSL problem. Section 4 show the experiment
results of the proposed algorithm and its comparing to two state-of-art heuristic
algorithms. Section 5 is the conclusion.

2 Background

BRKGA is an improved random-key genetic algorithm (RKGA). Random-key
genetic algorithm (RKGA) was firstly introduced by Bean [2] and it is designed
for solving combination optimization problem. In RKGA, random keys are vec-
tors consisting of randomly generated real numbers in the interval [0,1] corre-
sponding to the chromosomes in Genetic Algorithms. Different from the general
Genetic Algorithm, RKGA requires a component called decoder to interpret the
random keys as initial solutions to the original combination optimization prob-
lem so that fitness values can be computed. The other components of RKGA
are the same as GA, which include mutation operator and crossover operator.
The mutation operator is a vector generated with the same strategy used to
generate initial solutions, and it is designed to avoid the local optimum obtained
by GA. The crossover operator of RKGA is designed to keep the elite solutions
unchanged and copied directly to the next generation. Genetic algorithm with
random keys can achieve better performance than the standard genetic algorithm
and the details can be seen in the previous work [10].

During the searching process, BRKGA searches the continuous n-dimensional
unit hypercube instead of the original solution space, and uses a decoder to
map solutions from the hypercube to the original solution space [10]. It should
be noticed that the fitness values of solutions to the combination optimization
problem are evaluated in the original solution space. The decoder in RKGA is
different from the decoding operation at the end of GA, which is a component
relating the random keys to the optimization problem. It can be designed accord-
ing to different optimization problems and it also can be a local optimizer. For
example, Bean used the decoder to sort random keys and took their indices as a
sequence [2]. And BRKGA is different from RKGA in ways of selecting individu-
als to conduct crossover. To be specific, RKGA randomly selects two individuals
randomly in the population while BRKGA selects one parent in the elite indi-
viduals with better fitness value and the other in the non-elite individuals or
the whole population. Although it seems that BRKGA changes very slightly, its
performance can be improved significantly [10]. Main steps for using BRKGA
to solve BNSL problem and the details for solving process will be listed in the
following part.

As we can see in Fig. 1, the framework of BRKGA can be divided into
two blocks: the problem-dependent block and the problem-independent block.
The problem-dependent block is corresponding to the decoder, and the problem-
independent block is corresponding to the other operations shown in Fig. 1. Since
BRKGA is a general framework, we can only design the decoder according to the
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Fig. 1. The flowchart of using BRKGA solve Bayesian network structure learning.

unsolved problem and the other operations can be kept the same. The most char-
acteristic part of BRKGA is that we only need to adjust the decoder according
to different combination problems and the other parts are generally used.

3 Bayesian Network Structure Learning

3.1 Problem Definition

In this paper, we will firstly define the mathematical model of Bayesian networks.
Given a DAG G = 〈V,E〉, V represents the set of nodes in the DAG and E rep-
resents the set of edges between these nodes. The nodes in V are corresponding
to random variables, X = {X1,X2, . . . , Xp} and p = |V | is the number of nodes.
According to the implicit independence hypothesis in the structure, given its par-
ents nodes, Xi is conditionally independent of its non-children nodes, and the
joint probability distribution can be decomposed into the product of multiple
conditional probability distributions:

P (X1,X2, . . . , Xp) =
p∏

j=1

P (Xj |Pa(Xj)) (1)

where, P (Xj |Pa(Xj)) represents the conditional distribution for Xj given its
parents Pa(Xj) with directed edges from each node in Pa(Xj) to Xj in G.

In this paper, the structure of a Bayesian network actually represents the
conditional independence property between any two nodes in the graph and
the nodes in DAGs represent random variables. In the traditional methods, a
adjacency matrix A = {aij}n×n is usually used to represent a DAG. If there is
an edge from i to j, the corresponding aij and aji in the adjacency matrix are set
to 1 and 0, respectively. It should be noticed that the elements in the diagonal
are 0 since it is acyclic. One important property of the adjacency matrix is that
elements in the diagonal of the power function of the adjacency matrix should
be 0. We will use the property to check and modify the final results.



Biased Random-Key Genetic Algorithm for Structure Learning 403

NO TEARS algorithm [22] provides a way to take a new look at BNSL
problem, which firstly uses a loss function to describe it and proposes a new
way to define acyclicity constraint. Then, it uses classic optimization method to
solve it. It should be noticed that BNSL is a non-convex optimization problem
so that NO TEARS can only obtain a local minimum rather than the global
exact solution.

In NO TEARS, it sets a real matrix W = (wij) ∈ R
d×d as a collection of

parameters satisfying A(W ) ∈ {0, 1}d×d such that the elements in A(W ) are
set to 1 if wij �= 0 and 0 otherwise [22]. Thus, A(W ) is a adjacency matrix of
a directed acyclic graph. By this way, we can achieve a continuous optimiza-
tion with BRKGA since BNSL is originally a discrete optimization problem. In
traditional approaches, the structure of BN is evaluated with scoring functions,
which calculates the likelihood of the estimated DAG and data. A higher value
of scoring functions means that the estimated structure is better. In NO TEARS,
a loss function is proposed to evaluate the estimated DAG rather than scoring
functions, which can re-construct the BNSL problem as the equality constrained
problem to simplify solving process. The BNSL problem can be written as [22]:

min �(W ;X) s.t. A(W ) ∈ DAGs (2)

where, � is the loss function and the constraint represents that A(W ) is the adja-
cency matrix of DAGs. This equation means that we want to find the minimum of
the loss function defined by a real matrix W and data matrix X. The constraint
illustrates that the adjacency matrix A(W ) converted from W is corresponding
to a directed acyclic graph.

The evaluation criterion used to test the performance of BNSL algorithms can
vary with different learning strategies. As mentioned above, one can use scoring
functions, such as BIC, BDe, MDL or Structural Hamming Distance (SHD).
In recent years, loss functions have been received more attention than before
in Bayesian networks and some loss functions have been proposed and applied
to structure learning algorithms, such as regularized Cholesky score [21]. This
description seems to be very simple because it is based on matrix operations. We
can not use traditional scoring functions in this way because scoring functions
are based on instances in observation data and calculate their probabilities of
taking certain values.

In this paper, we also try to use a loss function in the execution process of
structure learning algorithms to find out better DAGs with more exact structures.
To examine the performance of the proposed learning algorithm, we will use
SHD to evaluate the final results of the learned networks. The details for the
loss function used in this paper are listed in the following section.

3.2 Implementation Process

Decoder. As mentioned above, the most important component of BRKGA is
the decoder of random keys and it is designed according to the specific opti-
mization problem. For example, Bean [2] uses the decoder to sort random keys
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and uses their sorted indexes to represent a sequence. In this paper, we use NO
TEARS algorithm [22] as the decoder since it can generate initial solutions and
obtain a local minimum, simultaneously. Therefore, it is not only a decoder but
also a local optimizer which can effectively improve the performance of GA.

In the above section, we have already shown the equality constrained problem
(ECP) of BNSL. In NO TEARS, the constraint in (1) can be replaced by matrix
exponential as followings [22]:

min �(W ;X) =
1
2n

‖X − XW‖2F s.t. h(W ) = 0 (3)

h(W ) = tr(eW◦W ) − d (4)

where, X is the data matrix, and n is the sample size. W ◦ W represents the
Hardmard product and eW◦W represents the matrix exponential. h(W ) = 0
guarantees the acyclicity of DAGs, which actually derivates from the property
of the adjacency matrix: the n-th power of adjacency matrix aij means that
there are n steps from i to j. Then, this optimization problem can be solved by
augmented Lagrangian method with an augmented quadratic penalty [22]:

min �(W ;X) +
ρ

2
|h(W )|2 s.t. h(W ) = 0 (5)

Then the dual problem can be written as [22]:

D(α) = min Lρ(W,α) (6)

min Lρ(W,α) = �(W ;X) +
ρ

2
|h(W )|2 + αh(W ) (7)

α ← α + ρh(W ∗
α) (8)

where, W ∗
α is a local minimum, α is the Lagrange multiplier and ρ is the step

size. W ∗
α can be easily obtained by numerical algorithms, and L-BFGS is used

in NO TEARS. We should make it clear that all the equations above and its
derivation process are cited from [22] and the demonstration of NO TEARS and
its further explanation can be seen in [20].

Although the above equations seem quite concise and easily understood, we
should notice that the original BNSL is a combination optimization problem
and its constraint is non-convex even if one can design a convex loss function.
Actually, BNSL problem is a non-convex optimization problem and can be not
find the exact solution by the above process. In this way, we need to find more
possible solutions and BRKGA is utilized for this purpose. The above process
can be seen as a decoder since NO TEARS can achieve a local minimum to
improve the totally stochastic process happened in heuristic algorithms.

Mutation and Crossover. Before introducing the mutation and crossover
operators in BRKGA, we must explain some basic concepts involved in GA. At
the start of GA, we generate a certain number of solutions making up a popula-
tion, the members of the population are called individuals and an individual has
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a corresponding chromosome that encodes the solution. The members consisting
of a chromosome are called genes. The crossover operation and the mutation
operator are important components of Genetic Algorithms, which are designed
to search the solution space and avoid being stuck in the local minimum of the
optimization problem. The basic principle of the crossover operator is exchang-
ing several genes between two chromosomes according to some strategies. And
the basic principle of mutation operator is randomly picking up a chromosome
and changing its value.

In this paper, we exploit the parameterized uniform crossover [19], which
generates a new offspring through comparing to a vector consisting of random
numbers in the interval [0, 1]. And there is a pre-defined threshold ρe illustrating
the probability of an offspring inheriting from the elite parent. Let n represent
the number of genes in a chromosome and the parameterized uniform crossover
first generates a vector of random numbers of size n. For the i-th element of the
vector v(i) comparing to ρe, if it is no bigger than ρe, the new offspring inherits
the element e(i) in the elite parent; otherwise, the new offspring inherits the
element e′(i) in the non-elite parent. The pseudo code of this process is shown
in Algorithm 1.

Algorithm 1. Parameterized Uniform Crossover
1: Input: threshold ρe, the size of genes n, elite parent e, non-elite parent e′

2: for i = 0 to n do
3: Initialize the new generation newpop
4: if v(i) <= ρe then
5: newpop[i] = e(i)
6: else
7: newpop[i] = e′(i)
8: end if
9: end for

10: Output: newpop

The mechanism of mutation operation is the same as that of generating ini-
tial solutions at the start of BRKGA, which generates pm vectors of n random
numbers in the interval [0, 1] and decodes them as initial solutions to the opti-
mization problem. After executing the crossover and mutation operations, a new
population is thus generated. The whole steps for BRKGA solving BNSL can be
concluded in Algorithm2. The first step for solving BNSL with BRKGA is to
generate p vectors of random keys of size n. Each random key is in the real inter-
val [0, 1] and random keys are the input of the decoder. The decoder interprets
random keys as initial solutions to the optimization problem and the fitness val-
ues are then calculated using loss function defined in the next section. We sort
the fitness values of the population and divide it into two part: pe = 0.2 ∗ p
elite individuals and p − pe non-elite individuals. To search the solution space,
the mutation operator and the crossover operator are needed. The mechanism
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of mutation operator is mentioned above and pm mutants are generated. The
elite individuals are directly copied to the next generation and the crossover
operator is executed. Next, these new individuals are combined together to form
a new generation and their fitness values are re-calculated. The process will be
executed iteratively until the algorithm reaches the maximum iteration, which
is a pre-defined number by users.

Algorithm 2. BRKGA for Solving BNSL
1: Input: the population size p, maximum iteration max iter, the elite population

pe, the mutant population pm

2: Initialize p vectors of random keys of size n
3: Use the decoder to decode random keys into initial solutions to BNSL
4: repeat
5: Calculate fitness values of all the solutions according to (3) and sort them
6: Select pe = 0.2 ∗ p elite individuals and copy them to the next generation
7: for i = 1 to p − pe − pm do
8: Execute the crossover operator
9: end for

10: for p − pm + 1 to p do
11: Execute the mutation operator
12: end for
13: for pe + 1 to p do
14: Use the decoder to recalculate local solutions to BNSL
15: end for
16: until max iter
17: Execute post-processing process
18: Output: W

Thresholding and Acyclicity. After the execution of our algorithm, the
obtained adjacency matrix is not always representing a DAG. Firstly, it is
because the returned result of our algorithm is a matrix of continuous values,
which usually are not 0 or 1. Since then, we need to convert these continuous val-
ues into discrete values. In BNSL, we usually define an indicator function to deal
with this problem. In this paper, we pre-defined a threshold ω: if the elements in
W star are bigger than ω, the elements are set to 1; otherwise, the elements are
set to 0. In this way, we can obtain the adjacency matrix of a BN. ω is chosen
to be small enough that can preserve the sparsity of Bayesian networks.

Secondly, after post-processing, the 0–1 matrix cannot ensure the acyclicity
of the directed graph. Hence, we need to design an algorithm to delete the cycles
contained in the graph. Here, to ensure the acyclicity of Bayesian networks, we
use an important property of DAGs: the n-th power of adjacency matrix aij

means that there are n steps from i to j. The first step for our algorithm is
to calculate the trace of the adjacency matrix, A. If the trace of the adjacency
matrix is not equal to zero, we randomly choose two nodes Vx, Vy corresponding
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to the non-zero elements of the adjacency matrix and we delete the corresponding
edges or reverse them. We repeat the recursive procedure until the trace of the
adjacency is equal to zero. The details is shown in Algorithm 3.

Algorithm 3. Acyclicity of DAGs
1: Input: adjacency matrix, A
2: repeat
3: initialize C = A
4: if the diagonal of C does not contain non-zero elements then
5: C = C ∗ A
6: i = i + 1
7: else
8: randomly choose two nodes Vx, Vy corresponding to the non-zero elements of

C, delete the corresponding edges or reverse the edges in A
9: end if

10: until i = n & there is no non-zero elements in the diagonal of C
11: Output: A

4 Experiment

4.1 Experimental Parameters

In our experiment, we implement our algorithm in R and execute the above
algorithm on realistic networks downloaded from Bayesian Network Repository1.
The details for networks utilized in this paper are listed in Table 1. The sample
sizes of these networks are 100, 500, 1000. The population size p is set to 50,
and the maximum iteration is 100. The sizes of elite individuals and mutant
individuals are pm = 0.2 ∗ p and pe = 0.2 ∗ p, respectively. ρe is set to 0.7. All
the results are the averages of 10 times experiments. SHD (Structural Hamming
Distance) is used to compare the estimated DAG to the true graph and a smaller
SHD means that two directed acyclic graphs are more similar. All the parameters
sensitivity analysis is given in the previous work [10].

4.2 Experimental Results

In this section, we list the experimental results of our algorithm conducting
on these Bayesian networks in Table 1 with sample sizes of 100, 500 and 1000.
We also compare our algorithm to the original NO TEARS algorithm and the
standard Genetic Algorithm. The details for NO TEARS are given in Sect. 3.
For NO TEARS, we set the maximum iteration t = 100, tolerance ε = 1e−8,
c = 0.25. The population size of the standard Genetic Algorithm is 50, and the
crossover probability is 0.9, and the mutation probability is 0.1. Figure 2 shows
1 https://www.bnlearn.com/bnrepository/.

https://www.bnlearn.com/bnrepository/
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an example of CHILD network to compare the experimental results with the
original network. In the figure, the left network is the original CHILD network
and the right network is our estimated result. The experimental results are shown
in the Table 1. The smallest SHD values are presented in bold text.

Table 1. The experimental results of three BN Learning Algorithms on 9 standard
networks.

Network Nodes Arcs Samples NO TEARS GA BRKGA

CANCER 5 4 100 2.6 6.6 4.2

500 2.9 7.1 4.9

1000 2.7 6.8 5.2

EARTHQUAKE 5 4 100 6.3 6.5 6.3

500 6.0 6.2 6.5

1000 5.9 6.3 6.4

SURVEY 6 6 100 9.2 8.4 8.2

500 10.1 9.3 8.4

1000 10.4 9.4 7.4

ASIA 8 8 100 12.4 12.4 12.3

500 12.8 13.0 12.2

1000 12.9 13.3 12.6

SACHS 11 17 100 27.7 22.1 22.0

500 28.1 22.9 21.2

1000 27.1 23.8 22.7

CHILD 20 25 100 37.7 40.2 33.3

500 38.5 41.4 32.9

1000 38.7 39.4 32.9

INSURANCE 27 52 100 80.3 71.9 68.2

500 82.9 72.1 67.2

1000 84.4 72.6 67.1

ALARM 37 46 100 80.2 74.0 64.0

500 81.9 78.3 63.8

1000 83.2 81.1 63.9

HAILFINDER 56 66 100 100.2 117.0 95.2

500 98.9 118.6 98.9

1000 98.2 117.7 98.9

4.3 Analysis

The table shows 9 representative Bayesian Networks, and lists their nodes and
arcs. These networks are corresponding to small networks (<20 nodes), medium
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Fig. 2. The learnt structure of CHILD network.

networks (20–50 nodes) and large networks (>50 nodes). As Table 1 shows, SHD
increases with the number of arcs in the networks. We can also notice that the
gap of SHD values of comparison tests and our algorithm increases with the nodes
of these networks. In the experiments, we can see that our algorithm achieves
smaller SHD values than the other algorithms on these Bayesian networks except
the CANCER and EARTHQUAKE network, which means that our algorithm
can obtain a DAG closer to the real structure than the other two algorithms on
these networks. The table shows that NO TEARS achieves smaller SHD values
on CANCER network and EARTHQUAKE network than standard GA and
BRKGA. The table also shows that the performance of NO TEARS is better than
GA on CANCER, EARTHQUAKE, ASIA, CHILD, and ALARM network. Also,
NO TEARS achieves better SHD values than BRKGA on CANCER network,
EARTHQUAKE network and HAILFINDER network with the sample size of
1000. Comparing to the standard GA, our algorithm achieves better performance
on all the networks.

When the networks are small, we notice that NO TEARS can achieve better
or similar SHD values than our algorithm. It may be the reason that NO TEARS
has already find the local best solution near to the global solution. However, with
the increases of nodes, NO TEARS tends to be more and more difficult to find
a better solution than our algorithm. We must point out that our algorithm is
designed to get a continuous solution and discretize it with an indicator function.
So even if the best solution obtained by our algorithm achieves a smaller loss
value, their adjacency matrixes may be the same. In a word, although BRKGA
only adds a decoder and generates random keys, it significantly enhances the
performance of the standard GA, which can be obviously seen from Table 1. As
for the decoder, the most significant improvement is that it is a local optimizer
and interprets random keys as initial solutions to the optimization problem at
the same time.
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5 Conclusion

Bayesian network structure learning is a non-convex optimization problem. In
this paper, we use an evolutionary algorithm, BRKGA, to solve Bayesian net-
work structure learning problem. Firstly, we introduce the overall framework of
BRKGA and its basic principle. Then, we apply the NO TEARS algorithm as
the local optimization method to decode random keys randomly generated in
the interval [0, 1] into initial solutions to the optimization problem. Next, we
utilize the parameterized uniform crossover and mutation operator for BRKGA.
Finally, we conduct experiments on real-world networks and compare our algo-
rithm to other structure leaning algorithms. The experiments compare different
sizes of real-world networks and all the involved parameters are given in the
context. The experimental results show that our algorithm achieves a good per-
formance than GA and the original NO TEARS, which is effective in solving
BNSL problem.

In the future, we will extend our research to reduce the randomness of our
algorithm and import structure priors to improve the performance of our algo-
rithm. Another inspiration is that we only use a simple indicator function to
discretize the solution of our algorithm. In future work, we will try to find a
more reliable discretization method trying to keep more structural information.
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Abstract. In the last decades, swarm intelligence algorithms have
become a powerful tool for solving hard optimization problems. Nowa-
days numerous algorithms are proved to be good for different problems.
With the overwhelming number of algorithms, it became hard for a com-
mon user to choose an appropriate method for solving a certain problem.
To provide guidelines, it is necessary to classify optimization metaheuris-
tics according to their capabilities. Deep statistical comparison represents
a novel method for comparing and analyzing optimization algorithms. In
this paper, the deep statistical comparison method was used for com-
paring different versions of the widely used fireworks algorithm. The
fireworks algorithm was developed and improved in the last ten year,
and this paper provides a theoretical analysis of five different versions, a
cooperative framework for FWA, bare bones FWA, guided FWA, loser-
out tournament based FWA, and dynamic search FWA. Based on the
obtained results, the loser-out tournament based FWA has the best per-
formance in the term of the solution quality, while the dynamic search
FWA is the best in term of the solutions distribution in the search space.

Keywords: Swarm intelligence · Fireworks algorithm · Deep
statistical comparison · Performance analysis

1 Introduction

Solving optimization problems is one of the most important tasks in various
applications. Almost any problem that can be defined by mathematical function
can be described as an optimization problem. Nowadays, there are various math-
ematical methods for solving optimization problems, but the class of problems
that remains unsolvable (or unsolvable in a reasonable time with the available
technology) is the class of NP-hard problems. Problems in this class are the most
interesting since the majority of the real-life optimization problems are in it. It
is important to have a good heuristic that can be used for finding a solution for
these problems. In the last decades, numerous methods have been proposed and
class of algorithms that provided good results are swarm intelligence algorithms.

Swarm intelligence (SI) algorithms proved to be efficient for finding accept-
able or optimal results for different hard optimization problems in a relatively
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short time. The general idea is to use a swarm of simple agents that exchange
information about the quality of the results and move toward better solutions
according to some rules. Two main parts of every SI algorithm are exploration
or global search and exploitation or local search. It is very important to examine
the whole search space to find the promising areas where a more detailed search
should be done. Particle swarm optimization [5] and ant colony optimization [1]
are among the first swarm intelligence algorithms that were proposed. After the
promising results that were obtained, various nature and non-nature phenom-
ena were translated into the SI optimization algorithms. In one period, finding
new inspirations and proposing novel optimization algorithms was a hot research
topic and that resulted in large number of SI algorithms where the main focus
was on explaining translation from phenomena to exploitation and exploration
mechanisms. Comparison of the results obtained by different algorithms was pro-
vided, but the theoretical (mathematical) comparison of the used operators was
rarely considered. Moreover, the algorithms were compared by only one statistic
such as mean or median. This method provides a certain comparison between
the algorithms, but it cannot provide a deeper analysis of the exploration and
exploitation operators and sometimes it can differentiate algorithms that are not
significantly different. In order to overcome this problem, deep statistical com-
parison (DSC) was proposed [3]. The rankings by DSC are created based on the
distributions of solutions from multiple runs which is less sensitive to outliers
and insignificant differences than the rankings by one statistic.

In this paper, the DSC was used for comparing and analyzing five different
versions of the fireworks algorithm [11], i.e. the last four versions, bare bones
fireworks algorithm (BBFWA), guided fireworks algorithm (GFWA), loser-out
tournament based fireworks algorithm (LoTFWA) and cooperative framework
for fireworks algorithm (CoFWA) and the version that obtained good results for
different problems, dynamic search fireworks algorithm (dynFWA).

The rest of this paper is organized as follows. A short description of the
fireworks algorithm and compared versions is given in Sect. 2. Section 3 presents
the main idea of the deep statistical analysis. A comparison of five versions of
the FWA algorithm is presented in Sect. 4. The paper is concluded in Sect. 5.

2 Fireworks Algorithm

Fireworks algorithm (FWA) is a swarm intelligence algorithm proposed by Tan
et al. in 2010 [11]. The fireworks algorithm (FWA) was inspired by the explosion
of the fireworks and nowadays there are several upgraded and modified versions
of the algorithm. The FWA and its modified version were successfully used for
solving optimization problems in various applications in the field of wireless
sensor networks [17], image processing [12,16,18], machine learning [13–15], etc.

The general idea of the FWA is to generate certain number of new solutions
around the previous best solutions and to save the best solution from each group
for the next iteration. Search space around each solution is controlled by the
exploding amplitude and the mechanism for generating solutions is different
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in the different version. The exploration is done by spreading the population
around the search space. The space around the each solution where the new
solution will be generated is controlled by the quality of the solution and the
iteration number. Exploitation is implemented through adjusting the size of that
search space around the solutions from the population. In different versions, how
and how many solutions are generated around each solution in each iteration
is changed with aim to improve the balance between the exploration and the
exploitation as well as the quality of these operators.

The dynamic search fireworks algorithm (dynFWA) was proposed as the
improved version of the enhanced fireworks algorithm (EFWA) [19]. The dyn-
FWA does not generate solution based on the Gaussian distribution which reduce
the complexity of the algorithm. The number and position of the new solutions
is determined in the same way as in the EFWA for all previous solutions except
for the best solution. In the dynFWA, the size of the search space around the
best solution, named core firework (CF) where the sparks, i.e. new solutions,
will be generated depends on the improvements of the best solution. If the fit-
ness function value of the best solution was improved, the search space around
it will be increased. On the other hand, if the best solution was not changed,
the size of the search space around it where the new solution will be generated
is decreased. Additionally, the check for the minimal size of the search space
around the previous solutions was removed in the dynFWA.

A cooperative framework for fireworks algorithm (CoFWA) summed up all
the collected knowledge up till then about the performance of the algorithm and
modified operators to overcome noticed drawbacks [20]. The main modification
was introduction of the independent selection method. In the previous versions,
in each generation, new solutions were generated around the solutions from the
previous generation. The selection process for the next generation was done over
all current solutions and each solution was chosen with the probability that is
determined based on the solution quality. On the other hand, in the CoFWA only
the best solutions were saved for the next iteration. This reduces the complexity
and also enhances the convergence. In order to ensure diversity of solutions,
crowdness-avoiding mechanism was introduced: if one solution comes too close
to the best solution of that generation, it will be reinitialized to random solution.

The bare bones fireworks algorithm (BBFWA) represents the least compu-
tationally expensive version of the FWA [9]. The idea is to save only the best
solution in one iteration as well as the information about the change of the best
solution. Similarly to the dynFWA, the search space around the best solution
where new solutions will be generated is controlled based on the fact did the best
solution change or not. In the BBFWA the number of solution that are gener-
ated in each iteration is fixed unlike to the previous versions. The complexity
of the BBFWA was reduced compared to the other FWA versions since there is
no calculation of the number of solutions and only one explosion amplitude, i.e.
size of the search space around the saved solution is calculated.

The guided fireworks algorithm (GFWA) was proposed by Li, Zheng and Tan
[8]. In the GFWA the idea of exploiting the local best solution was implemented.
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In each generation, new group of solutions are generated around each solution
saved from the previous iteration. In each group of solutions, the best one is
marked as the centroid of the cluster. The best and the worst centroids are used
to calculate the guiding vector which is further used for generating new solution
based on the previous best solution in the population. The number of solutions
that will be generated around the previously saved solution as well as the search
space size where they will be generated depend on the quality of the solution
regarding to the current best solution in the population, same as in the EFWA,
the CoFWA and the dynFWA.

The loser-out tournament based FWA (LoTFWA) was proposed in 2018 [7].
The idea of the fireworks algorithm was based on the cooperation of several
solutions in the population. The LoTFWA introduces the change where the
competition between solutions is proposed. Instead of treating each solution
separately and just saving the best or one among the best solutions generated
around the previous solution, in the LoTFWA, the progress of each solution is
followed. If the progression of the quality of one solution is not satisfying, i.e. the
quality of the solution is not competitive with the current best solution according
to the quality and its progress rate, the solution will be considered as a loser in
the tournament and it will be reinitialized randomly. This mechanism enhances
the exploration ability of the algorithm which reduces the probability of getting
stacked in a local minimum.

3 Deep Statistical Comparison

Deep Statistical Comparison (DSC) represents a novel method for providing a
statistical comparison of stochastic optimization algorithms [3]. The compari-
son is based on solutions obtained in multiple runs on benchmark problems.
The main difference to the commonly used comparison based on one statistic is
that DSC uses a distribution of the solutions from multiple runs instead of just
mean or median. The rankings provided by the DSC method are less sensitive to
outliers and minor differences between data because the rankings for each bench-
mark optimization problem have been also tested for statistical significance.

The DSC compares fitness function values with the two-sample Anderson-
Darling test. This comparison can provide the algorithm rankings. In order to
further analyze the algorithms, extended version of the DSC (eDSC) was pro-
posed [2]. The eDSC was used for comparing the distribution of the obtained
solutions and not the fitness function values for these solutions.

Based on the results, combination of the DSC and eDSC rankings, it is pos-
sible to better understand exploration and exploitation abilities of the compared
algorithms. When comparing two algorithms (A and B) several scenarios could
occur. If the algorithm A has better DSC and eDSC rankings, it indicates that
it has better exploration powers, but nothing can be said about exploitation
since poor exploration of the algorithm B can influence its DSC ranking. If the
algorithm A has better DSC ranking, but worse eDSC ranking it means that we
are most probably dealing with the multimodal problem with many local optima
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and similar performances. In this case, the algorithm A has better exploration
and exploitation abilities. If the algorithm A has worse DSC ranking, but better
eDSC ranking it means that the algorithm is often stuck in some local optima.
This indicates a poor exploration abilities, but nothing can be said about the
exploitation abilities. If the algorithm A has worse DSC and eDSC rankings it
indicates we are dealing with a problem with one obvious global optimum, and
the algorithm A has poor exploration powers. We cannot say anything about
exploitation, since poor exploration can influence algorithm’s B DSC ranking.
There are more combinations. For further information please refer to paper [6].

4 Fireworks Algorithms Evaluation

Five versions of the FWA algorithm were tested on the CEC2013 benchmark set
which contains 28 functions [10]. The parameters of algorithms were set based
on the results reported in the original papers since the same set of function
was used and the best combination of parameter’s values were determined. Each
algorithm was tested for dimensions 10 and 30. The maximal fitness function
evaluation number was set to 10000*dimension. Each algorithm was started 30
times for each problem and dimension. Rankings were provided based on these
results. All experiments were performed by the web service based e-Learning
tool - DSCTool [4].

Table 1. DSC Rankings for the FWA versions

(a) 10D
BBFWA CoFWA dFWA GFWA LoTFW

f1 5.0 2.0 2.0 2.0 4.0
f2 2.0 4.0 5.0 2.0 2.0
f3 3.0 5.0 1.0 3.0 3.0
f4 1.5 4.5 3.0 1.5 4.5
f5 4.0 1.0 2.0 3.0 5.0
f6 3.0 3.0 5.0 3.0 1.0
f7 2.0 5.0 4.0 3.0 1.0
f8 4.0 3.0 1.0 5.0 2.0
f9 4.0 4.0 2.0 4.0 1.0
f10 3.0 3.0 5.0 3.0 1.0
f11 4.5 2.5 1.0 4.5 2.5
f12 3.0 3.0 5.0 3.0 1.0
f13 2.0 4.0 5.0 3.0 1.0
f14 4.5 2.0 1.0 4.5 3.0
f15 4.0 4.0 2.0 4.0 1.0
f16 2.0 4.0 5.0 3.0 1.0
f17 4.5 2.0 1.0 4.5 3.0
f18 5.0 3.0 2.0 4.0 1.0
f19 4.5 1.5 3.0 4.5 1.5
f20 3.0 3.0 5.0 3.0 1.0
f21 3.0 1.0 4.5 4.5 2.0
f22 4.5 2.0 1.0 4.5 3.0
f23 3.0 4.0 2.0 5.0 1.0
f24 3.0 3.0 5.0 3.0 1.0
f25 3.0 3.0 5.0 3.0 1.0
f26 4.0 3.0 1.0 5.0 2.0
f27 4.0 2.5 5.0 2.5 1.0
f28 2.0 5.0 4.0 3.0 1.0
avg 3.39 3.11 3.13 3.5 1.86

(b) 30D
BBFWA CoFWA dFWA GFWA LoTFW

f1 3.0 3.0 3.0 3.0 3.0
f2 3.0 4.0 1.0 2.0 5.0
f3 5.0 4.0 3.0 1.5 1.5
f4 2.0 4.0 3.0 1.0 5.0
f5 4.0 2.0 1.0 3.0 5.0
f6 5.0 3.0 1.0 4.0 2.0
f7 3.0 3.0 5.0 3.0 1.0
f8 3.0 2.0 4.0 5.0 1.0
f9 2.5 4.0 5.0 2.5 1.0
f10 1.0 4.0 2.0 4.0 4.0
f11 4.5 4.5 3.0 1.5 1.5
f12 2.5 4.0 5.0 2.5 1.0
f13 4.5 4.5 3.0 1.5 1.5
f14 4.5 2.0 3.0 4.5 1.0
f15 4.0 4.0 2.0 4.0 1.0
f16 3.0 5.0 4.0 2.0 1.0
f17 5.0 3.0 4.0 2.0 1.0
f18 4.5 4.5 3.0 2.0 1.0
f19 4.0 4.0 2.0 4.0 1.0
f20 2.0 4.0 1.0 5.0 3.0
f21 3.0 2.0 4.5 4.5 1.0
f22 4.5 2.0 3.0 4.5 1.0
f23 4.0 4.0 2.0 4.0 1.0
f24 2.0 4.0 5.0 3.0 1.0
f25 2.0 4.0 5.0 3.0 1.0
f26 1.0 5.0 2.0 4.0 3.0
f27 2.5 4.0 5.0 2.5 1.0
f28 4.0 3.0 1.0 5.0 2.0
avg 3.32 3.59 3.05 3.16 1.88

The DSC rankings for dimensions 10 and 30 are presented in Table 1. The
p-value from the Friedman test was 0.00, and since the statistical significance
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was set to 0.05 the null hypothesis was rejected which means that there is a
statistical significance between the performance of the algorithms. The last row
in Table 1 represents the average rankings over all 28 functions of each algorithm.
As it can be seen from the results, the LoTFWA algorithm was the best overall
ranked algorithm. For the functions f1 and f5 it was the worst ranked algorithm,
while the f4 ended up before the BBFWA. All other algorithms ended up with
a similar overall rank. In order to find where the significance occurred, the pair-
wised comparison between each algorithm and control algorithm was performed.
The control algorithm was the LoTFWA because it had the lowest overall rank.
Based on the pairwise comparison, the LoTFWA algorithm was statistically
significantly different from the CoFWA, the GFWA and the BBFWA, while
there is no significant difference to the dynFWA. A similar situation is obtained
for dimension 30.

Table 2. eDSC Rankings for the FWA versions

(a) 10D
BBFWA CoFWA dFWA GFWA LoTFWA

f1 5.0 3.0 1.0 2.0 4.0
f2 3.0 5.0 1.0 2.0 4.0
f3 4.0 5.0 1.0 3.0 2.0
f4 2.5 4.5 1.0 2.5 4.5
f5 4.0 2.0 1.0 4.0 4.0
f6 4.0 4.0 1.0 4.0 2.0
f7 3.5 5.0 1.0 3.5 2.0
f8 3.5 3.5 1.0 3.5 3.5
f9 3.5 3.5 1.0 3.5 3.5
f10 3.5 3.5 1.0 3.5 3.5
f11 3.5 3.5 1.0 3.5 3.5
f12 3.0 5.0 1.0 4.0 2.0
f13 3.0 5.0 1.0 4.0 2.0
f14 3.5 3.5 1.0 3.5 3.5
f15 3.5 3.5 1.0 3.5 3.5
f16 3.5 3.5 1.0 3.5 3.5
f17 5.0 2.0 1.0 4.0 3.0
f18 3.5 3.5 1.0 3.5 3.5
f19 3.5 3.5 1.0 3.5 3.5
f20 4.0 4.0 1.0 4.0 2.0
f21 3.0 4.0 1.0 2.0 5.0
f22 5.0 3.0 1.0 4.0 2.0
f23 3.5 3.5 1.0 3.5 3.5
f24 3.0 5.0 1.0 4.0 2.0
f25 4.0 4.0 1.0 4.0 2.0
f26 2.5 4.5 1.0 2.5 4.5
f27 4.0 4.0 1.0 4.0 2.0
f28 3.0 3.0 1.0 3.0 5.0
avg 3.59 3.82 1.0 3.41 3.18

(b) 30D
BBFWA CoFWA dFWA GFWA LoTFWA

f1 1.0 2.0 5.0 3.5 3.5
f2 3.5 3.5 1.0 3.5 3.5
f3 5.0 4.0 1.0 2.5 2.5
f4 3.0 4.0 1.0 2.0 5.0
f5 3.5 3.5 1.0 3.5 3.5
f6 5.0 2.0 1.0 4.0 3.0
f7 4.0 4.0 1.0 4.0 2.0
f8 3.5 3.5 1.0 3.5 3.5
f9 3.5 3.5 1.0 3.5 3.5
f10 4.0 5.0 1.0 2.0 3.0
f11 3.5 3.5 1.0 3.5 3.5
f12 4.0 5.0 1.0 3.0 2.0
f13 3.0 4.0 1.0 2.0 5.0
f14 3.5 3.5 1.0 3.5 3.5
f15 3.5 3.5 1.0 3.5 3.5
f16 3.5 3.5 1.0 3.5 3.5
f17 5.0 4.0 1.0 3.0 2.0
f18 4.5 4.5 1.0 2.5 2.5
f19 4.0 5.0 1.0 3.0 2.0
f20 2.0 4.0 1.0 5.0 3.0
f21 4.5 3.0 2.0 4.5 1.0
f22 4.0 5.0 1.0 3.0 2.0
f23 4.0 4.0 1.0 4.0 2.0
f24 4.0 4.0 1.0 4.0 2.0
f25 3.0 3.0 1.0 5.0 3.0
f26 2.0 5.0 1.0 3.0 4.0
f27 4.0 3.0 1.0 5.0 2.0
f28 3.5 3.5 1.0 3.5 3.5
avg 3.62 3.78 1.18 3.44 2.96

Table 2 shows the results of the eDSC rankings where the algorithms were
compared regarding to the distribution of the solutions instead of the fitness
function values. The algorithms were tested and ranked for problem dimensions
10 and 30. The eDSC rankings depend on the solution diversity where solu-
tions clustered in the search space are preferred. If the application prefer sparse
solutions in the search space, then the best rank is the highest number. The
obtained rankings were analyzed by the Friedman test. For dimension 10, the
p-value is 0.00, so the null hypothesis is rejected and there is a statistical differ-
ence between the distributions of the solutions in the search space of the tested
versions of the FWA algorithm. The best ranked algorithm was the dynFWA,
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i.e. the dynFWA has the most clustered solutions. The other four version of the
FWA algorithm were with the similar average ranking. Based on the rankings
for each test function, it can be concluded that the LoTFWA is dealing better
with modal and composite functions than with the unimodal functions (f1-f5) in
comparison to the other FWA versions. The further analysis included pair-wise
analysis with the best ranked dynFWA. The result is that the dynFWA has the
multivariate significant statistical different performance in term of the solution
distribution.

The similar rankings were also obtained for dimension 30. The LoTFWA algo-
rithm achieved slightly better average ranking than the BBFWA, the CoFWA
and the GFWA, while the dynFWA remains the best overall ranked algorithm.
The additional pair-wise comparison of the algorithms with the dynFWA, the
best ranked version, showed that the dynFWA is significantly different to other
four versions of the FWA regarding the solution distribution in the search space.
In conclusion, the dynFWA has the multivariate significant statistical different
performance to all other versions when considering solutions distribution in both
cases, for dimensions 10 and 30.

5 Conclusion

The state-of-the-art swarm intelligence algorithms have to be theoretically ana-
lyzed in order to determine their drawbacks and to improve the quality of the
algorithms. On the other hand by a deeper understanding of the algorithm, it
is possible to find the quality of each algorithm for different types of hard opti-
mization problems. In this paper, deep statistical comparison and extended deep
statistical comparison were used for comparing different versions of the FWA
algorithm. It can be concluded that dynamic search fireworks algorithm has the
best diversity of the solutions while the loser-out tournament fireworks algorithm
outperformed other versions in the term of the solution quality. Future research
should include more SI algorithms to provide clusters of algorithms with similar
performance and analysis of the quality of the algorithm for different types of
optimization problems.

Acknowledgement. The authors thank Tome Eftimov and Peter Korošec for sharing
the DSC tool and providing the statistical results.
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Abstract. The fireworks algorithm (FWA) is a newly proposed swarm
intelligence algorithm inspired by the phenomena of fireworks explosion
and has solved many real-world optimization problems successfully. A
loser-out tournament-based fireworks algorithm (LoTFWA) is a new
baseline in the development of FWA due to its outstanding indepen-
dent framework and competition mechanism for multimodal optimiza-
tion. Under this framework, each firework calculates its expected fitness
improvement compared with the best fitness to determine whether to be
reinitialized. Although LoTFWA achieves the best performance among
the variants of FWA, it lacks of comprehensive consideration of the fire-
works’ cooperation and hence weakens the algorithm’s power. This paper
improves the cooperation of fireworks in LoTFWA based on the idea of
population migration and mutation in biogeography-based optimization
(BBO). The proposed mechanism not only promotes fireworks’ explo-
ration ability but also enhances their exploitation ability greatly. Exper-
imental results show that the proposed algorithm attains superior per-
formance than the state-of-the-art fireworks algorithm in both unimodal
and multimodal functions.

Keywords: Biogeography-based optimization · Evolutionary
algorithms · Fireworks algorithm · Swarm intelligence · Population
migration

1 Introduction

As an emerging field, swarm intelligence (SI) algorithm has attracted the atten-
tion of researchers in many disciplines since its appearance in the 1980s, and
has become a hot and frontier field in artificial intelligence, economics, soci-
ety, and biology. The missions completed by a single complex individual can
also be accomplished by a group of large numbers of simple individuals, and
the latter tends to have more robustness, flexibility and economic advantages.
c© Springer Nature Switzerland AG 2021
Y. Tan and Y. Shi (Eds.): ICSI 2021, LNCS 12689, pp. 423–432, 2021.
https://doi.org/10.1007/978-3-030-78743-1_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78743-1_38&domain=pdf
https://doi.org/10.1007/978-3-030-78743-1_38


424 P. Hong and J. Zhang

Swarm intelligence provides new ways to complex problems without centralized
control and global model [5]. Therefore, by direct or indirect interaction among
agents with the environments [3], swarm behavior can be stimulated to help
simple agents approach or search the target. Recently, more and more stochas-
tic and population-based swarm intelligence (SI) algorithms have been proposed
such as Particle Swarm Optimization (PSO) [2], Ant Colony Optimization [1],
Biogeography-Based Optimization [13], Artificial Bee Colony [4] and Magnetic
Optimization Algorithm [15].

As a new type of SI algorithm inspired by the natural phenomena of fire-
works explosion in the night, Fireworks Algorithm (FWA) is fisrt proposed in
2010 by Tan etc. [14]. FWA has achieved a lot of progress since proposed. Its
algorithm framework has changed from a centralized search to a distributed one,
which greatly improves the global search performance of the fireworks algorithm.
Among these variants, the most influential one is LoTFWA, which has become a
new baseline of FWA. LoTFWA completely adopts an independent distributed
search framework where each firework population searches independently and
no longer has a cooperative mechanism. That is, the number of explosion sparks
generated from fireworks will not be dynamically allocated according to fire-
works’ fitness, and the explosion range (amplitude) of each firework is adjusted
dynamically and independently based on its own search results. In addition, LoT-
FWA innovatively introduces a loser-out tournament mechanism to maintain the
competition between the fireworks.

Although LoTFWA achieves the best performance among the variants of
FWA, it lacks of comprehensive cooperation among fireworks and hence weakens
the power of algorithm. This paper proposes an improved LoTFWA based on the
idea of population migration and mutation in biogeography-based optimization
(BBO). The expected fitness improvement in each firework is divided into four
degrees and each degree triggers a corresponding search pattern. Specifically,
fireworks with a higher degree of expected fitness improvement migrate to the
best firework for exploitation. While fireworks with a lower degree of expected
fitness improvement perform mutation to increase the exploration ability of the
population and avoid fast convergence.

The rest of this paper is organized as follows: Sect. 2 introduces the related
work about the framework and operations of LoTFWA. Section 3 elaborates the
proposed algorithm. Experimental results are shown in Sect. 4 to validate the
performance of the proposed method. Section 5 concludes this paper.

2 Related Work

In this section, we introduce the related work about the framework and compe-
tition mechanism of LoTFWA [6] in detail.

2.1 Explosion Operation

In each generation, a certain number of explosion sparks are generated around
the fireworks within a certain explosion amplitude. Different from previous vari-
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ants [7,8,16–18], the explosion operation in LoTFWA adopts power law distri-
bution to allocate the explosion sparks. That is,

λi = λ̄ · r−α
i∑

j

(r−α
j )

(1)

where r represents the fitness rank of firework Xi, α is a parameter to control
the distribution of fireworks’ fitness rank. The larger α is, the more explosion
sparks that good fireworks generate. LoTFWA adopts equilibrium (i.e., α = 0)
to maintain effective search performance on multimodal functions.

In LoTFWA, a completely independent dynamic explosion amplitude is
adopted in each firework. It is calculated as:

Ag
i =

⎧
⎪⎨

⎪⎩

A1
i g = 1

CaAg−1
i f(Xg

i ) < f(Xg−1
i )

CrA
g−1
i f(Xg

i ) = f(Xg−1
i )

(2)

where Ag
i is the explosion amplitude of firework Xi in generation g, Ca and Cr are

two coefficients to dynamically control the explosion amplitude by amplification
and reduction, respectively.

After λi and Ai in each firework are calculated, its explosion sparks are
generated within a hypercube uniformly. The center of the hypercube is the
position of the firework. The radius of the hypercube is the explosion amplitude.
Besides, LoTFWA adopts the guiding spark mechanism proposed in [8] as its
mutation operation.

2.2 Selection Operation

After explosion and mutation sparks are generated, a selection operation is
performed to choose the next fireworks population. Different from centralized
selection operation in the previous variants of FWA [7,8,16,17], LoTFWA uses
an independent selection operation where each firework in next generation is
selected from its own firework population. That is,

Xg+1
i = arg min{f(Xg

i ), f(sij), f(Ri)}. (3)

2.3 Loser-Out Tournament-Based Fireworks Algorithm

Although the independent selection framework improves information inheritance
among generations, it reduces interaction between fireworks. Therefore, LoT-
FWA innovatively introduces a competition mechanism to improve fireworks’
interaction in which the fireworks are compared with each other not only accord-
ing to their current status but also according to their expected fitness improve-
ment. The improvement of the i-th firework in generation g is calculated as
follows:

Ig
i = f(Xg−1

i ) − f(Xg
i ). (4)
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The firework Xi with the expected fitness improvement in the final generation
gmax is calculated as:

f( ̂Xgmax

i ) = f(Xg
i ) − (gmax − g) · Ig

i . (5)

The competition mechanism in LoTFWA is based on the loser-out tournament
strategy which conducts the fitness comparison between the expected fitness
improvement of firework Xi and the current best one. If a firework’s expected
fitness improvement cannot exceed the best one, i.e., f( ̂Xgmax

i ) > minj{f(Xg
j )},

it is considered as a loser and reinitialized.

3 The Proposed Algorithm

To further improve the fireworks cooperation in LoTFWA, this paper proposes
an improved interactive mechanism based on the idea of population migration
and mutation from biogeography-based optimization (BBO).

3.1 Biogeography-Based Optimization

BBO [13] is a recently proposed optimization algorithm inspired by the science
of biogeography which indicates that habitats with a high HSI (Habitat Suit-
ability Index, which is equivalent to good fitness solutions) tend to have a large
number of species, while those with a low HSI have a small number of species.
Generally, high HSI habitats have a high emigration rate and a low immigration
rate, vice versa for low HSI habitats. Therefore, lots of species in high HSI habi-
tats emigrate to low HSI habitats. When a population Xi is selected with an
immigration rate λ, it will be modified by a population Xj with an emigration
rate uj . The above population migration in [11] can be expressed as:

Xi = Xi + rand(0, 1) · (Xj − Xi). (6)

Population mutation operation is determined by the species count probabili-
ties. In general, very high HSI solutions (species-rich) and very low HSI solutions
(species-poor) are equally rare. They are likely to mutate to other solutions due
to the population instability.

Inspired by the above two operations in BBO, an improved interaction mech-
anism is proposed based on the expected fitness improvement in LoTFWA. A
firework with a relatively higher expected fitness improvement migrates to the
best firework and a lower one performs mutation within a certain range. In the
following, the description of the proposed algorithm is given in detail.

3.2 ILoTFWA

In LoTFWA, If a firework’s expected fitness improvement cannot exceed the
best one, i.e., f( ̂Xgmax

i ) > mini{f(Xg
i )}, it is considered as a loser and reinitial-

ized. Although loser-out tournament strategy promotes the exploration ability
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of fireworks, it needs to maintain some useful information to enhance exploita-
tion ability. Therefore, a reasonable division of the expected fitness improvement
of fireworks enables the information to be effectively utilized. To realize it, the
fitness difference between current firework Xi and best firework mini{f(Xg

i )} is
defined as follows:

Δi = f(Xi) − min
j

{f(Xg
j )}. (7)

According to the Δi, the expected fitness improvement of each firework in
the final generation gmax (i.e., (gmax − g) · Ii) is divided into four degrees: D1 :
(+∞,Δi],D2 : (Δi,Δi/2],D3 : (Δi/2,Δi/4],D4 : (Δi/4, 0].

Each degree triggers corresponding mechanism to change firework’s search
pattern.

The firework Xi with the expected fitness improvement in the final genera-
tion gmax (i.e., f( ̂Xgmax

i )) is divided into following four cases: C1 : (−∞,minj

{f(Xg
j )}], C2 : (minj{f(Xg

j )},minj{f(Xg
j )}+Δi/2], C3 : (minj{f(Xg

j )}+Δi/2,
minj{f(Xg

j )} + 3Δi/4], C4 : (minj{f(Xg
j )} + 3Δi/4, f(Xi)]. If a firework with

the expected fitness improvement is in C1, it is considered as a promising one
and retained to ensure the stability of the fireworks population. If the one is in
C2, it migrates to the best firework Xb to enhance the exploitation ability on the
basis of its existing useful information. The migration operation is calculated as:

Xi = Xi + rand(0, 1) · (Xb − Xi). (8)

In the meantime, the explosion amplitude of the firework is updated accord-
ing to the distance between Xb and Xi as follows:

Ai = (1 − θ)Ai + θ‖Xb − Xi‖. (9)

where θ is a parameter to control the influence of migration distance on explosion
amplitude.

If the one is in C3, it mutates in a certain range to enhance exploration
ability. The mutation operation is calculated as:

Xi =
rand(−1, 1) · (L − U)

10
+ Xi. (10)

where L and U represent the lower bound and the upper bound of the search
space. The explosion amplitude of the firework Xi still holds the line. The fire-
work will be reinitialized if it is predicted in C4.

Algorithm 1 shows the improved interactive mechanism based on the idea of
population migration and mutation. Algorithm2 shows the complete process of
ILoTFWA.

4 Experiments

In order to test the performance of the proposed algorithm, numerical experi-
ments are conducted on the CEC 2013 benchmark suite [10] including 28 func-
tions and CEC 2015 benchmark suite [12] including 15 functions. According to
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Algorithm 1. Improved Interactive Mechanism
INPUT: maximal generation number gmax, current generation g, explosion ampli-

tude parameter θ.

1: for each firework Xi do
2: if f(Xg

i ) < f(Xg−1
i ) then

3: Ig
i = f(Xg−1

i ) − f(Xg
i ).

4: end if
5: Δi = f(Xi) − minj{f(Xg

j )}.
6: if f( ̂Xgmax

i ) is in C1 then
7: Retain the firework Xi.

8: else if f( ̂Xgmax
i ) is in C2 then

9: Execute migration of firework Xi by (8).
10: Update explosion amplitude of firework Xi by (9).

11: else if f( ̂Xgmax
i ) is in C3 then

12: Execute mutation of firework Xi by (10).
13: else
14: Reinitialize the firework Xi.
15: end if
16: end for

Algorithm 2. ILoTFWA
1: Initialize N fireworks randomly in a search space and evaluate their fitness values.
2: while termination criteria are not met do
3: Calculate the number of explosion sparks by (1).
4: Calculate the explosion amplitudes by (2).
5: for each firework do
6: Generate explosion sparks within the explosion amplitude uniformly.
7: Generate guiding sparks.
8: Evaluate all fitness values of sparks and fireworks.
9: Select a best one from its own firework population as the firework in next

generation.
10: end for
11: Perform the improved interactive mechanism according to Algorithm 1.
12: end while
13: return The position and the fitness of the best individual

the instructions of the benchmark suites, all the test functions are repeated for
51 times, and the number of dimensions of all the test functions is set to D=30.
The maximal number of fitness evaluations is 10000D in each run. All the exper-
iments are carried out using MATLAB R2019b on a PC with Intel(R) Core(TM)
i7-8550U running at 3.10GHz with 8G RAM. In the following, we briefly intro-
duce the parameter settings in LoTFWA and related parameter in our proposed
algorithm.
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4.1 Experimental Settings

Multimodal function optimization problems require algorithms to keep a balance
between exploration and exploitation. Generally, a small number of fireworks N
generates more sparks to exploit the feasible space better, while a large one gen-
erates fewer sparks to explore more areas. In the proposed algorithm ILoTFWA,
we follow the suggestion in LoTFWA [6] and set the number of fireworks N = 5.
The amplitude coefficients Cr and Ca are two important parameters for dynamic
search. In this paper, we follow the suggestion in [16] and set the two coefficients
to 0.9 and 1.2, respectively. The parameter σ proposed in GFWA [8] is set to
0.2. The parameter α and λ is set to 0 and 300 respectively as suggested in
LoTFWA.

The parameter θ proposed in this paper is to control the impact of migration
distance on the explosion amplitude. A fine-tuned θ is given based on a set
of experiments illustrated in Fig. 1. The Average Rank of each parameter θ in
Fig. 1 is calculated by averaging fitness rank in each benchmark function among
different θ. The best parameter θ = 0.1 is choosed for following experiments.
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Fig. 1. A set of experiments on CEC2013 benchmark suite is illustrated to show the
influence of parameter θ where θ = 0.1 performs best.

4.2 Experimental Results

In this part, we compared our proposed method with two up-to-date FWA
variants including LoTFWA, MSCFWA [9] on CEC 2013 benchmark suite.
The mean errors, standard deviations of experimental results are presented
in Table 1 and Wilcoxon signed-rank test is used to validate the performance
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Table 1. Accuracy Results about MSCFWA, LoTFWA and ILoTFWA on CEC 2013
benchmark suite

Function MSCFWA LoTFWA ILoTFWA

Mean Std. Mean Std. Mean Std.

1 6.82E-13 6.07E−13 0.00E+00 0.00E+00 0.00E+00 0.00E+00

2 9.76E+05 4.93E+05 1.19E+06 4.27E+05 8.64E+05 5.05E+05

3 1.80E+07 2.03E+07 2.23E+07 1.91E+07 4.57E+06 5.48E+06

4 1.89E+03 7.09E+02 2.13E+03 8.11E+02 5.62E+02 1.57E+02

5 4.00E−03 6.19E−04 3.55E−03 5.01E−04 2.13E−03 5.99E−04

6 1.52E+01 5.89E+00 1.45E+01 6.84E+00 1.29E+01 3.40E+00

7 4.08E+01 1.27E+01 5.05E+01 9.69E+00 2.68E+01 8.85E+00

8 2.09E+01 5.14E−02 2.09E+01 6.14E−02 2.09E+01 6.39E−02

9 1.70E+01 1.82E+00 1.45E+01 2.07E+00 1.08E+01 2.76E+00

10 3.49E−02 2.31E−02 4.52E−02 2.47E−02 2.39E−02 1.88E−02

11 8.23E+01 1.62E+01 6.39E+01 1.04E−01 3.14E+01 9.43E+00

12 7.84E+01 1.52E+01 6.82E+01 1.45E+01 3.46E+01 9.86E+00

13 1.46E+02 2.79E+01 1.36E+02 2.30E+01 5.96E+01 1.82E+01

14 2.76E+03 3.24E+02 2.38E+03 3.13E+02 2.10E+03 3.81E+02

15 2.75E+03 3.22E+02 2.58E+03 3.83E+02 2.77E+03 2.27E+02

16 1.87E−01 7.19E−02 5.74E−02 2.13E−02 5.45E−02 2.14E−02

17 1.34E+02 2.01E+01 6.20E+01 9.45E+00 5.66E+01 8.77E+00

18 1.37E+02 1.78E+01 6.12E+01 9.56E+00 5.83E+01 6.03E+00

19 5.03E+00 1.14E+00 3.05E+00 6.43E−01 2.79E+00 4.49E−01

20 1.27E+01 1.03E+00 1.33E+01 1.02E+00 1.14E+01 9.89E−01

21 2.18E+02 3.83E+01 2.00E+02 2.80E−03 2.20E+02 4.22E+01

22 3.40E+03 4.62E+02 3.12E+03 3.79E+02 2.81E+03 3.98E+02

23 3.42E+03 4.07E+02 3.11E+03 5.16E+02 2.85E+03 5.00E+02

24 2.44E+02 8.73E+00 2.37E+02 1.20E+01 2.21E+02 1.78E+01

25 2.78E+02 6.35E+00 2.71E+02 1.97E+01 2.68E+02 6.82E+00

26 2.00E+02 2.06E−02 2.00E+02 1.76E+01 2.00E+02 1.04E−02

27 7.95E+02 5.23E+01 6.84E+02 9.77E+01 6.00E+02 1.72E+02

28 2.80E+02 5.99E+01 2.65E+02 7.58E+01 2.80E+02 6.32E+01

A.R. 2.43 2.04 1.11

improvement (with confidence level at least 95%). A.R. is the average rank-
ing value. The better results are marked in bold. According to the results,
ILoTFWA performs significantly better than LoTFWA and MSCFWA on 22
(f2 − f7, f9 − f14, f16 − f20, f22 − f25, f27) out of 28 test functions. Addition-
ally, ILoTFWA is worse than the contenders on merely 3 (f15, f21, f28) out of 28
functions. In all, ILoTFWA shows excellent performance on both unimodal and
multimodal functions.
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Table 2. Accuracy Results about LoTFWA and ILoTFWA on CEC 2015 benchmark
suite

Function LoTFWA ILoTFWA

Mean Std. Mean Std.

1 1.1097E+06 6.2634E+05 8.7910E+05 3.2667E+05

2 1.6949E+03 1.7226E+02 1.5105E+03 1.1089E+01

3 1.5200E+03 1.9981E−05 1.5200E+03 1.0982E−04

4 1.5631E+03 1.0018E+01 1.5303E+03 5.9840E+00

5 3.5896E+03 2.3758E+02 3.0778E+03 4.6273E+02

6 2.6784E+04 1.1232E+04 2.0096E+04 1.0212E+04

7 1.5119E+03 1.3659E+00 1.5110E+03 2.4589E+00

8 2.1660E+04 1.3702E+04 1.8835E+04 1.1098E+04

9 1.6038E+03 2.3134E−01 1.6031E+03 2.5798E−01

10 4.5436E+04 2.2027E+04 2.4947E+04 1.1543E+04

11 1.8038E+03 8.5392E−01 1.8179E+03 4.7949E+01

12 1.6078E+03 9.4638E−01 1.6058E+03 7.9294E−01

13 1.5001E+03 2.5096E−02 1.5001E+03 3.1067E−02

14 3.2932E+04 1.1173E+02 3.3244E+04 9.6429E+02

15 1.5000E+03 2.2201E−11 1.5000E+03 5.6499E−12

A.R. 1.67 1.13

To further validate our proposed method, we compare it with LoTFWA
on CEC 2015 bechmark suite. The experimental results are shown in Table 2.
According to the results, ILoTFWA outperforms LoTFWA on 10 (f1 − f2, f4 −
f10, f12) out of 15 functions.

5 Conclusion

In this paper, an improved interaction mechanism inspired by the idea of pop-
ulation migration and mutation in BBO is proposed to further improve the
LoTFWA’s performance. Under the independent selection framework in LoT-
FWA, the proposed fireworks interaction mechanism is based on the division of
fireworks’ expected fitness improvement. When a firework is predicted with a rel-
atively higher fitness improvement, it migrates to the best firework for exploita-
tion. While the one is predicted with a lower fitness improvement, it mutates
in a certain range to increase exploration ability. The experimental results show
the proposed algorithm attains superior performance than the state-of-the-art
fireworks algorithm in both unimodal and multimodal functions.
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Abstract. Various hand-crafted features with metric learning meth-
ods have improved the person re-identification (Re-ID) accuracy. Metric
learning methods for person Re-ID mean to match the features acquired
from different persons. However, not all information of the features is
valid for metric learning. Compared to these metric learning methods,
the region selection with discrete fireworks algorithm (RS-DFWA) is pro-
posed in this paper for hand-crafted feature designing. RS-DFWA uses
the fireworks algorithm after discretization to select the effective regions
of the feature maps at the metric learning stage. RS-DFWA has a faster
convergence speed and a better optimization accuracy so that the noise
regions such as background features would be ignored. RS-DFWA opti-
mizes the fitness of the discrete fireworks algorithm while training the
deep networks for person feature learning. The method we proposed is
validated on the CUHK03 dataset, region selection with discrete fire-
works algorithm for the deep features achieve favorable accuracy. For
example, on the CUHK03 dataset in single query mode, an improvement
of mAP = +4.6% is obtained by RS-DFWA compared to the Baseline
model.

Keywords: Discrete fireworks algorithm · Feature selection · Deep
learning

1 Introduction

The fireworks algorithm (FWA) [3,18,19] is one of the most popular Swarm Intel-
ligence (SI) algorithms [11–17,26]. FWA shows its strong capability and conver-
gence speed while applied to many real-world optimization problems. FWA is
inspired by the natural fireworks explosion phenomenon, which exchanges infor-
mation among different fireworks by controlling the resource allocation and the
search manner dynamically.

The Person re-identification (Re-ID) [8–10,24,25] task aims to retrieve a spe-
cific pedestrian from disjoint camera views with pedestrian visual features [23].
The metric learning method is an excellent method for person Re-ID, which uses
distance measure of feature matrix obtained from deep convolutional networks
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to predict the particular image identity. However, there are some challenges for
person Re-ID because of the differences among disjoint camera views. The back-
ground and viewpoints exactly interfere with the feature representations acquired
from the metric learning method. Figure 1 shows the different backgrounds in
the images with the particular pedestrian.

Fig. 1. The different backgrounds in the images with the particular pedestrian

In addressing the problem described above, the region selecting with discrete
fireworks algorithm (RS-DFWA) is proposed in this paper. RS-DFWA selects
the effective regions on feature maps, not including the background regions.
The process is implemented via the discrete fireworks algorithm. Firstly, RS-
DFWA implements the fireworks algorithm after discretization to optimize the
effective regions on feature maps. Secondly, RS-DFWA takes the distance metric
of the effective feature regions as the evaluation of the different sparks. In the
meantime, RS-DFWA evaluate the loss function of the person Re-ID network
structure according to the effective regions selected by the discrete fireworks
algorithm.

The remainder of this paper is organized as follows. Section 2 introduces
some related work. Section 3 describes the framework of RS-DFWA. In Sect. 4,
experimental results are presented to validate the performance of the RS-DFWA.
Section 5 concludes the paper.

2 Related Work

Ying Tan et al. [1] inspired by the emergent swarm behavior of fireworks, and
proposed Fireworks Algorithm (FWA) as a novel swarm intelligence algorithm.
The loser-out tournament-based FWA (LoTFWA) for multimodal optimization
is designed by [2]. The LoTFWA proposed the competitive mechanism, the fire-
works compete with each other and the losers will be forced to restart from a
new location. Haoran Luo et al. [4] applied FWA to traveling salesman problem
and propose a discrete fireworks algorithm DFWA-TSP. [4] exploited 2-opt and
3-opt as the basic operation for generating sparks in the fireworks explosion.
Adaptive strategy and mutation method are also used for DFWA-TSP. Linzi Qu
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et al. [5] designed a new network – CycleNet to extract handicraft features of
image regions. CycleNet would assign a more accurate representative for every
pixel. Xiang Bai et al. [6] learns highly discriminative features for person Re-ID
according to Long Short-Term Memory (LSTM). [6] applied LSTM in an end-
to-end way to model the pedestrian, seen as a sequence of body parts from head
to foot.

3 Method

RS-DFWA implements the FWA iterating process during the training phase
of the network structure. RS-DFWA interchange information to dynamically
control the each generation of the SI algorithm and the hyper-parameter of the
network structure for person Re-ID.

3.1 A Subsection Sample

The DFWA implemented for RS-DFWA follows the general principle of FWA.
DFWA searches for better feature regions by the iterations of the explosion and
selection operation. Besides, the Loser-Out Tournament (LoT) [2] mechanism is
applied to RS-DFWA.

Initialization. The random selection of feature regions initializes each firework.
Each firework is represented with the binary matrix, where 1 represents the cur-
rent corresponding feature point is effective, while 0 represents that the current
corresponding feature point should be ignored.

Explosion. The number of explosion sparks and explosion amplitude is two
important parameters in the explosion step. The number of explosion sparks
represents the amounts of sparks that the corresponding firework generates. For
each firework i, the number of explosion sparks is calculated by formula Eq. (1).
Where λ̂ is a constant parameter to control the total number of explosion sparks
in each generation. The function f stands for the fitness calculation, which is the
distance metric among different pedestrian features. maxj{f(Xj)} and f(Xi) are
the worst fitness and the i − th firework fitness respectively. n is the number of
the firework in the current generation. μ is a const small number to avoid the
denominator to be zero. The explosion amplitude represents the difference exist-
ing between the firework and the corresponding sparks. The explosion amplitude
is represented as formula Eq. (2). Amax and ξ represents the maximum explosion
amplitude and const parameter respectively.

λi = λ̂ ∗ maxj{f(Xj)} − f(Xi)∑
n(maxj{f(Xj)} − f(Xn)) + μ

. (1)

Ai = Amax ∗ f(Xk) − fmin + ξ
∑

k (f(Xk) − fmin) + ξ
. (2)
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Mutation. There might existing local optimal solution during the iterations of
SFWA. In order to avoid this problem, specific fireworks are required to generate
mutation sparks. In this step, the mutation sparks are generated randomly, then
the distance matrix between different pedestrians would be given a random value.
In the next generation, the fireworks would explode sparks as the explosion
process.

Selection. During the iterations of DFWA, the firework in the nest generation
should be selected from the last generation. Define each firework along with its
own offspring as an independent set, and the firework should be selected from
its own set independently. For RS-DFWA, the best individual in each set would
be selected to be the firework of the next generation.

Loser-Out Tournament. The best position selection of the fireworks could be
considered as a problem of time series forecasting [7]. When the difference
between the best individual generated from neighboring generations is large,
it means the corresponding local area might contain some potential solutions, so
DFWA is better to put some effort into searching in the current local area. In
this paper, we follow the elitism selection mechanism [2].

3.2 Region Selecting with Discrete Fireworks Algorithm

The whole strcture of RS-DFWA is shown in Fig. 2. RS-DFWA iters DFWA
while training the network backbone for original feature maps extraction. Each
individual of DFWA stands for the selections of the effective feature regions,
which is represented by a binary matrix. Each final feature after region selection
is obtained by multiplying the corresponding original feature map and the best
individual of DFWA.

Fig. 2. The whole strcture of RS-DFWA
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For RS-DFWA, P identities and K instances are randomly sampled for each
mini-batch is fed into the network backbone. The loss function of network train-
ing is represented as Eq. (3). N is the size of mini-batch in training process, Wk

is the weight vector of class k. yi is the ground truth identity of the sample i. fi
is the i-th learned feature, Ib is the best individual of DFWA. sp and sn are the
within-class similarity scores and between-class similarity scores respectively. γ
and α are the margin hyperparameters.

L = −
N∑

i=1

log
eW

T
yi

(fi∗Ib)

M∑

m=1
eW

T
m(fi∗Ib)

− log(1 +
P∑

j=1

exp(γ(sjn + α))
K∑

n=1

exp(γ(−snp ))).

(3)

4 Experiment

In this section, RS-DFWA is demonstrated on CUHK03 datasets. Here, ResNet-
50 is used as the network backbone for person Re-ID. The details and results of
the experiments have been analyzed.

CUHK03 consists of 767 identities for the training set and 700 identities for
the testing set. Manually labeled pedestrian bounding boxes and DPM-detected
bounding boxes are provided in the dataset as annotations. In this paper, the
DPM-detected bounding boxes are used in the experiments. The new train-
ing/testing protocol following [22] is adopted in this paper. In this protocol, 767
identities are used for training and the remaining for testing. During the train-
ing phase, the mini-batch size is 96, which is sampled with randomly selected
12 identities and randomly sampled 8 images for each identity from the training
set. The Baseline model represents the ResNet-50 structure without the region
selection strategy we proposed.

The performance of mean average precision (mAP) and Cumulative Matching
Characteristic (CMC) curve are evaluated in the experiments. CMC is reported
at rank-1, rank-5 and rank-10, and mAP is reported on all the candidate datasets.
Table 1 shows the comparison of results on ResNet-50 and RS-DFWA. RS-DFWA
achieves Rank-1/mAP =51.4%/51.6% on CUHK03 detected setting, which out-
performs the Baseline model. Figure 3 shows the mAP comparison of Baseline

Table 1. Comparison between RS-DFWA and other advanced algorithms on CUHK03.

mAP Rank1 Rank5 Rank10

SVDNet-ResNet50 [21] 37.3% 41.5% – –

HA-CNN [9] 38.6% 41.7% – –

Baseline 47.0% 46.0% 68.4% 77.1%

MLFN [20] 47.8% 52.8% – –

RS-DFWA 51.6% 51.4% 71.6% 80.6%
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model and RS-DFWA. RS-DFWA gets better results about the training speed.
The results demonstrate that the region selection with RS-DFWA is efficient to
person Re-ID task. The redundant might be ignored when matching the fea-
tures in the feature retrieval process. Figure 4 shows the fitness of RS-DFWA,
the fitness curve indicates the DFWA has the ability to search the better feature
regions as expected.

Fig. 3. The mAP comparison of ResNet-50 and RS-DFWA

Fig. 4. The fitness of RS-DFWA

5 Conclusion

In this work, an excellent DFWA is applied to feature region selection. RS-
DFWA is proposed for person Re-ID and achieves satisfying results. DFWA is
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designed with explosion operation, selection operation, and LoT strategy. RS-
DFWA searches the better feature regions while training the network for feature
extraction. Numerical experiments show that RS-DFWA has a high performance
for person Re-ID.

In the future, there are several research directions along with this topic.
Firstly, several evolutionary and swarm algorithms might be considered to apply
to feature region selection, such as evolution strategy, particle swarm optimiza-
tion, the memetic algorithm, Etc. Secondly, RS-DFWA could use some other
network backbones to learn the original features in order to improve the learn-
ing ability of RS-DFWA.
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Abstract. HarrisHawkOptimizer (HHO) is a newalgorithmbased on population,
because of the diversity of its plunder strategy, it has good exploration ability, but
there is still room for further improvement of exploitation ability. Because of its
unique “explosion” mechanism, Fireworks Algorithm (FWA) has good exploita-
tion ability. In order tomake up for the shortcomings of HHO algorithm, this paper
proposes an improved HHO algorithm, fireworks Harris hawk algorithm based on
dynamic competition mechanism (DCFW-HHO). In the iterative process, taking
the escape energy function of HHO algorithm as an index, different competition
mechanisms and fireworks explosion operations are performed in different stages
of the algorithm. In order to verify the performance of the proposed algorithm,
the benchmark function of CEC2005 is optimized by DCFW-HHO, and com-
pared with the marine predator algorithm (MPA), whale optimization algorithm
(WOA), lightning search algorithm (LSA), water cycle algorithm (WCA), FWA
and HHO, experiments show that the proposed DCFW-HHO algorithm has strong
optimization ability.

Keywords: Harris Hawk Optimizer · Fireworks Algorithm · Dynamic
competition mechanism · Swarm intelligence

1 Introduction

Heuristic algorithm is a mathematical optimization strategy for solving various life phe-
nomena and natural laws, which is widely used to solve nonlinear complex function
optimization problems and complex real problems [1]. Compared with the traditional
mathematical methods, heuristic algorithm has the characteristics of high efficiency
and low cost. As a classical meta heuristic algorithm, the universality of genetic algo-
rithm [2] and differential evolution algorithm [7] has been proved by many researchers
[3−6]. Heuristic algorithm includes genetic programming (GP) [8], biogeography-based
optimizer [9], evolution strategy [10], etc.

In recent years, algorithms based on swarm intelligence (SI) [11] have been widely
used. It is a branch of meta heuristic optimization algorithm based on population. Ant
colony algorithm (ACO) [12], harris hawkoptimizer (HHO) [13] and artificial bee colony
algorithm (ABC) [14] are excellent meta heuristic algorithms. The Si algorithm based on
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random initialization has the following advantages: (1) it does not have a large number of
parameter settings; (2) it can find the global optimum inmost cases; (3) it does not require
the continuity of the search space, the convexity and differentiability of the objective
function.

Fireworks algorithm [15] is a new optimization algorithm inspired by fireworks
explosion. FWA has been applied to solve all kinds of practical problems, and shows
strong global optimization ability. The algorithm mainly uses explosion operation and
selection operation to carry out heuristic search. In explosion operation, fireworks will
producemany sparks in the range of explosion amplitude. Then, choose a new generation
of fireworks from these sparks. In the previous work, Tan Ying proposed Loser-Out
Tournament-Based FireworksAlgorithm [16], and effectively improved the performance
of the firework algorithm. Competition is the cornerstone of the evolution of nature.
Through this mechanism, the losers can be eliminated, which can effectively reallocate
resources and improve the averagequality of species.Harris hawkoptimization algorithm
(HHO) has four different plunder strategies. In different stages of iteration, different
plunder strategies will be adopted. In order to further improve the exploitation ability
of HHO, this paper introduces FWA exploitation strategy into HHO, and proposes a
fireworks Harris hawk algorithm based on dynamic competition mechanism (DCFW-
HHO).

The rest of this paper is organized as follows: The second section introduces the
fireworks algorithm and Harris Hawk Algorithm, as well as their related work in the
field. The third section introduces proposed algorithm. The fourth section gives the
experimental results to illustrate the performance of the proposed algorithm. The fifth
section summarizes this article.

2 Related Work

2.1 Harris Hawk Algorithm

HHO [13] is a novel meta heuristic algorithm based on population. The algorithm
determines the exploration or exploitation stage of the algorithm by escaping energy
E.

When |E| > 1, HHO algorithm is in the exploration stage, all agents are waiting and
looking for an optimal solution. All agents position updated by:

X t+1
i =

{
X t
rand − r1

∣∣xtrand − 2 ∗ r2 ∗ xti
∣∣, q ≥ 0.5(

Xprey − X t
mean

) − r3 ∗ (lb + r4 ∗ (ub − lb), q < 0.5
(1)

where X t
rand is a random Harris Hawk in the population of the t th iteration, Xprey is the

optimal solution in the current population, and q, r1, r2, r3, r4 are random numbers in
(0, 1).

When |E| ≤ 1, HHO algorithm will enter the exploitation stage. Next, we will
introduce these four kinds of plunder strategies in detail.
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Soft Besiege. When r ≥ 0.5 and |E| ≥ 0.5, The agent position is updated by:
⎧⎨
⎩
X (t + 1) = �X (t) − E

∣∣JXprey(t) − X (t)
∣∣

J = 2(1 − r5)
�X (t) = Xprey(t) − X (t)

(2)

where r5 is a random number between (0,1), X (t) and X (t + 1) represent the current
position and the next iteration position respectively.

Hard Besiege. When r ≥ 0.5 and |E| < 0.5, The agent position is updated by:

X (t + 1) = Xprey(t) − E|�X (t)| (3)

where, the meaning of �X (t) is the same as the parameter in Eq. (2).

Soft Besiege with Progressive Rapid Dives. When r < 0.5 and |E| ≥ 0.5, At this
time, the agent position is updated by:

{
Y = Xprey(t) − E

∣∣JXprey(t) − X (t)
∣∣

Z = Y + S × Levy(D)
(4)

where, J , JXprey(t) and X (t) have the same meaning as parameters in Eq. (2), S ∈ R1×D

is the random matrix between (0, 1), Levy is levy flight function.

X (t + 1) =
{
Y , if F(Y ) < F(X (t))
Z, if F(Z) < F(X (t))

(5)

where, F(X ) is the fitness function. The other parameters in Eq. (5) are similar to Eq. (4).

Hard Besiege with Progressive Rapid Dives. When r < 0.5 and |E| < 0.5, at this
time, Agent position is updated by:

{
Y = Xprey(t) − E|JXprey(t) − Xm(t)|

Z = Y + S × Levy(D)
(6)

X (t + 1) =
{
Y , if F(Y ) < F(X (t))
Z, if F(Z) < F(X (t))

(7)

in the formula, the parameters in Eq. (6) and (7) have the same meaning as Eq. (4) and
(5). Xm(t) is the average position of each dimension of the current population.

2.2 The Explosive Operation of Fireworks Algorithm

Fireworks algorithm is a novel meta heuristic algorithm proposed in 2010. It has been
widely concerned by many scholars since it was proposed. Now it has been applied to
clustering [17], privacy protection [18] and other practical applications.

Fireworks algorithm is inspired by the process of fireworks explosion. Its original
“explosion” operationmakes the algorithm have good exploitation ability. The explosion
operation used in this paper is the same as in FWA [15].
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3 Proposed Algorithm: DCFW-HHO

In this section, we will introduce the fireworks Harris algorithm based on dynamic com-
petitionmechanism, namelyDCFW-HHO. First, wewill propose a dynamic competition
mechanism, which will perform different competition operations in different stages of
the algorithm, so as to balance the exploitation and exploration of the algorithm.

3.1 Dynamic Competition Mechanism

In HHO algorithm, different exploitation methods will be performed according to the
different escaping energy E. So, we set different competition modes based on resource
recovery to adapt to the mechanism of HHO algorithm. In the competition mechanism,
the population is divided into winner group and loser group. We make Egroup equal
to the average of |E| for each individual of the population. When Egroup ≥ 1, the
algorithm is still in the exploration stage. We use the 1-to-1 competition model, in which
the individuals with lower adaptation value are divided into the winner group, and the
others are divided into the loser group. The resources of the losers will be deprived and
allocated to the winners. When 0.5 < Egroup < 1, the algorithm begins to enter the
exploitation stage, at this time, the same competition mechanism as the previous stage is
still adopted, but the difference is that the resources deprived by the loser have changed.
These resources will be given to the best individual in the current population to speed
up the exploitation ability of the algorithm for the optimal solution. When Egroup ≤ 0.5,
the algorithm has entered the final stage, and the population position tends to be stable.
Only the best individual in the current population will be assigned to the winner group,
and the rest will be assigned to the loser group, resources of the losers will be deprived
and allocated to the winner to enhance the exploitation of the global optimal solution.
The framework of Dynamic Competition Mechanism is shown in Algorithm 1.

Algorithm 1 – Dynamic competition mechanism

if then
for i = 1 to N/2 then

Choose the winner from and
Deprive the resources of loser to the winner

else if then
Choose the winner from and
Deprive the resources of loser to the best individ-

ual
else if then

Choose the best individual as the winner
Deprive the resources of others to the best indi-

vidual
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3.2 Fireworks Harris Hawk Algorithm based on Dynamic Competition
Mechanism (DCFW-HHO)

In order to enhance the exploitation ability of HHO, we add dynamic competition
mechanism at the end of HHO. Next, we will give the detailed process of the algorithm.

Algorithm 2 – Pseudo-code of DCFW-HHO algorithm

Initialize population of the hawks ,and calculate 
for t=1 to do

Calculate the fitness values of hawks
Set as the location of rabbit (best location)
for (each hawk( )) do

Update the escaping energy E
if then

Execute exploration stage using Eq.(1)
else if then

if then
Execute soft besiege using Eq.(2)

else if then
Execute hard besiege using Eq.(3)

else if then
Execute soft besiege with progressive rap-

id dives using Eq.(5)
else if then

Execute hard besiege with progressive rap-
id dives using Eq.(7)

end if
end if

end for
Execute dynamic competition Mechanism using Alg.2

end for
return best solution and its fitness values 

In the exploration and exploitation phase, we keep the mechanism of basic HHO, the
dynamic competition mechanism will appear after the end of the four kinds of plunder
mechanism. The loser will be eliminated and replaced by a firework produced by the
winner. When Egroup ≥ 1, there will be winners (N/2 in total), and each individual will
produce a firework to replace the loser (As shown in Algorithm 2). How about when
0.5 < Egroup < 1, the best individual will produce N/2 fireworks to replace the loser. In
above two cases, the amplitude of fireworks explosion will also be dynamically adjusted
with the number of iterations, which is updated by:

A(t) = K ∗ exp(−a
iter

maxiter
) (8)

where K and a are the difference between the upper and lower bounds and initial value
respectively. iter is the current iteration andmaxiter is the predefined maximum number
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of the iteration. When Egroup ≤ 0.5, the best individual will produce N-1 fireworks
to replace the whole population, in order to further exploit the most promising area at
present, we need to adjust the explosion amplitude of fireworks so that can focus more
on the current area. At this point, a in Eq. (8) will be adjusted to 5a.

The flowchart of the DCFW-HHO algorithm is presented in Algorithm 2.

4 Experiment and Result

In order to verify the performance of DCFW-HHO, DCFW-HHO is compared with
marine predator algorithm (MPA), whale optimization algorithm (WOA), lightning
search algorithm (LSA), water cycle algorithm (WCA), FWA and HHO based on
CEC2005 benchmark functions.

Table 1. The parameter settings of algorithms

Algorithm Parameters

DCFW-HHO Hawks numbers = 42
Const a = 30

FWA Number of fireworks = 5
Total number of sparks = 50
Const a = 0.04, const b = 0.8
Maximum explosion amplitude = 40

HHO Hawks numbers = 42

WOA Whales number = 42
A variable decrease linearly from 2 to 0 (Default)
A2 variable decreases linearly from 2 to 0 (Default)

LSA Projectiles number = 42
Channel time = 10

MPA Elites number = 42
Preys number = 42

WCA Raindrops number = 42
Number of rivers = 8
Minimum distance between a river and sea = 1E−03

4.1 Benchmark Functions and Parameter Setting

All functions are selected form CEC2005 benchmark F1–F3 are unimodal functions, F7
and F14 are multi-modal functions. F15 and F21–F23 are Fixed-dimension functions.
For convenience, these functions are relabeled F1–F10. Each of experiment was inde-
pendently run 30 times and the number of iterations is 500 in MATLAB 2019a. The
parameter settings of DCFW-HHO and other algorithms are shown in Table 1.
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Table 2. Results of benchmark functions

FUN Item FW HHO MPA WOA LSA WCA DCFW-HHO

F1 Ave 9.88E−90 1.3E−101 4.39E−23 1.52E−80 3.60E−09 1.10E−14 0

Best 5.1E−133 1.3E−111 2.62E−24 7.47E−17 7.47E−17 6.04E−21 0

Std 5.26E−89 4.3E−101 4.47E−23 8.28E−80 1.48E−08 3.70E−14 0

F2 Ave 3.58E−43 1.33E−52 3.51E−13 3.63E−53 0.04843 2.84E−09 2.81E−276

Best 8.48E−66 5.10E−58 3.85E−14 6.42E−60 9.81E−06 4.62E−12 2.239E−313

Std 1.96E−42 3.48E−52 2.45E−13 1.19E−52 0.112168 4.65E−09 0

F3 Ave 1.22E−63 6.74E−79 1.83E−4 27622.4 68.1722 0.001219 0

Best 9.5E−100 9.5E−108 6.68E−07 2438.25 12.3834 1.74E−05 0

Std 6.68E−63 2.55E−78 4.45E−04 10254 35.099 0.001917 0

F4 Ave 1.30E−03 1.69E−04 1.09E−03 2.02E−03 0.027350 0.012805 1.14E−04

Best 1.16E−04 1..30E−05 3.04E−04 1.54E−05 0.01216 0.004921 1.46E−06

Std 1.30E−03 2.08E−04 5.56E−04 2.61E−03 7.67E−03 4.01E−03 8.67E−05

F5 Ave 8.88E−16 8.88E−16 1.22E−12 3.85E−15 2.88389 0.117869 8.88E−16

Best 8.88E−16 8.88E−16 7.19E−14 8.88E−16 1.34042 2.64E−11 8.88E−16

Std 0 0 7.25E−13 2.81E−15 0.83796 0.453929 0

F6 Ave 0.998005 1.06427 0.998005 2.70203 1.32751 0.998004 0.998004

Best 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004

Std 2.45E−06 0.252192 1.62E−7 2.8902 1.07983 9.22E−17 1.98E−18

F7 Ave 4.60E−04 4.21E−04 3.07E−04 8.15E−04 5.84E−04 3.69E−04 3.86E−04

Best 3.15E−04 3.10E−04 3.07E−04 3.09E−04 3.07E−04 3.07E−04 3.09E−04

Std 2.27E−04 3.09E−04 8.53E−15 5.30E−04 4.23E−04 2.32E−04 2.16E−04

F8 Ave −10.1504 −5.71941 −10.1532 −8.77368 −7.54754 −8.63433 −10.1532

Best −10.1529 −10.138 −10.1532 −10.1526 −10.1532 −10.1532 −10.1532

Std 2.90E−03 1.72613 6.05E−11 2.53463 3.13422 2.35964 1.20E−15

F9 Ave −10.4002 −5.59269 −10.4029 −7.38462 −7.90151 −9.34675 −10.4029

Best −10.4028 −10.3896 −10.4029 −10.4025 −10.4029 −10.4029 −10.4029

Std 1.80E−03 1.54735 4.80E−11 3.15558 3.40043 2.14851 7.58E−16

F10 Ave −10.5341 −5.12741 −10.5364 −7.98994 −7.43648 −9.82164 −10.5364

Best −10.5363 −5.12846 −10.5364 −10.5363 −10.5364 −10.5364 −10.5364

Std 2.07E−03 1.04E−03 5.11E−11 3.25577 3.67499 1.85346 4.69E−14

Number of
best Ave

1 1 4 0 0 1 9

4.2 Numerical Experiment

The numerical test results are shown in Table 2. The best results are highlighted in bold.
In the last line of the table, the number of times each algorithm gets the best average is
counted.
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4.3 Converging Curves of the Average Best Fitness

This section shows the average fitness value convergence curve of each algorithm, as
shown in Fig. 1. As can be seen from the figure, DCFW-HHO is superior to other
algorithms in performance, and its convergence speed is also significantly faster than
other algorithms in many functions (F1, F2, F3, F5, F8, F9).

Fig. 1. Converging curves of the average best fitness



Fireworks Harris Hawk Algorithm 449

Fig. 1. (continued)

5 Conclusion

In this paper, a dynamic competition mechanism is proposed and combined with the
explosion mechanism of fireworks algorithm, which is added into the HHO algorithm
framework, namely DCFW-HHO, and effectively improves the exploitation ability of
HHO. In the early stage of iteration, a relatively mild competition strategy is adopted to
reallocate resources and improve the diversity of the algorithm. In the later stage of the
algorithm, as the algorithm gradually tends to be stable, more cruel competition strategy
is adopted. The test of 12 benchmark functions shows that DCFW-HHO has better
performance and stability than FW, HHO, WPA, WOA, LSA, and WCA. In the future,
this mechanism can be combined with more algorithms to improve the performance of
the algorithm.
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Abstract. In order to improve the performance of fireworks algorithm,
this paper carries out a comprehensive enhancement for its framework.
Locally, the basic explosion operator is replaced by an efficient adapta-
tion method in CMA-ES. Globally, the explosion range of all fireworks is
effectively collaborated by search space partition. On the one hand, the
proposed algorithm can quickly adapt to local landscape and improve
the local exploitation efficiency significantly. On the other hand, it can
collaborate the search ranges of multiple fireworks to form a seamless
and non-overlapping partition of the search space, thereby ensuring the
global search ability. Since the proposed framework evaluates one batch
of a fixed large number of solutions in each iteration, it also achieves bet-
ter computational efficiency in modern parallel hardware. The proposed
algorithm is tested on the CEC 2020 benchmark functions with three dif-
ferent dimensions. The experimental results prove that those strategies
improve fireworks algorithm significantly.

Keywords: Fireworks algorithm · Swarm intelligence · Optimization ·
Collaboration

1 Introduction

Modern optimization problem has changed drastically in recent years. On the
one hand, more and more difficult objective functions have emerged in practi-
cal applications, which are usually multi-modal and high-dimensional. On the
other hand, modern computing technologies, especially parallel technology, put
forward new directions for the development of optimization algorithms.

The fireworks algorithm (FWA [12]) is a family of algorithms inspired by
the phenomenon of firework explosion, which is very promising for solving such
kind of problems effectively. During the optimization, each firework search a
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local area by explosion. All fireworks collaborate their strategies for overall effi-
ciency. Many variants of FWA have achieved competitive performance in stan-
dard benchmarks, such as EFWA [19], AFWA [7], dynFWA [18], GFWA [8] and
LoTFWA [6]. FWA has also solved real-world problems like image processing
[15], engineering [4] and resource scheduling [10].

However, in most variants of FWA, the efficiency of explosion operator based
on uniform sampling is very limited. Their collaborative strategies also have
little effect on the independent search of fireworks. At the same time, the parallel
efficiency is obviously weakened by operators like mutation, because they requires
an additional evaluation of a small batch of mutation sparks.

In this article, new strategies are proposed for both local explosion and global
collaboration. For each firework, the basic explosion method is replaced by an
adaptation strategy for a Gaussian distribution, which is able to fit the local
landscape and target the extreme very fast. For global optimization, a collabo-
ration method based on search space partition is proposed to arrange the search
areas of fireworks, thus greatly reduce the probability of overlapping or omission.
The restart strategy is also improved. Since all the evaluations in each iteration
are done in one large batch, the proposed algorithm is also well adapted to
large-scale parallel computing hardware.

The paper is organized as follows. It starts by introducing backgrounds in
Sect. 2. In Sect. 3, the proposed strategies are described in detail. In Sect. 4, the
proposed algorithm is evaluated and compared on benchmark problems. Finally,
the proposed algorithm is discussed and analyzed in Sect. 4 and concluded in
Sect. 5.

2 Backgrounds

2.1 Problem Definition

In this paper, we consider the general bound-constrained optimization problem
which targets to find the optimal solution x∗:

x∗ = arg min
x∈S

f(x) (1)

where f : R
d → R is an unknown objective function (also called fitness

function). S =
{
x ∈ R

d : lbi < xi < ubi

}
is the feasible space of f .

Optimization algorithms (or optimizers) are applied to approximate the opti-
mal x∗ or its value f(x∗) by iterating the process of ask and tell. Since we consider
complex objective functions with high time cost, the termination condition is a
specific number of evaluations. At the same time, in order to maximize the com-
putational efficiency, we hope the algorithm always provide a fixed number of
solutions in each batch. The actual size of batch should be determined by the
parallel computing devices.
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2.2 Fireworks Algorithms

Fireworks algorithm is a novel optimization framework that adopts multiple
collaborative isomorphic subgroups. Among all the novel implementations of
fireworks algorithm, LoTFWA [12] has achieved the most significant global opti-
mization performance with extremely simple mechanisms. In LoTFWA, each
firework optimize its local area by an uniform explosion within dynamic ampli-
tudes. A guided mutation spark is generated for each firework to accelerate its
local exploitation. Then, some unpromising fireworks are detected and restarted
to avoid waste of resources.

There are two major weaknesses in LoTFWA which are improved in the
proposed algorithm. First, the local search efficiency of the explosion operator
and mutation operator is limited by a basic uniform trust region scheme. Second,
the collaboration method is too weak because the restart mechanism is rarely
triggered and it can only save limited resources rather than guide fireworks to
cooperate.

2.3 Related Works

A great number of Evolutionary Algorithms (EAs) and Swarm Intelligence Opti-
mization Algorithms (SIOAs) have been proposed for similar optimization prob-
lems, but their ideas are fundamentally different from the proposed algorithm.

The idea of adopting multiple sub-populations for optimization is imple-
mented in a large number of recent research of EAs and SIOAs. In most cases,
different sub-populations evolve under different strategies in order to combine
their advantages and obtain efficient hybrid algorithm. For example, EBOwith-
CMAR [5] uses three sub-populations which apply Effective Butterfly Optimizer
or Covariance Matrix Adapted Retreat method respectively, and achieved out-
standing performance in the competition of CEC2017 [16]. Some optimizers use
the same algorithm with different parameters in sub-populations. For example,
BIPOP-CMA-ES [1] adopts multi-restart populations with different sizes. In
IMODE [11], the winner of CEC2020 competition [17], different sub-populations
with dynamic sizes evolve under different DE parameters. There are also many
algorithms like SHADE [13] that utilizes archive strategy to collect an elite pop-
ulation in order to enhance the optimization efficiency.

The essential difference between those methods and the proposed algorithm
is that we analytically defined the ranges of sub-populations according to the
principle of search space partition. And the sub-populations are diversified and
cooperated in different local areas instead of different strategies.

3 Proposed Strategies

The proposed algorithm is improved in both local exploitation and global col-
laboration. Locally, CMA-ES [3] is introduced to accelerate the optimization of
each firework. Globally, the explosion distributions are collaborated to form a
seamless and non-overlapping partition of the search space. The framework of
the proposed algorithm is described in Algorithm 1.
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Algorithm 1. Framework of Proposed Algorithm
Initialize each firework Xi

while termination conditions are not satisfied do
// 1. Adaptation
for each firework Xi do

generate λi sparks by explosion
end for
Gather and estimate all sparks
for each firework Xi do

update states of Xi

end for
// 2. Restart
Examine and restart fireworks
// 3. Collaboration
for each pair of fireworks Xi and Xj do

Determine their collaborative search boundaries
end for
for each firework Xi do

Fit search boundary towards the collaboration result
end for

end while

3.1 Adaptation

In order to enhance the local optimization efficiency, the uniform explosion is
replaced by a self-adaptive Gaussian distribution. With strategies introduced
from CMA-ES [2], it is able to estimate the local fitness landscape and generate
more effective sparks.

In the g-th generation, the k-th explosion spark x(g+1)
k is generated from a

Gaussian distribution:

x(g+1)
k ∼ m(g) + σ(g) × N (0, C(g)) (2)

where m and C is the mean and co-variance matrix. σ(g) is the overall step
size. In the proposed algorithm, each firework generate the same number of λ
sparks.

After evaluation of all sparks x(g+1), the explosion distribution is adapted
according to the strategies in CMA-ES. The complete adaptation algorithm is
provided in supplementary A. And a detailed explanation and parameter setting
of CMA-ES can be found in [2].

3.2 Restart

Since the adaptation accelerates local optimization significantly, several condi-
tions are proposed to ensure timely restart of fireworks that are not promising
to improve the global optimal.

Three restart conditions are determined by the search status of the firework
individual:
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1. Low Value Variance: var
[
f(x(g+1)

1:λ )
]

≤ εv

2. Low Position Variance: σ(g+1) × ∥
∥C(g+1)

∥
∥ ≤ εp

3. Not improving: Not improved for Imax not improve iterations.

One more restart condition is determined by the relationship between fire-
works:

1. Covered by Better: More than 85% of the firework’s sparks are covered by
a better firework’s explosion range.

3.3 Collaboration

The explosion boundary of a firework X with parameters (m, C, σ) is defined as:
{
x
∣
∣
∣
∣

∥
∥
∥
∥C

− 1
2 (

x − m
σ

)
∥
∥
∥
∥ = E ‖N (0, I)‖

}
(3)

Obviously, it is a elliptical shell and covers the majority of X’s explosion
sparks. The proposed strategy is designed according to two core ideas:

1. The explosion scopes tends to form a segmentation within the global opti-
mization area.

2. The better fireworks tend to search independently, and the worse fireworks
tend to search collaboratively.

The first idea is helpful to avoid overlapping or omission of search scopes,
so the overall efficiency of fireworks can be improved in collaboration. The sec-
ond idea ensures the local optimization of leading fireworks will not be severely
affected by collaboration. Based on these ideas, the proposed algorithm conducts
collaboration by the following steps:

a) Compare Fireworks. A fuzzy comparison between each pair of fireworks
is introduced to estimate their relative optimization progress, which is described
in Algorithm 2.

b) Compute Dividing Points. The dividing point for each pair of fireworks
is obtained, which specifies where the search range of both fireworks are divided.
Figure 1 gives examples of the collaboration method in 4 possible situations.

The following steps are conducted to calculate the dividing point:

1. Calculate the distance dij between Xi and Xj

2. Calculate the radius rij = |XiAi| and rji = |XjAj | on line XiXj

3. Determine the situation (See Fig. 1) according to rij , rji and dij

4. Calculate the position of Ai and Aj

5. If the optimization of Xi is ahead of Xj , Ai is the dividing point. If Xj is
ahead of Xi, Aj is the dividing point. Otherwise, the midpoint B of AiAj is
the dividing point.
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Algorithm 2. Fuzzy Comparison of Fireworks

Require: Fireworks Xi and Xj with sparks x
(g+1)
i,1:λ and x

(g+1)
j,1:λ (if not restarted)

if Both Xi and Xj are just restarted then
return Xi and Xj are similar

end if
if Xi is restarted then

return Xj is ahead of Xi

end if
... #vice versa
if minx

(g+1)
i,1:λ > maxx

(g+1)
j,1:λ then

return Xj is ahead of Xi

end if
... #vice versa
return Xi and Xj are similar

Before fitting the boundary to obtained dividing points of Xi, two additional
operations are required. First, only the closest N (the dimension of objective
function) dividing points are kept, so the collaboration is conducted locally.
Second, the distance of Xi to its dividing points with Xj is clipped within
[0.5rij , 2rij ], so there won’t be too drastic changes after collaboration.

(a) (b) (c) (d)

Fig. 1. Four cases of collaboration between two fireworks. Ai and Aj are the closer
intersections of line XiXj with their boundaries. The actual dividing point could be
any point on AiAj . The second row shows the collaboration results when taking the
midpoint B of AiAj as dividing point.

c) Fit Dividing Points. The boundary of firework X(m, C, σ) is adapted to
fit its dividing points. For each dividing point Pk, a new covariance matrix Ck

is calculated. On the direction of XPk, Pk lies right on the boundary. On the
conjugate directions, the radius of boundary is not changed. The mathematical
calculation for fitting a single split point is given in the Appendix B. The mean
of all adapted covariance matrix 1

K

∑K
k=1 Ck is taken as the overall collaborated

results of X.
Algorithm 3 outlines the framework of the proposed collaboration strategy:
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Algorithm 3. Framework of Fireworks Collaboration
Require: n fireworks Xi and parameters (mi,Ci, σi) in N dimensional feasible space
Ensure: Collaborated parameters of fireworks

for each pair of fireworks Xi and Xj do
Compare the progress of Xi and Xj

Calculate dij = |XiXj |, expected sample distance rij and rji on XiXj

Calculate the dividing point Pij (= Pji)
end for
for each firework Xi do

Gather K = min(N, n − 1) closest dividing points Pi,j1:K

Clip the length of XiPijk within [0.5rijk , 2rijk ]
for k ← 1 : K do

Fit Pijk on the boundary of Xi and obtain Cijk

end for
Ci ← 1

K

∑K
k=1 Cijk

end for

3.4 Experiments

The performance of proposed algorithm is tested on objective functions from
the CEC 2020 benchmark test suit [17]. According to the settings of the bound-
constrained single-objective optimization competition, each function is tested
for 30 repetitions with 10, 15, 20 dimensions. The termination condition is a
maximum of 1,000,000, 3,000,000 or 10,000,000 evaluations for 10, 15 or 20
dimensions, respectively.

For the generalization ability of the proposed strategies, there is few addi-
tional parameters introduced. In the restart conditions, εv and εp are both 1E−6,
and the maximum number of unimproved iteration Imax unimprove is 20. Its basic
settings are the same as LoTFWA, which includes 5 fireworks and 300 sparks
in each iteration. The parameters of local adaption is also set to be the same as
CMA-ES. As we can see, there is no parameter selection according to the target
problems.

In order to prove the effectiveness of our proposed strategies, the proposed
algorithm is compared with two baselines. LoTFWA is the most efficient one of
the main variants of the firework algorithm. CMAFWA is a compromise between
LoTFWA and the proposed algorithm, whose fireworks use the local search strat-
egy of CMA-ES but are collaborated by the loser-out tournament strategies from
LoTFWA.

The statistical test results of the three algorithms are shown in the Table
1, Table 2 and Table 4 for 10, 15 and 20 respectively. Their fitness curves are
shown in supplementary C.

As can be seen from the experimental results, the proposed algorithm outper-
forms LoTFWA significantly on all objective functions. CMAFWA improves on
uni-modal (1), basic functions (2, 3, 4) and hybrid functions (5, 6, 7) compared
with LoTFWA, but becomes worse in complex functions (8, 9, 10) due to inef-
fective collaboration. The proposed algorithm is overall better than CMAFWA,
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Table 1. Wilcoxon signed-rank test on 10D problems. (α = 0.05. Statistical test is
conducted against the proposed method. ‘+’ means the proposed method is signifi-
cantly better. ‘−’ means the proposed method is significantly worse. ‘=’ means the two
algorithm performs similarly.)

F. LoTFWA CMAFWA Proposed

Mean Std Mean Std Mean Std

1 9.123E+05 2.579E+05 + 0.000E+00 0.000E+00 = 0.000E+00 0.000E−00

2 3.947E+02 2.131E+02 + 2.558E+01 3.445E+01 − 1.427E+02 1.606E+02

3 3.629E+01 7.296E+00 + 1.147E+01 6.350E−01 − 1.295E+01 3.144E+00

4 3.456E+00 6.189E−01 + 6.900E−01 1.427E−01 + 0.000E+00 0.000E+00

5 8.592E+03 7.521E+03 + 2.227E+02 1.166E+02 + 3.110E+01 1.643E+01

6 1.367E+02 4.205E+01 + 8.365E−01 3.917E−01 = 7.231E−01 4.031E−01

7 4.532E+03 4.710E+03 + 7.656E+00 2.204E+01 = 5.257E+00 6.804E+00

8 9.747E+01 2.689E+01 + 2.240E+02 3.200E+01 + 9.507E+01 1.845E+01

9 3.022E+02 8.871E+01 + 3.305E+02 9.224E−01 + 1.616E+02 8.019E+01

10 4.140E+02 2.155E+01 + 4.313E+02 2.004E+01 + 3.978E+02 1.015E−01

Rank 2.60 2.00 1.20

Table 2. Wilcoxon signed-rank test on 15D problems. (α = 0.05)

F. LoTFWA CMAFWA Proposed

Mean Std Mean Std Mean Std

1 1.444e+06 2.522e+05 + 0.000e+00 0.000e+00 = 0.000e+00 0.000e−00

2 1.095e+03 3.681e+02 + 8.932e+01 5.050e+01 − 9.387e+02 4.298e+02

3 5.343e+01 5.794e+00 + 1.652e+01 2.682e−01 − 3.617e+01 1.679e+01

4 7.060e+00 1.108e+00 + 7.677e−01 1.449e−01 + 6.257e−01 3.998e−01

5 1.060e+05 8.527e+04 + 2.967e+02 1.062e+02 + 1.217e+02 3.851e+01

6 3.769e+02 9.960e+01 + 7.248e−01 1.722e−01 − 4.624e+01 2.497e+01

7 5.507e+04 3.426e+04 + 1.982e+00 9.683e−01 − 3.834e+01 4.806e+01

8 1.103e+02 5.193e−01 + 2.298e+02 1.095e+01 + 1.000e+02 1.666e−07

9 3.099e+02 1.458e+02 + 3.905e+02 2.175e−01 + 1.583e+02 7.640e+01

10 4.385e+02 7.625e+01 + 5.228e+02 8.684e+01 + 4.000e+02 4.451e−07

Rank 2.60 1.80 1.40

especially on composition functions (8, 9 and 10) and problems that have rela-
tively simple local landscape (4, 5). But it failed to improve on problems with
a large number of local areas with insignificant overall trend (2, 3) or related
hybrid problems when the dimension becomes large. The most possible reason
could be that the limited number of fireworks are not able to form an effective
partition of the huge search space when dimension grows. On the other hand,
linking the ranges of limited local search sometimes might leads to inefficient
local exploitation (Table 3).
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Table 3. Wilcoxon signed-rank test on 20D problems. (α = 0.05)

F. LoTFWA CMAFWA Proposed

Mean Std Mean Std Mean Std

1 1.798e+06 4.388e+05 + 0.000e+00 0.000e+00 = 0.000e+00 0.000e-00

2 1.454e+03 3.986e+02 + 5.772e+01 1.833e+01 − 4.299e+02 1.681e+02

3 6.751e+01 1.126e+01 + 2.316e+01 5.063e−01 − 6.181e+01 2.962e+01

4 1.017e+01 1.274e+00 + 1.985e+00 1.113e−01 + 1.867e+00 6.521e-01

5 2.564e+05 1.808e+05 + 7.899e+02 1.829e+02 + 1.891e+02 4.939e+01

6 5.239e+02 1.968e+02 + 1.947e+00 2.190e+01 − 1.594e+02 5.865e+01

7 9.663e+04 6.730e+04 + 5.185e+00 3.104e+00 − 1.005e+02 4.884e+01

8 1.001e+02 1.945e+01 = 2.694e+02 1.855e+01 + 1.000e+02 2.272e-07

9 4.446e+02 1.994e+01 + 4.005e+02 1.476e+00 + 2.112e+02 9.651e+01

10 4.255e+02 1.695e+01 + 4.063e+02 4.547e−13 + 4.024e+02 5.840e+00

Rank 2.70 1.50 1.40

The proposed algorithm is also compared with LoTFWA, IPOP-CMA-ES
[9] and LSHADE [14], which have been the most famous EA or SIOA in recent
years, in the Table 1 on CEC 2020 benchmark test suits with 20 dimensions. The
proposed algorithm outperforms LoTFWA and IPOP-CMA-ES in all problems.
It achieved better performance on composition functions but is not as good as
LSHADE on basic functions and hybrid functions of CEC 2020 test suits.

Table 4. Comparison with classic algorithms on 20D problems of CEC 2020

F. LoTFWA IPOP-CMA-ES LSHADE Proposed

Mean Std Mean Std Mean Std Mean Std

1 1.80e+06 4.39e+05 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e−00

2 1.45e+03 3.99e+02 2.16e+03 2.41e+01 2.39e+00 1.38e+00 4.30e+02 1.68e+02

3 6.75e+01 1.13e+01 5.43e+01 7.97e+00 2.08e+01 5.23e−01 6.18e+01 2.96e+01

4 1.02e+01 1.27e+00 2.32e+00 2.78e−01 4.70e−01 4.66e−02 1.87e+00 6.52e−01

5 2.56e+05 1.81e+05 1.23e+03 2.83e+02 5.51e+01 6.01e+01 1.89e+02 4.94e+01

6 5.24e+02 1.97e+02 4.91e+02 2.19e+00 3.48e−01 8.05e−02 1.59e+02 5.87e+01

7 9.66e+04 6.73e+04 7.18e+02 2.10e+02 8.13e−01 1.33e−01 1.00e+02 4.88e+01

8 1.00e+02 1.95e+01 2.48e+03 1.85e+02 1.00e+02 1.00e−03 1.00e+02 2.27e−07

9 4.45e+02 1.99e+01 4.32e+02 1.48e+00 4.03e+02 1.06e+00 2.11e+02 9.65e+01

10 4.26e+02 1.70e+01 4.30e+02 4.55e−01 4.14e+02 1.47e−02 4.02e+02 5.84e+00

Rank 3.7 3.0 1.2 1.7

There are also some highly efficient variants of classic algorithms in the CEC
2020 bound-constrained single-objective competition. The proposed algorithm
has certain advantages in the competition, especially on composition functions.
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But it is still insufficient to compete with the best algorithms. We do not com-
pare with these algorithms for several reasons: a) Many of them improve their
performance based on too delicate strategies and tricks, like applying additional
optimizer in certain stage of optimization. b) Almost all of them applied dynamic
population size, which violates our assumption on parallel computing devices.
c) Most of them are designed and fine-tuned for the specific problems of CEC
2020 instead of general problems.

4 Discussions

The collaboration strategy plays an important role for the proposed algorithm
in two ways.

Globally, the collaboration strategy tends to link the explosion ranges of
separated fireworks. Therefore, fireworks naturally fill their vacancy even when
searching in the same direction. It also help the poor fireworks to expand their
search ranges and get closer to the better fireworks.

Locally, the collaboration strategy helps to avoid overlapping explosion
ranges of different fireworks. Even when multiple fireworks fall into a same con-
vex area, they tends to form a segmentation of the local area and search together,
instead of overlapping and conduct similar searches independently.

Fig. 2. A simple example of the collaboration of 4 fireworks.

Figure 2 gives a simple example of the collaboration of 4 fireworks in a single-
modal problem. In the early stage of optimization, the explosion ranges expand
and connect each other quickly. While in the later stage, four explosion ranges
collaboratively search around the optimal, just like a single Gaussian distribution
with larger population size.

5 Conclusion

This paper proposed a novel fireworks algorithm which is enhanced in both local
adaptation and global collaboration. The uniform explosion method is replaced
by a self-adaptive Gaussian distribution with strategy introduced from CMA-ES.
The fireworks are effectively collaborated by the idea of search space partition.
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The experimental results show that the proposed algorithm has better perfor-
mance compared to former FWA variants.

The proposed algorithm is developed based on a theoretical thinking of fire-
work algorithm. There are still plenty of details could be improved. For example,
the balancing between local adaptation and global collaboration is extremely
valuable for an in-depth study.

Appendix

A. Covariance Matrix Adaption

The local adaption of firework is done independently by the strategies from
CMA-ES.

For firework X with parameters (m(g), C(g), σ(g)) and explosion sparks
x(g+1)

1:λ . First, a recombination weight w is applied to μ best sparks for updating
the mean:

m(g+1) = m(g) + cm

μ∑

i=1

wi(x
(g+1)
i − m(g)) (4)

where cm is the learning rate. wi ≥ 0 and
∑

wi = 1.
For the adaption of covariance matrix, a combined rank-μ update and rank-

one update is applied in CMA-ES:

C(g+1) = (1 − c1 − cμ

∑
wj)C(g)

+ cμ

λ∑

i=1

wiy
(g+1)
i (y(g+1)

i )T

+ c1p(g+1)
c (p(g+1)

c )T

(5)

where

– c1 and cμ are learning rates.
– y(g+1)

i = (x(g+1)
i − m(g))/σ(g).

– p(g+1)
c is the evolution path, which is intiallized as 0 and updated by Eq. 6

p(g+1)
c = (1 − cc)p(g)

c +
√

cc(2 − cc)μeff
m(g+1) − m(g)

σ(g)
(6)

For the adaptation of scale σ, a conjugate evolution path p(g)
σ is initialized

as 0 and updated in each iteration:

p(g+1)
σ = (1 − cσ)p(g)

σ +
√

cσ(2 − cσ)μeffC(g)−
1
2 m(g+1) − m(g)

σ(g)
(7)

In general CMA-ES, the rank-1 update plays a significant role in rapidly mov-
ing towards a better local position at the initial stage of search. However, we’d
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like the firework to focus more around its initial position. According to exper-
iments, the proposed algorithm performs much better without rank-1 update,
that is:

C(g+1) = (1 − cμ

∑
wj)C(g) + cμ

λ∑

i=1

wiy
(g+1)
i (y(g+1)

i )T (8)

Finally, the scale σ(g+1) is updated by comparing the length of ‖p(g+1)
σ ‖ with

its expected length E ‖N (0, I)‖:

lnσ(g+1) = lnσ(g) +
cσ

dσ

⎛

⎝

∥
∥
∥p(g+1)

σ

∥
∥
∥

E ‖N (0, I)‖

⎞

⎠ (9)

B. Fitting Single Dividing Point

Here, we fit a diving point x on the boundary (defined in Eq. 3) of a Gaussian
distribution N (m, C) and overall sample scale σ.

First, a linear transformation f(x) = C− 1
2 (x − m)/σ is conducted to the

entire space, so the normal distribution is transformed to N (0, I). Assume diving
point x is projected to z.

In the transformed space, the boundary should only be changed on the direc-
tion of z. So we can assume the adapted covariance matrix Cx in the transformed
space is aI + bzzT .

Extend z into a set of linear bases B = {z, z1, ..., zN−1}. Assume all zi is on
the boundary of N (0, I). Since the sample distance on the conjugate directions
of z should not be changed for C and Cx, they are also on the boundary of
N (0, aI + bzzT ). So we have:

∥
∥
∥(aI + bzzT )− 1

2y
∥
∥
∥ = E ‖N (0, I)‖ ,∀y ∈ B (10)

Let d = E ‖N (0, I)‖, it is equivalent to:

yT (aI + bzzT )−1y = d2,∀y ∈ B (11)

According to the Woodbury Matrix Identity (Eq. 13), the equations can be
solved to obtain a and b.

(A + UCV )−1 = A−1 − A−1U
(
C−1 + V A−1U

)−1
V A−1 (12)

Finally, the adapted matrix in original space is :

Cx = C
1
2

(
aI + bzzT

)
C

1
2

= aC + b(x − m)(x − m)T /σ2
(13)

C. Fitness Curves

Here we provide the fitness curves of LoTFWA, CMAFWA and the proposed
algorithm on the CEC 2020 benchmark problems (Fig. 3).
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(a) 10D

(b) 15D

(c) 20D

Fig. 3. Fitness curves on CEC2020 problems.
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Abstract. Multi-objective Problems (MOP) is a classic combinatorial optimiza-
tion problem. A brainstorming optimization algorithm based on multiple adaptive
mutationmethods inmultiple regions of the population (DE_MOBSO) is proposed
in this paper to solve the MOP. Firstly, the algorithm uses differential mutation to
evolve the population, which can improve the diversity of population. Secondly,
an adaptive mutation learning factor is introduced on the mutations to enhance the
search efficiency of the algorithm considering the characteristics of the MOP. The
effectiveness and practicability of the algorithm are verified by a set of simulation
example. The results show that the proposed algorithm has better performance in
solving large-scale MOP.

Keywords: Brainstorming optimization algorithm · Adaptive · Clustering ·
Multi-group crossover

1 Introduction

Multi-objective optimization problem is a typical complex optimization problem, which
is focused on by many scholars and experts. Multi-objective optimization problems
have been applied in our daily life and engineering production. In the path planning
problem, it is necessary to consider the shortest driving distance and the minimum
number of vehicle arrangements [1]. In machine learning, the minimization of learning
error and the lowest computational complexity should be considered in the supervised
learning problem [2]. With the continuous development of intelligent optimization algo-
rithms, multi-objective optimization problems have gradually developed in the direction
ofmulti-modality, large-scale, high-dimensionality, etc. How to use efficient intelligence
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optimizing algorithms to solve hot issues in daily life has become a major trend in the
study of multi-objective problems.

For the common optimization problems, many optimization methods have been pro-
posed. The weighted summation method was early proposed by Zaden [3], whose idea is
to convert multi-objective optimization into single-objective optimization by assigning
different weights to different objective functions, and then use single-objective solution
ideas to obtain the optimal solution. Many intelligent optimization algorithms have been
widely used in the field of multi-objective optimization due to their simple structure and
powerful search capabilities [4]. Such as genetic algorithm (GA) [5], particle swarmopti-
mization algorithm (PSO) [6], brainstorm optimization algorithm (BSO) [7],differential
evolution algorithm (DE), etc. Through learning goodway from the parents, themutation
and selection parameters were been made to adaptively change by Zhang [8]. Besides,
the disturbance threshold is added to the algorithm, which expands the search range of
the algorithm. The combination of PSO algorithm and greedy random adaptive search
strategy was proposed by Marinakis [9], which enhances the search ability of the algo-
rithm. The algorithm’s clustering target was changed from the decision space to the target
space by Xue [10], who also introduced an elite strategy to speed up the convergence
speed of the algorithm. An improved algorithm based on multi-objective BSO, which
replaced the original kemans clustering in the BSO algorithm with DBSCAN cluster-
ing and replaced the original Gaussian mutation with differential mutation to make the
algorithm’s convergence accuracy and convergence speed be improved, was proposed
by Xie [11].

The above-mentioned improved algorithms, to a certain extent, have improved the
optimization ability of multi-objective problems. But when solving some specific prob-
lems, there are still the phenomenon of low convergence efficiency and easy to fall into
local optimum. For this reason, a hybrid algorithm DE_MOBSO based on the combi-
nation of differential evolution algorithm and brainstorming optimization algorithm is
proposed in this paper. The idea of differential vector is introduced into BSO, which
speeds up the search efficiency of the algorithm. According to the different stages of
the iterative evolution of the algorithm, the learning factor is adaptively changed, which
enhances the learning efficiency of the algorithm and achieves a balance between the
convergence and diversity of the algorithm. And the effectiveness of the algorithm is
verified by different target types of related test functions.

The arrangement of other sections of this article is as follows: Some basic knowledge
ofmulti-objective optimization problems is introduced in Sect. 2, such asBSOalgorithm.
In the third section, a detailed introduction of the proposed DE_MOBSO algorithm is
given. In the fourth section, the DE_MOBSO algorithm and other optimization algo-
rithms are tested experimentally, and the experimental results are discussed and analyzed.
Finally, the conclusion and future development direction of the algorithm are given in
the fifth section.
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2 The Basic Problem Description

2.1 Multi-objective Optimization Problem

There are generally two types of solutions to multi-objective problems: traditional
optimization algorithms and intelligent optimization algorithms.

Traditional optimization algorithms are generally deterministic algorithms and are
usually aimed at structured problems, which usually has the best overall advantage. Its
idea of solving multi-objective problems is relatively simple, whose core is to convert
multi-objective problems into a single-objective problem through certain steps, solve the
single-objective problem and get the optimal value. Intelligent optimization algorithms
are mostly heuristic algorithms.

Most of them are based on random characteristics [12, 13]. Optimal solutions can
be found through constant iterations, and the problems they deal with are more uni-
versal. Common intelligent optimization algorithms include genetic algorithm, particle
swarm algorithm, and artificial fish swarms algorithm and brainstorming optimization
algorithms [14], etc. There is no definite solution to the multi-objective problem. Every
possible solution is a non-inferior solution. All the non-inferior solutions together form a
set of non-inferior solutions, which is called the non-inferior frontier. So the performance
of intelligent optimization algorithms is usually better than traditional optimization
algorithms when solving the multi-objective optimization problem.

2.2 Brainstorming Optimization Algorithm

The Brainstorming Optimization Algorithm (BSO) is a new type of intelligent optimiza-
tion algorithm inspired by human conferences. It was proposed by professor Shi Yuhui
[15] at the second international swarm intelligence conference in 2011. The BSO algo-
rithm uses clustering operations to find the local optimal, and then compares the local
optimal to find the global optimal. Meanwhile, it strives to balance the exploration and
development in the optimization process through the idea of aggregation and dispersion.
BSO adopts way of mutation to enhance the diversity of the optimization individual,
so the search results can jump out of the local optimal solution. The specific process is
shown in Table 1:

Table 1. The process of BSO

The process of BSO

Step1: Generate an initial population;
Step2: Calculate individual fitness values and cluster;
Step3: Discuss the population between groups;
Step4: Update population and cluster center;
Step5: Output the optimal individual if the maximum number of iterations is reached,
otherwise go to Step2
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3 Multi-objective Brainstorming Optimization Algorithm Based
on Adaptive Mutation Strategy

The basic multi-objective brainstorming optimization algorithm is characterized by poor
population diversity and being easy to fall into the local optimum. When the number of
targets increases, the optimal result cannot be found in some function test sets. In order
to solve these problems, in this paper, a new hybrid multi-objective optimization algo-
rithm based on the combination of differential evolution algorithm and multi-objective
brainstorming optimization algorithm (DE_MOBSO) is proposed.

3.1 Population Mutation

Themutation is an important operation of the optimization algorithm.Gaussianmutation
method is usually adopted in the classicalMOBSOalgorithmduring individualmutation.
The specific method is as follows:

X d
new = X d

select + ξ(μ, σ ). (1)

ξ = log sig((IterationMax/2 − Iteration)/K)∗rand . (2)

where X d
select is the d-th dimension of the selected individual; X d

new is the d-th dimension
of the newly generated individual; ζ(μ, σ) is the Gaussian variation function, and logsig
is an S-type logarithmic transfer function.

The range of variation produced by Gaussian mutation is fixed and the information
of the parent individuals is not fully utilized. Gaussian mutation includes the opera-
tion of S-type transfer function, random distribution generation and the four arithmetic
operations, which makes this mutation method has high computational complexity [16].
Therefore, this paper adopts an individual mutation generation method based on differ-
ential evolution algorithm. After the parent population is clustered, the next generation
population adopts a mutation strategy of different regions to select different methods,
which effectively enhances individual diversity. The excellent information of the parent
individual has also been fully utilized. The specific variation method is as follows:

n_p = Clul(p1) + w∗P1∗(Clul(p2 − p3)) + (1 − w)∗P1∗(Clul(p4 − p5)). (3)

n_p = Clu2(p1) + P1∗Clu2(p2 − p3). (4)

n_p = p_best + w∗P1∗Clu3(p1 − p2) + (1 − w)∗P1∗Clu3(p3 − p4). (5)

n_p = Clu4(p1) + P1∗(Clu4(p1) − p_best). (6)

When n_p is the newly generated individual, Clui are the four cluster groups, p_best is
the best individual in the parent population, P1 is the learning factor, w is the probability
factor, pi are the different parent individuals in the cluster group.



Multi-objective Brainstorming Optimization Algorithm 473

The first quarter of the population adopts the mutation method of formula 5 to
mutate, and the second quarter adopts the mutation method of formula 6 to mutate…,
and so on, the whole population adopts 4 mutation methods. This mutation method
effectively expands the diversity of the population, which is conducive to the newly
mutated individuals to approach the optimal frontier.

3.2 Adaptation of Learning Factors

The DE_MOBSO algorithm proposed in this paper adopts a dynamic adaptive learning
factor, and uses different learning factors according to the different evolutionary periods
of the population. The specific adaptive transformation is as follows:

P1 = P1max − (P1max − P1min)
∗ Iter

Itermax
. (7)

Where P1max is the maximum; P1min is the minimum values; Iter is the current iteration
number; Itermax is the maximum iteration number.

In the early stage of the algorithm search, the value of P1 is larger and the algorithm
learning ability is stronger. When the individual mutates, the information of the good
parent can be quickly learnt and the convergence speed can be accelerated. In the later
stage of the search, the value of P1 gradually decreases; the learning ability decreases,
and the optimization of learning in nearby areas is enhanced.

4 Experiment

In order to test the proposed algorithm, in this paper, ZDT data set and DTLZ data set
are used to verify the effectiveness of the algorithm in solvingMOP andMaOP, and GD,
SP, and DM are used to evaluate the diversity and convergence of the algorithm.

4.1 Testing Proplems

In order to verify the effectiveness of DE_MOBSO algorithm, the specific test functions
selected in this paper are ZDT1–ZDT4 and ZDT6, and the decision space dimension is
30. They are used to verify algorithms’ performance in the optimization of 2 objectives.
In addition, the test functions DTLZ1–DTLZ7 are also selected to test the optimization
performance of the algorithm in 3 objectives and 5 objectives.
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4.2 Parameter Setting

This experiment was done on MATLAB R2017b with Inter Core i5-9400F CPU, 16 GB
RAM, and Win10 operating system. For the sake of comparison, we let the difficulty
coefficient of DTLZ1 be 5, the difficulty coefficient of DTLZ2–DTLZ6 10, and the
difficulty coefficient of DTLZ7 20, and the other parameter settings are shown in Table
2:

Table 2. Parameter settings

P.1max P.1min P.2 w Pop_Size

0.9 0.1 0.5 0.5 100

P.1 is the learning weight of individual variation mode, and P.2 is the selection
probability of individual crossover mode, the number of Pop_Size is 100.

Three evaluation indicators GD, SP, and DM are used to verify the effectiveness of
the algorithm in this paper. GD is used to evaluate the degree of approximation to the
optimal frontier. The smaller the GD value, the better the convergence of the algorithm;
SP is used to evaluate the uniformity of the algorithm, the smaller the SP, the better
the uniformity of the optimal value found by the algorithm; DM is used to evaluate the
breadth of the algorithm distribution, the larger the DM, the wider the optimal value is
distributed in space, and the better the algorithm.

4.3 Experimental Results and Analysis

In order to reduce the randomness error of the test, the number of iterations of each
algorithm is 100,000. Each algorithm test is run 30 times continuously, and finally the
average value is taken as the evaluation result.

In order to verify the effectiveness of the proposed algorithm, in this paper, the
DE_MOBSO algorithm is compared with other improved MOBSO algorithm. The
MMBSO in literature [15] is an improved multi-objective brainstorming optimization
algorithm.

Table 3 shows the GD, SP, and DM indicators of several algorithms in the ZDT test
set. The results of bolding and darkening indicate the best performance in the algorithm
comparison. It can be seen from Table 3 that for the problem of two objectives, in
the five test sets of the ZDT, the DE_MOBSO algorithm shows good performance.
For the test functions ZDT1–ZDT2 and ZDT6, from the perspective of convergence, the
DE_MOBSO algorithm shows better performance. In the five types of test problems, the
optimization rate has reached 100%. From the perspective of diversity, the optimization
ability of DE_MOBSO algorithm has reached 100%. In the five test functions, the
performance of DE_MOBSO is the best. From the perspective of the distribution of
non-inferior solutions, the distribution of non-inferior solutions found by the MMBSO
algorithm is even better. In general, although the breadth of optimization distribution of
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Table 3. Two-objective experiment data

Test function Evaluation
index

ZDT1 ZDT2 ZDT3 ZDT4 ZDT5

DE_MOBSO GD 9.5078e−04 5.6983e−05 5.6252e−05 2.0653e−04 2.5000e−03

SP 1.9000e−03 5.3109e−05 4.7000e−03 3.5000e−03 1.0400e−02

DM 4.4500e−02 3.2700e−02 2.5460e−01 8.3270e−01 8.6400e−01

MMBSO GD 8.3000e−03 1.7900e−02 1.7500e−02 3.2400e−02 6.0400e−02

SP 6.3000e−03 1.6800e−02 2.0100e−02 1.3900e−02 1.3190e−01

DM 5.2800e−02 5.9220e−01 9.4640e−01 5.0770e−01 7.8180e−01

DE_MOBSO algorithm is not the best, it is still relatively strong in terms of the three
indicators.

Table 4 and Table 5 shows the optimization capabilities of two algorithms in testing
the DTLZ data set three objectives. It can be seen from Table 4 and Table 5 that from
the perspective of convergence, DE_MOBSO’s optimization capability is optimal, and
from the perspective of diversity indicators, the DE_MOBSO’s optimization capability
is also better. It can be seen that as the number of objectives increases and the difficulty
upgrades, the DE_MOBSO algorithm can jump out of the local optimum faster and
improve the convergence speed and performance.

Table 4. Three-objective experiment data

Test function Evaluation index DTLZ1 DTLZ2 DTLZ3 DTLZ4

DE_MOBSO GD 6.2943e−03 5.0440e−04 4.6983e−04 2.7000e−03

SP 2.0700e−02 8.2300e−02 6.6300e−02 7.9400e−02

DM 1.6610e−01 3.1640e−01 1.5200e−01 6.1600e−02

MMBSO GD 4.1983e+00 2.2800e−02 3.0392e+01 1.9900e−02

SP 2.8140e+00 9.8400e−02 2.3152e+01 1.0920e−01

DM 9.4000e−02 7.4780e−01 4.8700ev02 4.7880e−01

In order to further verify the performance of the algorithm proposed in this paper,
the DE_MOBSO algorithm is compared with other popular algorithms, MOBSO_G is a
classical multi-objective brainstorming optimization algorithm based onGaussianmuta-
tion [17], and the literature [18] SMOBSO is an adaptive multi-objective brainstorming
optimization algorithm.
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Table 5. Three-objective experiment data

Test function Evalution index DTLZ5 DTLZ6 DTLZ7

DE_MOBSO GD 4.5533e−04 4.8143e−06 4.2900e−03

SP 2.8700e−02 2.7600e−02 5.9400e−02

DM 2.0390e−01 1.0500e−01 2.4850e−01

MMBSO GD 1.3100e−02 9.1904e−07 7.8000e−03

SP 3.8000e−02 8.7000e−03 1.0820e−01

DM 6.3180e−01 8.6200e−01 8.9670e−01

Table 6. Five-objective experiment data

Test function Evaluation index DE_MOBSO MMBSO MOBSO_G SMOBSO

DTLZ1 GD 1.7000e−03 5.6483e+00 4.6387e+00 1.8400e−01

SP 3.2500e−02 7.4311e+00 7.1213e+00 9.5100e−01

DM 1.3540e−01 9.7600e−01 1.5540e−01 5.2220e−01

DTLZ2 GD 6.7000e−03 1.5570e−01 1.3670e−01 1.5190e−01

SP 2.1150e−01 4.0620e−01 5.1490e−01 3.9330e−01

DM 1.7370e−01 5.8150e−01 5.5960e−01 5.8490e−01

DTLZ3 GD 3.5720e−03 9.9109e+01 1.0371e+02 9.5012e+01

SP 8.3100e−01 1.3610e+02 1.2093e+02 1.1880e+02

DM 2.4290e−01 2.9800e−01 1.5180e−01 3.1800e−02

DTLZ4 GD 9.7827e−04 1.2470e−01 1.4320e−01 1.2340e−01

SP 1.2200e−01 3.2150e−01 3.8060e−01 3.3270e−01

DM 5.9700e−02 2.8220e−01 4.8620e−01 2.8180e−01

DTLZ5 GD 2.9000e−03 2.4600e−01 2.3750e−01 2.4140e−01

SP 7.9400e−02 4.0170e−01 4.2100e−01 3.9560e−01

DM 1.4940e−01 2.7530e−01 2.9150e−01 2.7610e−01

DTLZ6 GD 1.4911e−06 1.1752e+00 1.2668e+00 1.2049e+00

SP 6.0900e−02 1.7395e+00 2.1211e+00 1.8324e+00

DM 7.4610e−01 1.1360e−01 8.6600ev02 1.2600e−01

DTLZ7 GD 7.2000e−03 6.2730e−02 3.7440e−01 6.9300e−02

SP 1.5400e−02 1.8470e−01 2.6460e−01 2.6220e−01

DM 2.2040e−01 4.0180e−01 5.4040e−01 6.9460e−01

It can be seen from Table 6, with the gradual increase of the number of targets in
the optimization problem, the advantages of DE_MOBSO algorithm gradually become
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obvious. It can be seen thatDE_MOBSOhas better performance. This also shows that the
DE_MOBSO algorithm has stronger stability when dealing with optimization problems
with different target numbers, and ismore suitable for solving large-scalemulti-objective
problems.

On thewhole, in various types ofMaOPproblems,DE_MOBSOhas good processing
performance. When it is compared with several other improved MOBSO algorithms,
DE_MOBSO has better competitiveness. Especially for problems with a large number
of targets, DE_MOBSO shows better performance Performance.

5 Conclusion

In this paper, Brain Storm Optimization Algorithm based on multiple adaptive mutation
methods in multiple regions (DE_BSO) for MOP was proposed and was compared with
other algorithms by testing on different scale experiences. The differential mutation is
used to evolve the population to enhance convergence performance of DE_MOBSO.
Taking the characteristics of the MOP into account, the adaptive mutation learning
factor is used to enhance the information interactions capability and to prevent the
algorithm from jumping into local optimum. The experimental results demonstrated
that the DE_MOBSO generally performs better than others to solve accuracy for MOP
and performs well enough for large-scale MOP. But there are still some problems that
computation time is longer as the problem scale increases. So the direction of the next
research is how to reduce computation time on solving large-scale.
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Abstract. The brain storm optimization (BSO) algorithm is an excellent swarm
intelligence paradigm, inspired from the behaviors of the human process of brain-
storming. The design of BSO is characterized by the clustering mechanism. How-
ever, this mechanism is inefficient to deal with complex large-scale optimization
problems. In this paper, we propose a high-dimensional BSO algorithm based on
formal concept analysis (FCA), called HBSO, for dealing with large-scale opti-
mization problems. In HBSO, two new procedures are developed, i.e., relationship
analysis of individuals and adaptively determine the number of clusters. Relation-
ship analysis is used to judge the similarity of individuals in the population. The
FCA is used to determine the size of k in the original clustering algorithm, in order
to alleviate the evolution stagnation of clusters. Experiments are conducted on a
set of the CEC2017 benchmark functions and the results verify the effectiveness
and efficiency of HBSO on the benchmark problems.

Keywords: Brain storm optimization · Pearson correlation coefficient · Swarm
intelligence · Formal concept analysis

1 Introduction

Swarm intelligence (SI), is an effective global optimization technology, originated from
the simulation of the intelligent behavior of social insects or animals in the ecosystem.
The most famous examples include Ant Colony Optimization (ACO) [1, 2], Particle
Swarm Optimization (PSO) [3, 4] and Artificial Bee Colony Algorithm (ABC) [5, 6]. In
these SI models, various learning strategies have been usually applied to the exchange of
information between individuals in the population to generate cooperative intelligence.
A population of interacting individuals search in the decision space to minimize or
maximize a function [7–11].

The social behaviors of creatures such as ants, birds, and insects have shown the
characteristics of division of labor and collaboration, and how to simulate biological
behaviors with higher intelligence and higher social collaboration is still of great signif-
icance. In 2011, Y [12] proposed the Brain Storm Optimization (BSO) algorithm based
on human thinking and behavior. It simulates the creative problem-solving method of
human beings: brainstorming. The BSO has shown strong robustness, fast convergence
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ability, and strong global search ability. Different from other classic SI algorithms that
imitate the cooperative behavior of simple insects or animals, the BSO aims to simulate
the brainstorming process of humans to solve complex problems [13]. From the perspec-
tive of knowledge growth and learning ability, BSO has a greater potential to benefit
from the learning mechanism of collective individuals [14]. Recently, a set of new BSO
improvements have been made. For example, MBSO [15] modified the clustering of
the algorithm and generated new individual operations, simplified the calculation load
of the algorithm and improved the efficiency; PPBSO [16] can jump out of the local
optimum in solving the optimization problem of the DC brushless motor, and accurately
find the global optimal value; CLBSO [17] successfully solved the two-impulse control
multi-satellite formation reconfiguration problem; QBSO [18] solved the solenoid opti-
mization problem. The above improvement strategies enhance the performance of the
algorithm to a certain extent.

For SI algorithms, the exploration and exploitation [8] are two important operations
to be balanced. In BSO, there are two new operations including convergent operation
and divergent operation for the exploration and exploitation [12, 13]. In the convergent
operation, a clustering method is first used to group all individuals into a set of clusters,
and each cluster has a center and a number of ordinary individuals. The most commonly
used clustering method is the k-means method in the original BSO. The k-means algo-
rithm is relatively simple and has low time complexity. However, when the dimension
of problems increases, the algorithms are apt to perform worse due to the ineffective-
ness of the clustering based on learning mechanism. In addition, the k-means is more
sensitive to the setting of initial value k and may lead to cessation of clusters evolution.
For this drawback, we propose a new method to enhance the convergence performance
and alleviate the evolution stagnation of clusters.

The main novelties of the proposed algorithm are as follow:

1) The similarity determination strategy is introduced intoBSO.Different from existing
strategies,weusePearson correlation coefficient to judge the similarity of individuals
in the population, with the purpose of improving the convergence of the population.
The Pearson correlation coefficient is a method for judging the similarity of the two
users in collaborative filtering.

2) The number of clusters can be determined adaptively. We use FCA technique to
determine the size of k in the original k-means algorithm with the goal of improving
the distribution of the population, and then update all individuals using the original
BSO strategy. This method avoids the defect that k-means clustering is sensitive to
the value of k. It can dynamically obtain several subpopulations according to the
characteristics of different problems.

The rest is organized as follows. Section 2 presents the related work. In Sect. 3, the
HBSO, which is suitable for high-dimensional (e.g., 100-dimensional) search space, is
proposed. Experiments on benchmark functions and discussions of experimental results
are given in Sect. 4. Finally, the conclusion is given in Sect. 5.
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2 Related Work

2.1 Original Brain Storm Optimization Algorithm

BSO simulates the creative problem-solving method of human beings: brainstorming.
In the brainstorming process, there are three kinds of individuals: the moderator, some
problem owners and a population of brainstormers. The moderator is responsible for
guiding the brainstorming process smoothly without prejudice. The problem owners
collect better ideas from each generation of ideas. These ideas are generated by brain-
stormers. In BSO algorithm, a person (an individual) represents an idea, which in turn
represents a potential solution to the problem to be solved. The procedure of the original
BSO is listed in the Algorithm 1 [12, 14].

In original BSO, similar to other swarm intelligence algorithms, a randommethod is
used to initialize the population. Note that, OSBSO [19] uses an orthogonal experimental
design to initialize the population, which obtains satisfactory experimental results. In
the main loop of the algorithm, the population of individuals will be evaluated according
to a known evaluation function. The n individuals will then be clustered into m clusters
with the best individual in each cluster mimicking a better idea picked up by a problem
owner. The clustering algorithm is the k-means clustering algorithm. A new individual
can be generated based on one or two individuals in the cluster. The new individuals are
generated according to the Eq. (1), Eq. (2) and Eq. (3) [14, 20]. The selection strategy
is utilized to keep good solutions in all individuals.

xinew(t + 1) = xiold(t) + ξ(t) × rand() (1)

where xinew represents the i th dimension of the newly generated individual, and xiold
represents the i th dimension of the selected individual based on the current population
of individuals.

xiold(t) =
{
xiold1(t)

xiold1(t) × rand() + xiold2(t) × (1 − rand())
(2)

where xiold1 and x
i
old2 represent two individuals selected from the current population

of individuals. Function rand () returns a random value within the range (0, 1). The
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coefficient ξ(t) is the step size which weights the contribution of the Gaussian random
value to the new generated value.

ξ(t) = log sig

(
0.5 × T − t

c

)
× rand() (3)

where log sig() is a logarithmic sigmoid transfer function, T is the maximum number
of iterations, and t is the current iteration number, c is for changing log sig() function’s
slope.

2.2 Formal Concept Analysis

Formal concept analysis (FCA) is a powerful analysis tool for data analysis [21], which
can reveal the relation information between objects and attributes in a formal context.
The extent and intent of the formal context show a deeper understanding of the objective
world.

In FCA, a formal concept consists of two parts: the extent, which is the collection
of all objects belonging to this formal context, and the intent, which is the collection of
attributes shared by all these objectives. In a nutshell, the formal concept represents the
relationship between objects and attributes in the domain [22, 23]. Then, the relationship
can be represented in the form of a concept lattice. The details are as follows:

Definition 1 (Formal Context). A formal context is defined as a triple K = (U, A, I),
where U = {x1, x2,…, xn} is the collection of objects, A = {a1, a2,…, am} is the
collection of attributes, and I is the binary relation between U and A. (xi, aj) ∈ I denotes
that object xi has attribute aj, and (xi, aj) /∈ I denotes that object xi does not have attribute
aj, where xi ∈ U and aj ∈ A. Let “1” denote (xi, aj)∈ I and “0” denote (xi, aj) /∈ I, then
the formal context is an information system that only contains “0” or “1”, as shown in
Table 1.

Table 1. Formal context K.

U/A a1 a2 a3 a4 a5 a6 a7

x1 1 1 1 0 0 0 1

x2 1 1 1 1 0 0 0

x3 1 1 1 0 0 0 1

x4 0 0 0 1 1 0 0

Definition 2. For a formal context K = (U, A, I), the makers ↑ and ↓ are formula as
[24–27]:

X ↑ = {a ∈ A|∀x ∈ X , (x, a) ∈ I}
B↓ = {x ∈ U |∀a ∈ B, (x, a) ∈ I} (4)
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where X ⊆ U and B ⊆ A. In addition, we set {x}↑ = x↑,∀x ∈ U , and {a}↓ = a↓,
∀a ∈ A.

Definition 3 (Concept). For a formal context K = (U, A, I), if (X, B) satisfies X↑ = B
and B↓ = X, (X, B) is called as a concept. X is the extent of the concept. B is the intent
of the concept. X↑ is called as the intent of X and B↓ is termed as the extent of B.

Definition 4. The set C(K) of all concepts of the formal context K together with the
partial order (X1, B1) ≤ (X2, B2) ⇔ X1 ⊆ X2 (which is equivalent to B1 ⊇ B2) is called
as the concept lattice of K [25].

According to the formal context K, we can construct a concept C(K) as shown in
Fig. 1. In this figure, each node represents a concept, and all the concepts of K include:
(∅, {a1, a2, a3, a4, a5, a6, a7}), ({x1, x3}, {a1, a2, a3, a7}), ({x2},{a1, a2, a3, a4}), ({x4},
{a2, a4, a5}), ({x1, x2, x3}, {a1, a2, a3}), ({x2, x4}, {a2, a4}), ({x1, x2, x3, x4}, ∅). ({x1,
x2, x3, x4}, ∅) and (∅, {a1, a2, a3, a4, a5, a6, a7}) are two special concepts, which are
able to ensure the integrity of the partial order relationship.

Fig. 1. Concept C(K) of formal context K.

3 The Proposed Method

3.1 Framework of HBSO

The framework of HBSO is presented in Algorithm 2, which includes the following
procedures:

1) Population Initialization.Thepopulation initialization plays a key role inmaintaining
the diversity of solutions and improving the search convergence for SI algorithms
[28]. We use the orthogonal initialization strategy [19] to initialize n clustering
centers and evaluate the fitness values of n individuals.
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2) Individual similarity analysis. In this process, we analyze the similarity between
individuals in order to prepare for gathering similar individuals together and improve
the convergence of the population.

3) Adaptively determine the number of clusters. In this section, we use formal concept
analysis technique to determine the value of k in the k-means algorithm. Formal
concept analysis technology dynamically realizes individual clustering, avoiding
the shortcomings of k-means method.

The new individuals’ generation, selection and evaluation use the original BSO
strategy.

3.2 Individual Similarity Analysis

Pearson correlation coefficient is widely used to measure the degree of correlation
between two variables. It is also used to calculate the relationship between users in
the collaborative filtering recommendation algorithm, which is more complicated than
the calculation of Euclidean distance evaluation. Pearson correlation evaluation can give
better results when the scoring data is not standardized. In this paper, we use it to analyze
the similarity between individuals. Its mathematical description is as follows:

p(X ,Y ) =

∣∣∣∣ D∑
i=1

(Xi −
__
X )(Yi −

__
Y )

∣∣∣∣√
D∑
i=1

(Xi −
__
X )2

√
D∑
i=1

(Yi −
__
Y )2

(5)

where D is the dimension of the decision space, Xi is the value of individual X in
the i-th dimension, p (X, Y ) is the similarity between individuals X and Y. The two
individuals are considered to have a strong similarity, when the p (X, Y ) value exceeds
a certain threshold.

Algorithm 2: Framework of HBSO
1  Population Initialization: Initialize n clustering centers by the orthogonal initialization 

strategy [19] and evaluate the fitness values of n individuals;
2 Individual similarity analysis: Use Pearson correlation coefficient to analyze the simi-

larity of n individuals in the population.;
3 Adaptively determine the number of clusters: Integrate the similarity of individuals 

and use FCA divide n individuals into m clusters;
4 While have not reached the determined maximum number of iterations do
5        Clustering: Input the obtained value m into the clustering algorithm;
6        New individuals’ generation: Randomly select one or two cluster(s) to 
             generate new individuals based on dimensionality reduction information;
7       Selection: The newly generated individual is compared with the existing individual 

with the same individual index; the better one is kept and recorded as the new indi-
vidual;

8           Evaluate the n individuals;
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3.3 Adaptively Determine the Number of Clusters

Before clustering the populations, we use Pearson correlation coefficient to analyze the
similarity between the individuals. Then, we store the similarity information in Table 2.

From definition 1, the population relation formal context can be formulated as a
combination of decision variables and their relationships. Specifically, a triple can be
defined as K = (Q1,Q2, I), whereQ1 = {q1, q2,…, qn} is the collection of variables,Q2
= Q1 = {q1, q2,…, qn}, and I is the interaction between Q1 and Q2. (qi, qj) ∈ I denotes
that variable qi is strong similarity with qj, (qi, qj) /∈ I denotes that variable qi and qj
are not strong similarity with each other, where qi ∈ Q1, qj ∈ Q2. The variable relation
formal context is shown in Table 2. I (q1, q2) = 1 means that q1 is strong similarity with
q2, and I (q1, q4) = 0 means that q1 is not strong similarity with q4.

Figure 2 shows the concept lattice for the population relation formal context in Table
2. Since formal concept analysis gathers similar objects into concepts, concepts with the
same extent and intent (i.e., red nodes) have a higher degree of similarity. The red nodes
represent the three subpopulations (clusters), respectively.

Table 2. Population relation formal context K.

Q1/Q2 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

q1 1 1 1 0 0 0 0 0 0 0

q2 1 1 1 1 0 0 0 0 0 0

q3 1 1 1 0 0 0 0 0 0 0

q4 0 1 0 1 1 1 1 0 0 0

q5 0 0 0 1 1 1 1 0 0 0

q6 0 0 0 1 1 1 1 0 0 0

q7 0 0 0 1 1 1 1 1 0 0

q8 0 0 0 0 0 0 1 1 1 1

q9 0 0 0 0 0 0 0 1 1 1

q10 0 0 0 0 0 0 0 1 1 1

Compared with other clustering approaches, the HBSO has two advantages: 1) It
can adaptively divide the population into several subpopulations according to the char-
acteristics of the population, which solves the defect of k-means method relying on
subjective consciousness. 2) The uniformity of individuals in a cluster can be improved
by the quantization of Eq. (5). Given the above, themethod is an effectiveway to enhance
the exploration performance, which can locate the global optima region quickly.
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Fig. 2. Concept C(K) of population relation formal context K. (Color figure online)

4 Experiments and Results

4.1 Parameter Settings and Test Functions

To evaluate the performance of HBSO, we use a set of 16 benchmark functions from the
CEC2017, covering unimodal function F1, multimodal functions F4, F5, F6, F7, F8, F9,
F10, hybrid functions F13, F14, F15, F17, F18, F19, F20, and composition functions
F23. The composition function F23 is difficult to be optimized, because it merges the
properties of the subfunctions better and maintains continuity around the global and
local optima.

The HBSO is compared against several state-of-the-art BSOs, including BSO [12],
PPBSO [16], MBSO [15], and QBSO [18]. All comparison algorithms use the same
population size n and the same number of cluster m, where n is set to 100 and m is set
to 5. The μ and σ for the Gaussian function are 0 and 1. Their other parameters (e.g.,
the number of clusters of comparison algorithms) refer to the default settings of their
original references [12, 16–18]. For the HBSO, the population relevance threshold is
set to 0.1. The other parameters for the HBSO are the same as for the original BSO.
For a fair comparison, all the algorithms run 30 times on each benchmark function with
100-dimension. The maximum number of function evaluations is set to 100,000.

4.2 Result and Discussion

Table 3 reports the statistical results obtained by the algorithms on 100-dimensional test
functions. We can observe that all the algorithms can obtain satisfactory performances.
However, in these comparison algorithms, HBSO still has the best overall performance,
among which 12 out of 16 test functions won the first place. HBSO is superior to other
algorithms for the unimodal function F1. This is mainly due to that the formal concept
analysis strategy can gather several clusters to make the generated individuals evenly
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distributed, thereby enhancing the exploration ability for the global optimal solution.
HBSO performs the best on 5 instances (i.e., F5, F6, F8, F9 and F10) and does the third
best on 2 instances (i.e., F4 and F7) for the multimodal functions F4–F10. In these 100-
dimensional test functions, the superiority of HBSO over other algorithms is attributed to
the clustering strategy of non-specified number of clusters, which can help the algorithm
avoid falling into the local optimum and quickly locate the global optimum. HBSO still
achieves satisfactory performance on most hybrid functions and composition functions.

Table 3. Results of HBSO, origin BSO and other BSO variants algorithm with 100D

Function Stats HBSO BSO MBSO PPBSO QBSO

F1 Mean 1.21E+07 3.14E+07 3.95E+09 3.06E+07 2.36E+11

Std 4.27E+06 1.66E+07 4.04E+08 1.46E+07 9.02E+09

Rank 1 3 4 2 5

F4 Mean 1.93E+03 9.19E+02 3.36E+03 9.15E+02 6.27E+04

Std 3.11E+02 5.09E+01 3.50E+02 1.82E+01 8.22E+03

Rank 3 2 4 1 5

F5 Mean 1.12E+03 1.22E+03 1.49E+03 1.27E+03 1.94E+03

Std 6.22E+01 6.22E+01 6.32E+01 4.43E+01 9.23E+01

Rank 1 2 4 3 5

F6 Mean 6.55E+02 6.57E+02 6.75E+02 6.60E+02 6.97E+02

Std 2.31E+00 4.17E+00 3.23E+00 3.73E+00 4.87E+00

Rank 1 2 4 3 5

F7 Mean 3.57E+03 3.87E+03 3.02E+03 3.48E+03 4.54E+03

Std 6.27E+02 3.20E+02 3.01E+02 2.84E+02 1.32E+02

Rank 3 4 1 2 5

F8 Mean 1.59E+03 1.62E+03 1.88E+03 1.69E+03 2.41E+03

Std 6.59E+01 8.31E+01 1.03E+02 7.94E+01 5.69E+01

Rank 1 2 4 3 5

F9 Mean 2.17E+04 2.26E+04 5.49E+04 3.02E+04 7.18E+04

Std 1.51E+03 1.41E+03 4.73E+03 4.25E+03 4.81E+03

Rank 1 2 4 3 5

F10 Mean 1.58E+04 1.64E+04 2.21E+04 1.62E+04 3.33E+04

Std 7.45E+02 2.06E+03 1.17E+03 3.08E+02 8.02E+02

Rank 1 3 4 2 5

F13 Mean 9.34E+04 9.95E+04 2.83E+07 9.80E+04 3.54E+10

Std 3.31E+04 3.43E+04 7.12E+06 3.99E+04 7.66E+09

Rank 1 2 4 3 5

F14 Mean 1.84E+05 1.77E+05 2.62E+06 2.03E+05 3.49E+07

Std 1.01E+05 1.32E+05 1.52E+06 4.22E+04 2.13E+07

Rank 2 1 4 3 5

F15 Mean 5.16E+04 5.79E+04 7.50E+06 7.06E+04 1.58E+10

Std 1.93E+04 2.28E+04 2.94E+06 1.19E+04 1.63E+09

(continued)
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Table 3. (continued)

Function Stats HBSO BSO MBSO PPBSO QBSO

Rank 1 2 4 3 5

F17 Mean 5.21E+03 5.26E+03 6.27E+03 5.47E+03 2.98E+04

Std 5.56E+02 4.30E+02 5.70E+02 5.06E+02 8.44E+03

Rank 1 2 4 3 5

F18 Mean 2.57E+06 1.56E+06 1.69E+07 2.25E+06 3.66E+08

Std 1.21E+06 8.32E+05 3.24E+06 1.67E+06 4.65E+07

Rank 1 2 4 3 5

F19 Mean 2.15E+06 5.65E+06 3.30E+07 3.37E+06 1.40E+10

Std 8.95E+05 2.38E+06 1.64E+07 1.45E+06 2.51E+09

Rank 1 3 4 2 5

F20 Mean 5.00E+03 5.05E+03 5.08E+03 5.19E+03 7.46E+03

Std 4.65E+02 2.48E+02 4.06E+02 5.26E+02 3.52E+02

Rank 1 2 3 4 5

F23 Mean 1.03E+04 1.09E+04 7.00E+03 7.73E+03 1.90E+04

Std 1.31E+03 5.66E+02 2.09E+03 3.52E+02 7.73E+02

Rank 3 4 2 1 5

Especially for hybrid functions F13, F15, F17, F18, F19 and F20, HBSO obtains the
best solutions. These observations show that the formal concept analysis strategy does
improve the performance of HBSO in complex single-objective optimization.

Figure 3 compares the evolution of the algorithm on 100 dimensions F6, F8, F15
and F19. It further verified the effectiveness of HBSO. It can be seen that HBSO has
obtained a better solution after a few iterations. Taking function F6 as an example, when
the number of function evaluations is 10,000, HBSO has reached a better solution than
the comparison algorithm. In addition, when the number of functional evaluations is
50,000, the optimization process of the comparative BSO almost stalls, while HBSO
still finds a better solution.

From the above results, it can be clearly seen that the formal concept analysis strat-
egy has enhanced the algorithmic ability to solve high-dimensional problems, and the
effectiveness and efficiency of HBSO have also been verified through experiments.
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Fig. 3. Convergence progresses of the BSOs with 100 dimensions

5 Conclusion

In this paper, a newBSOvariantHBSObasedonFCA is proposed. FCA is a powerful data
analysis technique used to analyze potential connections between data. In HBSO, two
strategies are developed, i.e., Pearson correlation coefficient and cluster number adaptive.
Pearson correlation coefficient is used to analyze the similarity between individuals.
The number of clusters is adaptive through formal concept analysis technology. These
operations can alleviate the stagnation of cluster evolution.

Experiments have been conducted on a set of the CEC2017 benchmark functions
where HBSO is compared with several BSO algorithms. Experimental results demon-
strate that the HBSO generally performs better than other BSO algorithms in terms of
the accuracy and convergence.

In the future, the HBSOwill be comparedwithmore state-of-the-art SI algorithms on
the latest higher-dimensional test functions. In addition, applying the HBSO algorithm
to solve practical engineering problems is also the next research focus.
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Abstract. Brain Storm Optimization (BSO) is a relatively new swarm
intelligence algorithm. It employs clustering, creating, and selecting oper-
ators, all connected and significantly impacting the optimization perfor-
mance. However, with the increase of the problem dimension and the
offset of the optimal value, the performance of the basic BSO algorithm
becomes worse. This paper designs the double grouping operator, which
employs k-means clustering in the horizontal and differential grouping in
the vertical. A new creating operator is designed based on maximum like-
lihood estimation for the mean and variance of the Gaussian distribution.
The numerical experiments are carried out to amplify and highlight the
performance of the proposed algorithm artificially. Experimental results
show that the proposed algorithm achieves satisfactory results on shifted
and rotated benchmark functions.

Keywords: Brain storm optimization · Double grouping · Maximum
likelihood estimation · Mixed selection strategy

1 Introduction

Brain Storm Optimization (BSO) is a newly developed swarm intelligence algo-
rithm, which is inspired by the problem-solving process of human brainstorming
[1–3]. As with the other metaphor-based swarm algorithms, the BSO algorithm
does not need to assume or model optimization problems and solves a prob-
lem through a population of solutions rather than a single one. In addition, BSO
algorithm does not require that the optimization problem is differentiable, which
makes BSO algorithm a very effective method to solve the problem in the real
society. The BSO algorithm employs clustering, creating and selecting operators,
which are all connected and have great impacts on the optimization performance.
In recent years, many scholars have conducted preliminary research on the BSO
algorithm. In addition to the research on the theory of BSO algorithm, many
people also made some improvements to the algorithm. They proposed some
variants of the algorithm and applied them to various optimization problems
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and practical problems in social life such as wireless sensor networks deployment
[4], DC Brushless Motor [5], Reactive Power Dispatch Problem [6], electric power
dispatch problems [7], design problems in aeronautics field [8], and optimization
problems in finance [9].

In this paper, for the clustering strategy, we proposed a horizontal and ver-
tical grouping strategy. The differential grouping was used to group the dimen-
sions, while k-means clustering was used to group different individuals. This
allows the extraction of row and column information for the entire population.
Then for the creating strategy a method based on maximum likelihood estima-
tion for the mean and variance of the Gaussian distribution was proposed in
the paper. In order to make the population diverse, this paper also designed
four generation methods. In the end, for the selecting strategy, a mixed selection
strategy was introduced in this paper. At the beginning of iteration, the propor-
tional selection method was used, and at the later stage, we used the competitive
selection.

The rest of the article is organized as follows. The horizontal and vertical
grouping strategy is introduced in Sect. 2. The creating strategy based on Maxi-
mum Likelihood Estimation is discussed in Sect. 3. Next, experiments are carried
out to artificially amplify and highlight the performance of the strategy proposed
in this paper in Sect. 4. Finally, conclusions are presented in Sect. 5.

2 Double Grouping

Clustering operator in BSO is a sticking point, affecting the results of the follow-
up selecting & creating operator indirectly. The original BSO and most of its
variants employ k-means clustering, which is just a clustering of individuals.
With the increase of dimension, there is some correlation information between
each dimension of each individual. Without any knowledge of the underlying
structure, the subcomponents should be formed according to the interaction
pattern of the decision variables so that the interactions between the subcom-
ponents are kept to a minimum. K. Weicker and N. Weicker [10] proposed a CC
technique to identify interacting variables. It is the first attempt at automatic
formation of subcomponents in a CC framework. The decomposition strategy
used in this paper is differential grouping [11]. The differential grouping can
identify and group interacting variables. The underlying interactive structure
of decision variables is found by the grouping function and then the variables
can be separated into separable and non-separable subcomponents such that
the interdependence between them is kept to a minimum. Therefore, double
grouping strategy is proposed in this paper including k-means clustering in the
horizontal direction and differential grouping in the vertical direction. Through
this operation, we not only extract the information between each individual, but
also extract the information between each variable dimension.
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2.1 Interaction Structure of the Decision Variables

In practice, without prior knowledge about the problem, it is not clear how the
problem should be decomposed. In this paper, we used an automatic decom-
position strategy called differential grouping that can uncover the underlying
interaction structure of the decision variables and form subcomponents.

Differential grouping comes from the definition of partially additively sep-
arable functions. These types of functions conveniently represent the modular
nature of many real-world problems which always have high dimensions. The
problem can be considered as partially additively separable functions if it has
the following form:

f(�x) =
m∑

i=1

fi(�xi) (1)

where �xi denote mutually exclusive decision vectors of function fi, �x =
(x1, · · · , xn) is a global decision vector which has n dimensions, and m is the
number of independent subcomponents. If all independent subcomponent func-
tions are 1-D, then it is called completely additively separable or fully separable
for short.

Theorem 1. Let f(�x) be an additively separable function. ∀a, b1 �= b2, δε�, δ �= 0,
if the following condition holds, then xp and xq are non-separable.

Δδ,xp
[f ](�x)|xp=a,xq=b1 �= Δδ,xp

[f ](�x)|xp=a,xq=b2 (2)

Δδ,xp
[f ](�x) = f(· · · , xp + δ, · · · ) − f(· · · , xp, · · · ) (3)

where xp and xq are two mutually exclusive decision variables, δ is the interval.
Δδ,xp

refers to the forward difference of f with respect to variable xp with interval
δ.

As defined in Theorem 1, if two variables xp and xq are non-separable, it will
have different results when evaluated with any two different values for xq. On the
contrary, if two variables xp and xq are separable, it will have the same results
when evaluated with any two different values for xq.

Take a non-separable objective function f(x1, x2) = x2
1 + λx1x2 + x2

2, λ �= 0
as an example. According to Eq. 2:

Δδ,x1 [f ] = [(x1+δ)2+λ(x1+δ)x2+x2
2]−[x2

1+λx1x2+x2
2] = δ2+2δx1+λδx2 (4)

It can be seen that the difference equation Δδ,x1 [f ] is a function of both
x1 and x2. Therefore, evaluating Δδ,x1 [f ] for two different values of x2 does
not give the same answer. So, according to Theorem 1, we conclude that x1

and x2 interact (they are non-separable). Note that λ reflects the strength of
non-separability. Setting λ to zero makes the function fully separable.
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2.2 Double Grouping Strategy

In this paper, the differential grouping strategy will be added to the clustering
strategy. The original BSO algorithm employs k-means clustering as its cluster-
ing operator. The k-means clustering operator groups a set of candidate solutions
into several different clusters that solutions in the same cluster are more similar
to each other than to those in other clusters. In this paper, differential groups
will be added before k-means clustering which can find the correlation informa-
tion between different dimensions of each variable. The whole Algorithm 1 is as
follows.

Algorithm 1. Pseudocode of double grouping
Initialize parameters: a set of solutions i �= j, where each solution is a m-dimensional
real vector; clustering number k = 2; separable group seps = {}; all the subconpo-
nents allgroups = {}; dimension vector dims = {1, 2, 3, · · · , m}
//differential grouping
for i = 1 to m do

set vector group = {i};
for j = 1 to m and i �= j do

�p1 = lbound ∗ ones(1, n), �p2 = �p1, �p2 = ubound
Δ1 = func(�p1) − func(�p2)
�p1(j) = 0, �p2(j) = 0
Δ2 = func(�p1) − func(�p2)
if |Δ1 − Δ2| > ε then

group = group
⋃

j
end if

end for
dims = dims − group
if length(group) = 1 then

seps = seps
⋃

group
else

allgroups = allgroups
⋃{group}

end if
end for
allgroups = allgroups

⋃{seps}
// k-means Clustering
Partition n individuals into k clusters, then every cluster are divided as allgroups

As shown in Algorithm 1, the differential grouping first checks the interaction
between the first decision variable with the other decision variables by calculat-
ing the paired relationship in Theorem 1. If the algorithm finds that the first
decision variable interacts with other variables, it deletes it from the set of all
decision variables and then puts it in a subpart. The algorithm will go on until
all the variables that interact with the first variable are detected and then these
variables make up the first subcomponent. If no interaction is detected, then this
variable is considered as a separable variable. The remaining variables are also
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detected according to this process. The algorithm will not end until there are no
remaining decision variables.

During the algorithm all variables are initialized to the lower bound of the
function, denoted by vector p1. In order to check the interaction between the ith
dimension and the jth dimension, the vectors p2 and p1 are set identically, but
the ith dimension is different. The ith dimension of p2 is set as the upper bound.
The value of delta1 can be calculated in this way. Then, the jth dimension of
p2 is set to the center of the search space for that dimension, and the value of
Δ2 is calculated. If the difference between Δ1 and Δ2 is greater than a small
value, then it is considered that the ith and jth dimensions interact with each
other. Then the jth dimension is removed from the set of decision variables and
placed in the same subcomponent as the ith dimension. All the variables will be
compared with the ith dimension and then continue to the (i + 1)th dimension.

After all the variables have been grouped in the appropriate subcomponent,
the clustering operator groups a set of candidate solutions into several different
clusters so that solutions in the same cluster are more similar to each other than
to those in other clusters.

3 Creating Strategy Based on Maximum Likelihood
Estimation

As for the creating operator, the algorithm proposed in this paper employs
Maximum Likelihood Estimation (MLE) based on Gaussian Probability Density
Function [12], which is more efficiency and productivity, especially compared
with the one by one mode in the original version.

It’s also worth mentioning that the basic creating operator can produce an
idea in four patterns by using the Gaussian random strategy. The formulas for
generating new candidate solutions are given as follows.

xnew = xold + ξ × G(m,σ) (5)

where xnew and xold represent the new and the selected solution from a cluster
or two clusters, respectively. G(m,σ) is Gaussian random function with mean m
and standard derivation σ.

However, the distribution of random numbers generated by different means

and variances varies greatly. The expected value mML =
[
0
0

]
and variance

SML =
[

σ2
1 σ12

σ12 σ2
2

]
, the parameter σ12 appears as the angle of rotation of the

symmetry axis of the random number distribution, while σ2
1 and σ2

2 denotes the
ellipses distribution of random numbers and the larger one is the semimajor axis
of the ellipse.

In addition, we can also produce more complex distribution of data, for
example, to generate a random data subject to multiple probability density
distribution. Consider a mixture of two probability density distributions. The
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expected values are m1 =
[
1
2

]
, m2 =

[
2
3

]
and variances are S1 =

[
0.5 −0.05

−0.05 0.1

]
,

S2 =
[
0.2 0
0 0.2

]
.

However, at the beginning of the algorithm, it is often unknown what statis-
tical distribution the data obeys. Therefore, the maximum likelihood estimation
method is needed for parameter estimation. The usual way to handle function
estimation is to assume that the probability density function is known, but the
parameter values of the distribution function are unknown. In the original BSO
algorithm, new individuals are produced by a Gaussian mutation, but its mean
or covariance matrix is unknown and is set manually in the program. Different
values of mean or covariance matrix will make a great impact on the new solu-
tions to be generated. Therefore, we need to find an effective and reasonable
method to determine the value of the parameter.

Maximum likelihood estimation method is a practical method. For the Gaus-
sian distribution, we assume that the number of data is N , xiεR

l, i = 1, 2, · · · , N .
The expected value and covariance matrix of the data are obtained according to
the following formula.

mML =
1
N

N∑

i=1

xi (6)

SML =
1
N

N∑

i=1

(xi − mML)(xi − mML)T (7)

where N is usually taken as N −1, so as to ensure that the expected value mML

and variance SML are unbiased estimates.

4 Experimental Results and Analysis

4.1 Complex Offset Test Functions and Parameter Settings

Numerical Experiments have been carried out in this paper to test the perfor-
mance of the proposed algorithm. We chose 8 test functions for the experiment.
Table 1 shows the mathematical expressions of these test functions. As discussed
in [13], many benchmark numerical functions commonly used to evaluate and
compare optimization algorithms may suffer from two problems. First, global
optimum lies at the center of the search range. Second, local optima lie along
the coordinate axes or no linkage among the variables/dimensions exists. To
solve these problems, we can shift or rotate the conventional benchmark func-
tions. For benchmark functions suffering from the first problem, we may shift the
global optimum to a random position so that the global optimum position has
different numerical values for different dimensions. For the second problem, we
can rotate the function using an orthogonal rotation matrix to avoid local optima
lying along the coordinate axes while retaining the properties of the test func-
tion. We shift eight commonly used benchmark functions f1, f2, · · · , f8 where
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x = z − o, and further rotate four functions f5, f6, f7, f8 where z = M(x − o).
o = (o1, o2, · · · , oD) is the shifted global optimum, M is an orthogonal matrix.
Other parameters involved in these algorithms are listed in Table 2. In order to
obtain a more complete comparison, each experiment was tested 30 times under
the conditions. In addition, in order to reduce the impact of the initial solution
on the performance of the algorithm, the initial value settings of each algorithm
remain the same.

Table 1. Benchmark functions.

Name Mathematical expressions Global optimum

Shifted sphere function f1(x) =
∑D

i=1 z2
i -450

Shifted Schwefel’s Problem
1.2

f2(x) =
∑D

i=1(
∑i

j=1 zj)
2 −450

Shifted Schwefel’s Problem
1.2 with noise in fitness

f3(x) =
(
∑D

i=1(
∑i

j=1 zj)
2)(1 +

0.4|N(0, 1)|)

−450

Shifted Rosenbrock’s
Function

f4(x) =
∑D

i=1(100(z
2
i −

zi+1)
2 + (zi − 1)2)

390

Shifted rotated High
Conditioned Elliptic Function

f5(x) =
∑D

i=1(10
6)

i−1
D−1 z2

i −450

Shifted rotated Griewank’s
function

f6(x) =
∑D

i=1

z2i
4000

−180

Shifted rotated Ackley’s
function2

f7(x) =

−20 exp(−0.2
√

1
D

∑D
i=1 z2

i ) −
exp( 1

D

∑D
i=1 cos(2πzi)) +

20 + e

−140

Shifted rotated Rastrigin’s
function

f8(x) =∑D
i=1(z

2
i − 10 cos(2πzi) + 10)

−330

Table 2. Parameters involved in the BSO algorithms.

N Itermax pone p1center p2center K ω1 ω2

50 1000 0.5 0.2 0.3 20 0.3 0.4

4.2 Experimental Comparison

Experiments were conducted on a suite of 8 numerical functions to evaluate
the algorithms proposed in this paper and were compared with the basic BSO
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algorithm with covariances of 1 and 10 respectively. The problem dimensions
in Table 3 and Table 4 are 10 and 30 respectively. For the convenience of the
following description, the algorithm proposed in this paper is referred to as
BSO-DG algorithm for short.

Table 3. Dim = 10.

Name Basic BSO (σ = 1) Basic BSO (σ = 10) BSO-DG

f1 −4.499317e+02 −4.498768e+02 −4.500000e+02

f2 −4.152201e+02 −4.498251e+02 −4.500000e+02

f3 9.338284e+03 −4.497097e+02 −4.500000e+02

f4 2.823552e+03 3.757654e+03 3.911866e+02

f5 1.136462e+05 8.352151e+04 8.698848e+04

f6 6.493108e+02 −1.789498e+02 5.185952e+02

f7 −1.193785e+02 −1.192944e+02 −1.199291e+02

f8 −2.588920e+02 −2.950397e+02 −3.180605e+02

Table 4. Dim = 30.

Name Basic BSO (σ = 1) Basic BSO (σ = 10) BSO-DG

f1 1.429155e+04 −4.476180e+02 −4.500000e+02

f2 1.068291e+04 1.433885e+03 −4.439227e+02

f3 4.004918e+04 2.332795e+04 7.524117e+03

f4 4.027146e+08 1.114580e+03 4.192215e+02

f5 2.619072e+07 4.670158e+06 7.014877e+06

f6 3.803106e+03 9.792736e+02 3.566663e+03

f7 −1.188855e+02 −1.189145e+02 −1.194512e+02

f8 −5.135351e+01 −7.470952e+00 −2.374401e+02

In addition, during the experiments we found that the basic BSO algorithm
has poor optimization effect on these functions with offset which can be seen at
Basic BSO (σ = 1) in Table 3. That’s because when it generates a new solution, it
just adds a small Gaussian random value near the original solution which works
well when global optimum lies at the center of the search range. Once the optimal
points are transferred to a random position, this generation strategy will have
little chance of detecting points in other locations. That’s because in the basic
BSO algorithm, the mean and covariance are fixed at 0 and 1. We found that
fixed mean and covariance will bring two problems. One is that the generation of
new individuals is limited to certain regions, and the other is that the excessive
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number of clusters will lead to the overlap of new individuals. This will make the
area detected by the algorithm very limited. Once the optimal solution of the
function is shifted, the effect of the basic BSO algorithm is obviously reduced,
and almost no optimal solution can be found.

In the experiment, we were surprised to find that increasing the standard
deviation of Gaussian distribution in the early stage of search would improve the
experimental results, which was due to expanding the distribution of data. The
results can be seen at Basic BSO (σ = 10) in Table 3. However, the results are
not satisfactory, and the proposed method can effectively solve the test function
with offset. As can be seen from Table 3 and Table 4, compared with the basic
BSO algorithm, the performance of the algorithm proposed in this paper has
improved a lot, and the global optimal solution can be found.

5 Conclusion

In this paper, the horizontal and vertical grouping was adopted in the algorithm
which employs k-means clustering in the horizontal and differential grouping
in the vertical. Through this operation, we not only extract the information
between each individual, but also extract the information between each variable
dimension. While for the creating operator, it is often unknown what statisti-
cal distribution the data obeys. Therefore, a method based on maximum like-
lihood estimation for the mean and variance of the Gaussian distribution was
introduced in this paper. Meanwhile, this paper also designed a mixed selection
strategy for exploration and exploitation. An improved BSO algorithm based
on differential grouping and maximum likelihood estimation was then proposed.
Finally, the proposed algorithm was applied to numerical optimization problems
in comparison with the basic BSO. The boxplots and statistical results show
that the proposed method can identify the regions with high quality solutions
in the search space quickly and obtains satisfactory solutions on the optimiza-
tion of offset problems and increased dimensions. Meanwhile, the evolutionary
iteration diagram shows that the proposed BSO algorithm also can improve the
convergence rate.
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Abstract. This paper studies the problem of aircraft maintenance technician
scheduling problem. Aircraft maintenance companies often need to allocate air-
craft maintenance technicians in advance according to maintenance orders before
carrying out maintenance work, with the aim of maximizing the company’s ben-
efits. In order to solve the aircraft maintenance technician scheduling problem,
we propose a reorganized bacterial foraging optimization algorithm (RBFO),
which introduces the individual information transmission mechanisms among
each individual in the bacterial swarm, and reorganizes the structure of the origi-
nal bacterial foraging algorithm. The experimental results verify the applicability
of the proposed algorithm in the specific constructed model, and give the opti-
mal task-technician allocation scheme based on the numerical example data. The
performance of RBFO is high-lighted through comparative experiments.

Keywords: Aircraft maintenance · Technician assignment · Bacterial foraging
optimization

1 Introduction

With the increase of flight routes and the decrease of travel costs, the proportion of air
transportation in the world GDP is higher and higher, which also stimulates the growth
of the demand for Aircraft Maintenance, Repair and Overhaul (MRO) [1, 2]. At present,
most airlines adopt the mode of outsourcing MRO business to aircraft maintenance
companies [3].

This paper focuses on the aircraft maintenance technician scheduling problem under
the aircraft maintenance outsourcing mode. Aircraft maintenance companies need to
match aircraft maintenance tasks with maintenance technicians when accepting main-
tenance orders from airlines. In recent years, in the literature of personnel scheduling
problem in aviation industry,most papers paymore attention to the crew scheduling prob-
lem [4–6], while the research on aircraft maintenance technician scheduling problem is
relatively rare. Both Qin et al. [2] and Permatasari et al. [7] used linear programming
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algorithm to get the optimal solution of technician scheduling with minimum main-
tenance cost of aircraft maintenance company. However, those papers only consider
minimizing the cost of aircraft maintenance, without considering whether the workload
allocation of aircraft maintenance technicians is fair and reasonable. Considering the
high turnover rate of aircraft maintenance technicians, this is a factor worthy of in-depth
discussion.

In this paper, a concrete NP-hard problem with regard to the dimensions of aircraft,
shift, task and technician is considered.Heuristic algorithmhas beenwidely used to solve
NP hard scheduling problems, such as crew scheduling [8], nurse scheduling [9] and so
on. As a representative heuristic algorithm, BFO has excellent performance in solving
such problems [10]. Based on the traditional bacterial foraging optimization (BFO) [11]
and bacterial colony optimization [12], we propose a reorganized bacterial foraging
optimization (RBFO) algorithm which is suitable for solving the aircraft maintenance
technician scheduling problem by integrating the ideas of reorganization of original BFO
and information transmission mechanism within a colony.

The reminder of this paper is structured as follows. Section 2 states aircraft main-
tenance technician scheduling problem. Section 3 describes the proposed reorganized
bacterial foraging optimization. Section 4 presents the coding mechanism and the com-
putational results based on the comparative experiments. Section 5 concludes the paper
and points out future directions.

2 Model of Aircraft Maintenance Technician Scheduling Problem

This section introduces the assignment model of aircraft maintenance technicians. Def-
initions of variables are listed in Table 1. First, in Subsect. 2.1, aircraft maintenance
technician scheduling problem is described in detail and related variables are defined.
Then, Subsect. 2.2 gives the objective function and constraints with explanation of
practical significance.

2.1 Problem Description

Each aircraft parked in the hangar waiting for maintenance has a series of maintenance
tasks with sequence. Following Gang et al. [13], a maintenance task is supposed to be
assigned to only one aircraft maintenance technician, and there are precedence relations
among a series of maintenance tasks. Besides, the license requirement of maintenance
tasks limits the assignment of maintenance technicians. To provide the aircraft mainte-
nance technicians with sufficient rest time, technicians are not allowed to work in two
or more consecutive work shifts. A work shift usually lasts for eight hours and there are
three consecutive shifts in a day [2]. To tackle this problem, a task-technician assignment
solution should be given with the aim of realizing the minimization of total costs.
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Table 1. Definition of variables.

Variables Meaning of variables

A Number of aircrafts

M Number of aircraft maintenance technicians

T Number of maintenance shifts

Sit Number of maintenance tasks

λm Cost of technician m in a shift

dmt,is Time spent by technician m to finish task s of aircraft i in shift t

g Average working time of all technicians

NCm The number of times technician m participates in continuous shifts

sdit Delivery time of aircraft i in shift t

nm Normal working hours of technician m

PSis Pre-tasks of task s on aircraft i

wsm Working state of technician m

qm License level of technician m, qm ∈ {1, 2, 3}

Aqs Task s can be assigned to technicians with license q

amt,is Whether technician m is assigned to task s of aircraft i in shift t

tist Whether task s of aircraft i can be implemented in shift t

owm Whether technician m works overtime

fis Whether task s of aircraft i is complicated

2.2 Objective Function and Constraints

Objective Function

min

⎧
⎨

⎩

∑

m∈M

∑

t∈T

∑

s∈S
amt,is · λm + p1 ·

⎡

⎣
1

m

∑

m∈M

(
∑

t∈T

∑

s∈S
amt,is · dmt,is − g

)2
⎤

⎦

+p2 ·
∑

m∈M
NCm + p3 ·

∑

t∈T
max

{
∑

m∈M

∑

s∈S
amt,is · dmt,is − sdit, 0

}

+p4 ·
∑

m∈M
owm·max

{
∑

t∈T

∑

s∈S
amt,is · dmt,is − nm, 0

}}

(1)

The optimization objective of this paper consists of manpower cost and other four
penalty costs, including (i) penalty of unfair distribution of workload; (ii) penalty of
participating in two consecutive shifts; (iii) penalty cost of a shift inwhich the completion
time of all tasks exceeds the specified end time of the shift; (iv) penalty of working time
of a technician in the whole maintenance cycle exceeds the time stipulated in the labor
contract. p1, p2, p3, p4 represent the penalty coefficients of the above four types of costs.
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Constraints

tist ≤ 1

|PSis| ·
∑

s′∈PSis
f ′
is,∀i ∈ A,∀s ∈ S,∀t ∈ T (2)

∑

m∈M
amt,is = 1,∀i ∈ A,∀t ∈ T ,∀s ∈ S (3)

∑

m∈M

∑

s∈S
amt,is · dmt,is ≤ sdit,∀i ∈ A,∀t ∈ T (4)

∑

s∈S
amt,is ·

∑

s∈S
am(t + 1), is = 0,∀i ∈ A,∀t ∈ T ,∀m ∈ M (5)

∑

i∈A

∑

t∈T

∑

s∈S
amt,is · dmt,is ≤ nm,∀m ∈ M (6)

amt,is ≤ wsm,∀i ∈ A,∀t ∈ T ,∀m ∈ M ,∀s ∈ S (7)

amt,is ≤ qmAqs,∀i ∈ A,∀t ∈ T ,∀m ∈ M ,∀s ∈ S (8)

Constraints (2)–(3) indicate that each aircraft maintenance request is decomposed
into a series of sub taskswith sequence, and each sub task is completed by only onemain-
tenance technician. Constraint (4) is the regulation set to avoid the delay of subsequent
aircraftmaintenance tasks.Constraints (5)–(6) impose thatmaintenance technicians have
enough rest time. Constraint (7) prescribes that only idle maintenance personnel can be
assigned to task s to be performed on the aircraft i. Constraint (8) enables tasks to be
assigned to maintenance technicians who meet their maintenance license requirements.

3 Reorganized Bacterial Foraging Optimization Algorithm

We mainly improve the bacterial foraging optimization [11] in the structure and
information transmission mechanism of the algorithm, respectively.

3.1 Structural Recombination

Chemotaxis, reproduction and elimination are three operators in original BFO [11],
which are represented by three nested loops in the algorithm. However, this kind of
complex structure often brings high time complexity and space complexity, resulting in
excessive computing cost. Therefore, in this paper, we reconstruct three operators and
let them execute in order, so as to simplify the algorithm to a certain extent.
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3.2 Information Transmission Mechanism

Biological information includes physical information, chemical information, behav-
ioral information and nutritional information. Information transmission is a common
way for species to communicate in biological world, including information generation,
transmission and reception.

In the original bacterial foraging optimization algorithm, bacteria have the charac-
teristics of global clustering [11], and the decision-making behaviors are closely related
to information of itself and other individuals. For instance, in a bacterial swarm of D
individuals, θd represents the location of the individual currently being optimized and
θ id represents the location of ith individual. When receiving attraction signals dattract
and wattract , the individual will swim to the center of the bacterial swarm; when receiv-
ing repulsion signals hattract and wrepell , the individual will keep distance with others.
Consequently, an individual’s influence of signal transmission among a bacterial swarm
is:

Jcc =
Np∑

i=1

[−dattract exp(−wattract

D∑

d=1

(θd − θ id )2) + hrepell exp(−wrepell

D∑

d=1

(θd − θ id )2)] (9)

In addition, there is no lack of communication mechanism between an individual
and the optimal individual. We divide the optimal individuals in a bacterial swarm into
two categories: self-historical optimal and swarm optimal. Self-historical optimal refers
to the individuals that obtain the optimal objective value of the specific individual in the
cumulative iteration process. Swarm optimal refers to the individuals obtain the optimal
objective value among a bacterial swarm in all iterations. After each iteration, both
self-historical optimal and swarm optimal might be updated according to the present
optimization results. In order to improve the optimization ability of the algorithm and
enhance the diversity of the search process, we also introduce random individuals for
information transmission among individuals in the bacterial swarm.

In consequence, each individual’s information transmission process includes three
parts: information transmission with the self-historical optimal, the current swarm opti-
mal, and a random individual. Therefore, the information transmission mechanism of
each individual in a swarm is:

Li = (1 − α − β) · Li + α · Lh + β · Lr (10)

Li is the location of ith individual, Lh is the location of self-historical optimal indi-
vidual of ith individual, and Lr is the location of a random individual. α and β are two
learning factors of Lh and Lr , respectively.

4 Experiments and Results

4.1 Encoding Scheme

BFO is a continuous optimization algorithm, whereas the personnel scheduling problem
is a discrete problem. Therefore, in the coding scheme, how to realize the conversion
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from continuous coding to discrete coding is the key to solve the problem. Table 2
is a continuous coding scheme in the process of iterative optimization using RBFO
algorithm. What we need to achieve is to select a position in the corresponding column
of each task to represent the selected maintenance technician. In this process, we need
to determine which positions cannot be selected from according to the constraints. For
example, in Table 2, the parts filled with blue indicate that this part of the technicians
does not meet the requirements of the maintenance license level for this task, while
the red number indicates that the maintenance technicians are working and should not
be assigned to complete other tasks. Finally, we select the largest number from the
remaining numbers in each column as the selected maintenance technicians, and the
results are shown in Table 3. In Table 3, the first maintenance task is assigned to the
tenth maintenance technician, and the second and third maintenance tasks are assigned
to the ninth maintenance technician.

Table 2. Continuous encoding scheme.

Shift t /8h
Aircraft index Technician index Task 1 Task 2 Task 3

1 

1 0.51 0.72 0.45
2 0.21 0 0.22
3 0.13 0.18 0.11
4 0.41 0.35 0.4
5 0.65 0.36 0.29
6 0.13 0 0.56
7 0.24 0.49 0
8 0.57 0.52 0.04
9 0.86 0.91 0.19

10 0.97 0.04 0
11 0.47 0.55 0.15

Table 3. Discrete encoding scheme.

Aircraft
index

Shift t/8h

Task 1 Task 2 Task 3

1 10 9 9

4.2 Parameter Settings

The relevant data of aircrafts, tasks and technicians used in the experiment are randomly
generated on the basis of consulting a large number of reference materials. In this paper,
the number of aircrafts is A ∈ {1, 2, 3, 4}, the number of maintenance techniciansM =
11, and the number of shifts T = 3.

In order to test and highlight the excellent performance of RBFO in solving this air-
craft maintenance technician scheduling model, we also set up comparative experiments
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to compare this algorithmwith other heuristic algorithms, including BFO, PSO, and GA.
The population size of all algorithms is 30, and the fitness evaluation time is 30000. In
RBFO and BFO, the elimination probability Ped is 0.25 and the length of swim Ns = 4,
Cstart = 0.2, Cend = 0.01. In PSO, the learning factors are set to 2. In GA, the crossover
probability is 0.95 and mutation probability is 0.1.

4.3 Experimental Results

The experiments are carried out five times and the convergence of each algorithm on the
average optimal fitness value is shown in Fig. 1. With the increasing number of aircrafts,
the total maintenance cost of each algorithm grows. Among them, the incremental cost of
BFO algorithm is the largest, while that of RBFO algorithm is the smallest. In addition,
compared with other algorithms, the final optimal solution of RBFO algorithm always
corresponds to the lowest total maintenance cost in the four cases with different number
of aircrafts. Moreover, RBFO has stronger convergence performance than the other three
algorithms.

Fig. 1. Convergence curves of objective function based on BFO, PSO, GA and RBFO algorithms.
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5 Conclusions and Future Directions

In this paper, we propose RBFO algorithm and apply it to solve the improved model for
aircraft maintenance technician scheduling problem. Experiments verify the superiority
of the proposed RBFO and optimal task-technician allocation scheme can be obtained
with the lowest cost.

In the future, building multi-objective optimization model on the basis of RBFO
algorithm is an important development direction. In addition, application of the proposed
algorithm to other types of scheduling problems is also an interesting direction, including
aircraft maintenance tools scheduling, crew scheduling and so on.
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Abstract. Crowdfunding is a concept that raising fund for different individual
or organization to conduct creative projects and it has gained more and more
popularity during these years. Fund used for projects can reach to billions of dol-
lars, so it’s very significant to perfectly predict multiple crowdfunding ads. To
improve the accuracy of crowdfunding project outcome prediction, a modified
Bacterial Foraging Optimization Algorithm (NBFO) through population initial-
ization, reproduction and elimination-dispersion was proposed to cooperate with
Light Gradient Boosting Machine (LightGBM). This paper used normal distri-
bution through the period of population initialization and elimination-dispersion.
Moreover, during reproduction, selective probability was introduced to enhance
the performance of bacteria. Experiments used 5561 valid data collected from
Kickstarter from June 2017 to February 2018, and compared the predictive power
of LightGBM incorporated with Particle SwarmOptimization (PSO), Bee Colony
Optimization (BCO) and Evolutionary Strategy (ES). Results showed that the
performance of NBFO surpasses all comparative algorithms. The performance
of LightGBM incorporated with other swarm intelligent algorithms and evolu-
tionary algorithm are discussed. Findings in this study contribute to the study of
crowdfunding, Light Gradient BoostingMachine, swarm intelligent algorithm and
evolutionary algorithm.

Keywords: Crowdfunding · Bacterial foraging optimization · Light gradient
boosting machine

1 Introduction

Crowdfunding, as a new and innovative financing method through the Internet, helps
a large number of entrepreneurs get investment help from various online personnel,
thus effectively providing economic support for enterprise projects or venture capital.
Especially in recent years, the crowdfunding industry has flourished on a global scale
[1], which has greatly stimulated scholars, operators of various platforms, entrepreneurs
and investors to pay attention to it.

The novel and innovative financing method of crowdfunding can effectively solve
the huge difficulties and forward development challenges for small-and medium-sized
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enterprises (SMEs) in the initial stage, and prevent enterprises and projects with strong
development prospects from failing or ending ahead of schedule. At the same time, with
the recent outbreak of COVID-19 in 2020, the crowdfunding market has grown more
rapidly, especially donating crowdfunding to support and help communities, people
and many organizations to fight this epidemic. According to Market Data Forecast’s
estimates, in 2019, the estimated size of the global crowdfunding market is 14.2 billion
US dollars. When it reaches 2025, it will have a great possibility to reach 28.8 billion
US dollars, and the compound annual growth rate from 2020 to 2015 is calculated to be
16% [2].

However, although crowdfunding has such a vigorous development prospect, the
main problems of crowdfunding in these years are still information asymmetry between
crowdfunding promoters and investors, low financing success rate and unacceptable high
financing risks for investors [3]. Although there are many researches that can effectively
help alleviate the information gap between investors and crowdfunding [4], the quality
of crowdfunding projects, the authenticity of information and whether the final project
is real and practical will still cause great obstacles for investors to choose projects. Some
people who initiate crowdfunding sometimes register multiple crowdfunding platform
accounts or hire a large number of platform users to comment on his projects, thus pre-
tending that the society shows high enthusiasm and interest in his crowdfunding projects.
Finally, unsuspecting investors are deceived to invest in their crowdfunding projects.
Such behavior is very unfavorable to investors. At the same time, some crowdfunding
projects cannot achieve the expected return on income, which makes many investors
disappointed. Such behavior has caused an increase in the degree of distrust between the
two sides, thus jeopardizing the sustainable development of the crowdfunding market.
Therefore, it is of great significance and urgent need for investors to predict the results
of crowdfunding projects effectively.

In recent years, some researchers have adopted machine learning methods, such as
Light Gradient Boosting Machine (LightGBM) [5], to analyze the characteristics and
factors of crowdfunding projects to predict and judge crowdfunding results (success,
survival and failure). What’s more, swarm intelligent algorithms, like bacterial foraging
optimization (BFO) [6], particle swarm optimization (PSO) [7], bee colony optimization
(BCO) [8] and evolutionary strategy (ES) [9], have gradually become the new favorite
of complex problems for prediction because they are simple and effective. Up to now,
although multiple search methods have been used in crowdfunding project outcome
prediction, less studies applied swarm intelligent algorithms inmachine learningmethod
to enhance the predictive ability. In this study, our investigation is based on a popular
machine learning method Light Gradient Boosting Machine and a swarm intelligent
algorithm BFO. The goals of this research are shown as follows:

1. Normal distribution is introduced into the process of population initialization and
elimination – dispersion of BFO to empower of predictive ability.

2. Redesign the reproductionmechanism of BFOwith selective probability to empower
of predictive ability.

3. Compare the accuracy in crowdfunding project outcome prediction of different
swarm intelligent algorithms (BFO, improvedBFO, PSOandBCO) and evolutionary
algorithm (ES) incorporated with LightGBM.
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4. Measure the advancement of accuracy in crowdfunding project outcome prediction
of LightGBM with improved BFO.

The structure of our research paper is arranged as follows: Sect. 2 introduces the basic
method: LightGBM Method and standard BFO. The Enhanced LightGBM framework
with improved BFO will be held in Sect. 2.3. Section 3 illustrates the details of crowd-
funding project dataset and parameter settings, then reporting the experiment results and
finally, Sect. 4 reaches a conclusion and discusses future work.

2 Methodology

2.1 Light Gradient Boosting Machine

Light gradient boostingmachine (LightGBM) is an evolutionary version basedonGBDT,
which is an algorithm model developed by Microsoft Corporation in 17 years [10]. We
chose LightGBM as the basis of our optimization problem because it only needs low
calculation cost, but its results have high efficiency and accuracy, feature classification
ability and prediction ability, and have achieved good results in the application of large
data sets. Different from other hierarchical constraints, LightGBM saves computing
power and improves maximum effective branches by limiting the maximum number of
leaves in decision-tree structure.

Controlling the training mode of data in LightGBM is accomplished by selecting
several hyperparameters. In addition to the traditionalmanual adjustment andgrid search,
the method of adjusting these hyperparameters can also use optimization algorithm.
Through the combination of different feasible solutions, the most suitable and best
solution is finally obtained as the parameter selection of LightGBM.In our work, we
choose multiple optimization algorithms and build multiple integration frameworks to
compare the optimization results of the algorithms. We choose seven hyperparameters
including the maximum number of leaves in tree structure, the bagging’s frequency
and fraction, regularization L1 and L2, fraction of feature, the value of the minimum
number of samples on each leaf in LightGBMas the solution set of swarm intelligence or
evolutionary algorithm, and compare the accuracy of LightGBM running results under
different optimization algorithms.

2.2 Bacterial Foraging Optimization

Inspired by Escherichia coli eating food in the human gut, Passino [11] proposed a
biological heuristic simulation algorithm, Bacterial Foraging Optimization Algorithm
(BFO). For the reason that it has several advantages such as parallel searching and
skipping local optimality, it has been used for feature selection and prediction.

When looking for food, bacteria use its flagellum to move. Flagellum has two func-
tions: tumbling and swimming. Tumbling helps change directionwhile swimmingmeans
walking in the changed direction. In aD-dimensional environment, θ represents the posi-
tion of the bacteria, and J (θ) represents the function value. We use i to represent every
bacterium. Each bacterium will turn in a random vector �(i) and used Eq. (1) to update
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its position. θ i(j, k, l) represent Jth chemotaxis, Kth reproduction and Lth elimination -
dispersion. C(i) represents the step of moving.

θ i(j + 1, k, l) = θ i(j, k, l) + C(i)
�(i)

√
�T (i)�(i)

(1)

When bacteria have obtained enough nutrient and appropriate temperature, each
of them starts to reproduce, forming two new bacteria, that is, replace the position of
the bottom 50% of the bacteria with that of the top 50% of the bacteria according to
their fitness value. If the environment suddenly became hostile, some bacteria may be
eliminated and others may be dispersed to a new place, that is, update the position of
part of bacteria randomly.

2.3 Enhanced LightGBM Framework with Improved BFO

We applied LightGBM in crowdfunding project outcome prediction because of its faster
training speed and less memory footprint. To better its outcome prediction, we proposed
an enhanced LightGBM framework that deployed an improved BFO algorithm to opti-
mize its hyperparameters. Seven hypermeters were chosen for comparison purpose with
other parameter turning methods, such as Particle Swarm Optimization [5], that is, the
maximum depth of the tree, minimum number of records that a lead may have (mini-
mum child sample), the proportion of randomly selected features per iteration (feature
fraction), the proportion of randomly selected data per iteration (bagging fraction), bag-
ging frequency, specified regularization 1 and specified regularization 2. The default of
parameter setting is 31, 20, 1.0, 1.0, 0, 0.0, 0.0 respectively.

Figure 1 illustrates the overall flow of the improved LightGBM framework. Gener-
ally, in BFO algorithm, bacteria initialize their positions through two method. The first
is using the same default value for every position. The second is each position produced
a random number. Considering that LightGBM framework has have a default number,
we applied normal distribution in the period of position initialization and elimination-
dispersion for five hyperparameters: the maximum depth of the tree, minimum child
sample, bagging frequency, specified regularization 1 and specified regularization 2,
using default value as mean value.

Compared with other algorithms such as BFO and BCO, NBFO with improved
initialization process can find the optimal solution in data set faster, improve convergence
speed and initial optimization ability, reduce waste of bacteria and improve optimization
efficiency.

Then, the hyperparameters will be transferred into the LightGBM framework for
model training together with selected features. The fitness value will be returned to
the BFO for continued iteration. After chemotaxis, each bacterium will use Eq. (2) to
calculate its selective probability Ps(i).

∑pN
i=0 J

i(θ) describes the cumulative probability
per iteration. Table 1 illustrate the process of reproduction. The process will continue
until we have obtained enough bacteria. In this way, better bacteria havemore probability
to reproduce and speed up the convergence. On the other hand, bacteria at a temporary
disadvantage also have the chance, thus help avoid local optimal solution. Finally, once
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Fig. 1. The overall flow of the enhanced LightGBM.

BFO algorithm reach its max iteration, the method will output the best hyperparameters
and accuracy.

Ps(i) = J i(θ)
∑pN

i=0 J
i(θ)

(2)
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Table 1. The pseudo code of reproduction.

During reproduction
1
2
3
4
5
6
7
8
9
10
11
12
13

For i in range (self.pN):
Calculate cumulative probability 

For i range range (self.pN):
Calculate selective probability using formular (2)

Active = True
While Active:

Generate a random number R
For i in range (self.pN):

If R < selective probability:
Select the position and step size of this bacteria

If we have obtain self.pN bacteria:
Active = False

3 Experiments and Results

3.1 Dataset

In this study, we used dataset collected by Yang [12] from Kickstarter from the period
between June 2017 and February 2018. This platform is one of most famous crowd-
funding platforms in the world and this dataset has been used by some scholars [13, 14].
The dataset totally contains 5916 projects. After data preprocessing, we obtained 5516
valid data. The dataset has three types of information: Project information. Linguistic
features and Description sentiment and 31 features.

3.2 Experiment Settings

In order tomeasure the effectiveness of the improved BFO algorithm (LGBM_NBFO) in
predicting the outcome of crowdfunding project, we incorporated LightGBMwith other
swarm intelligent algorithms (PSO and BCO) and evolutionary algorithm (ES). The
parameter setting for LGBM, LGBM_PSO, LGBM_BCO, LGBM_ES, LGBM_BFO
and LGBM_NBFO are reported in Table 2 and Table 3.

3.3 Experiment Results

The experiment was conducted in Python, using Accuracy (Accuracy = 1 – the error
rate of classification) as evaluation criterion to assess the performance of the methods.
The results are shown in Table 4 and Fig. 2. The results are range from 82.58% to
83.68%. LGBM_NBFO achieved the highest accuracy of 83.68%, followed by that of
LGBM_BCO and LGBM_BFO, at 83.60% and 83.53% respectively. The numbers in
accuracy of LGBM_PSO and LGBM_ES are very close, at 83.34% and 83.17% respec-
tively. The accuracy of the original LGBM is 82.58%. In conclusion, LGBM_NBFO
enhanced the prediction accuracy compared with LGBM, LGBM_PSO, LGBM_BCO,
LGBM_BFO and LGBM_ES. Figure 3 reports the average outcome predictive accuracy
of each algorithm on crowdfunding project.
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Table 2. Algorithm parameter setting.

Method Value

LGBM num_leaves = 31
min_child_samples = 20
feature_fraction = 1
bagging_fraction = 1
bagging_freq = 0
lambda_l = 0.0
lambda_l2 = 0.0

LGBM_PSO W (inertia weight) = 0.8
C1 (learning speed) = 2
C2 (learning speed) = 2
R1 (random constant) = 0.6
R2 (random constant) = 0.3
pN (number of particles) = 50
Dim = Feature number + parameter number
Iteration = 50

LGBM_BCO pN (number of bee) = 50
OnLooker (number of follow bees) = 50
L (upper bound of abandoning) = round(0.6*nVar*pN))
A(enlargement coefficient) = 1
Iteration = 50
nVar = 7

LGBM_ES N_kid (number of offspring) = 25
pN (number of gene) = 50
Gene_size = Feature number + parameter number
Generation = 50

LGBM_BFO
LGBM_NBFO

pN (number of bacteria) = 50
Dim = Feature number + parameter number
Nc (number of chemotaxis) = 24
Ns (limit of the swimming) = 4
Nre (number of reproduction) = 2
Ned (number of elimination) = 1
Iteration (Nc*Nre*Ned) = 48

Table 3. Normal distribution parameter setting in LGBM_NBFO population initialization

Parameter Value

num_leaves Mean = 31, standard deviation = 1

min_child_samples Mean = 20, standard deviation = 10

feature_fraction Value = 1

bagging_fraction Value = 1

bagging_freq Mean = 0, standard deviation = 1

lambda_l1 Mean = 0.0, standard deviation = 0.3

lambda_l2 Mean = 0.0, standard deviation = 0.5
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Table 4. Classification accuracy of each algorithm.

Method Accuracy

LGBM 0.825866

LGBM_PSO 0.833474

LGBM_BCO 0.836010

LGBM_ES 0.831784

LGBM_BFO 0.835320

LGBM_NBFO 0.836855

Fig. 2. Best accuracy of different swarm intelligent algorithms and evolutionary algorithm.

4 Conclusion and Future Work

To improve the accuracy of crowdfunding project outcome prediction, a modified BFO
(NBFO) based on population initialization, reproduction and elimination-dispersion was
proposed to cooperate with LightGBM. This paper used normal distribution through the
period of population initialization and elimination-dispersion, and in order to better
adapting to the dataset collected by Yang [12] from Kickstarter. Moreover, during repro-
duction, selective probability was introduced to enhance the performance of bacteria.
Comparing with BCO, PSO, ES, BFO, the performance of NBFO surpasses all of them.
The contribution of this paper are as follows: (1) We improved the initialization of data
set adaptability of BFO, and modified the process of bacterial reproduction of BFO; (2)
The proposed BFO algorithm incorporated with Light GBM enhanced the predictive
accuracy of this crowdfunding project datasets compared with LightGBM method. (3)
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We incorporated LightGBM with different swarm intelligent algorithms (BFO, PSO,
BCO) and evolutionary strategy (ES) to turn hyperparameters, and we find that NBFO
rank first in the best accuracy among these algorithms.

In our algorithm research and crowdfunding platform test, there are some limitations
and our future research agenda. First of all, we need to test the standard deviation of the
data setwhen initializing theGaussian distribution,which takes a little time, but the rough
result of the algorithm is very good, which can be reflected in the improved NBFO and
BCO algorithms. Secondly, we have only tested our improved algorithm in Kickstarter’s
English crowdfunding data set, and the generalization ability of the algorithm in other
data sets has yet to be done. However, from the perspective of improving our algorithm, it
can expand the application scope verywell, which is also one of our future research plans.
Thirdly, the algorithm we compare only uses some classical optimization algorithms,
and does not test in a large area. We will expand the experiment in the future to see if
we can get richer conclusions and discoveries.
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Abstract. Multi-objective problem (MOP) has long been a challenging issue.
Many novel Swarm Intelligence (SI) method like Bacterial Foraging Optimiza-
tion (BFO) has been extended to tackle MOPs recent years. To further improve
the efficiency of BFO in multi-objective optimization, this paper proposes a novel
BFO for Bi-objective optimization (abbreviated as BIBFO) with enhanced leader
selection strategy. The leader selection strategy incorporating with the Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) method in com-
prehensive learning mechanism can direct evolution and enhances the search effi-
ciency. Besides, the strategies of reproduction and elimination are improved using
elitism strategy to enhance the collaboration between search group and the external
archive, which can speed up the convergence and improve the search efficiency.
In addition, the external archive control strategy is further applied to balance the
convergence and the solution diversity. The effectiveness of BIBFO is demon-
strated on six frequently used benchmarks, and comparative studies have been
conducted among bacterial-basedmulti-objective optimization algorithms. Exper-
imental results indicate that the proposed BIBFO performs well in generation
distance (GD) and diversity (�) metrics of obtained Pareto front.

Keywords: Bacterial foraging optimization · Bi-objective optimization · Leader
selection strategy · DBSCAN

1 Introduction

Many applications in real life often have a multi-objective property. For example, in
the stock investment problem, we simply have two conflicting goals. One is spending
minimization and the other is revenue maximization or risk minimization [1]. Gener-
ally, MOPs contain multiple contradictory objectives, and there is no unique global
optimal solution. Therefore, MOPs are usually solved by finding a trade-off solution
set. At the same time, MOPs also face more problems, such as computing complexity,
dimensionality curse, discontinuous solution distribution, and so on.

Beginning in the 21st century, nature-inspired heuristic methods like evolutionary
computing (EC) and swarm intelligence (SI) began to be widely used in MOPs [2].
Some well-known state-of-the-art Multi-objective Evolutionary Algorithms (MOEAs)
include the Improving Strength Pareto Evolutionary Algorithm (SPEA2 [3]) and the
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Non-dominated Sorting Genetic Algorithm II or III (NSGA II [4], NSGA III [5]),
Multi-objective Artificial Bee Colony Algorithm (MOABC[6]), Multi-objective Par-
ticle Swarm Optimization (MOPSO [7]), and so on. The population-based method has
excellent global search capabilities [8], and naturally has the advantage of dealing with
MOPs. MOEAs are usually able to cover the whole Pareto front in many benchmarks
and thus are widely studied. In engineering applications, some MOEAs are proved to
have the advantages of less computational burden [9], lower time-consumption [10],
stronger robustness [11] and so on. Therefore, it is of great theoretical significance to
develop more multi-objective heuristic algorithms.

Bacterial Foraging Optimization (BFO) is a type of swarm intelligence optimization
algorithm simulating the foraging behavior of bacteria [12]. It is easy to describe bacterial
foraging optimization framework for its simple bionic structure. As BFO has an inner
potential to solve the multi-objective optimization algorithm, we design an enhanced
BFO algorithm, named Bi-objective Bacterial Foraging Optimization (BIBFO), to fully
excavate its optimal performance. In 2013, Wang et al. applied the BFO algorithm
to a MOP for the first time (MBFO [13]). Since then, some BFO variants were pro-
posed to solving the MOPs, like a novel MBFO based on a Multi-swarm Cooperative
operation (MCMBFO [14]), Multi-objective Bacterial Colony Optimization (MOBCO
[11]), Multi-objective BCO with Ring-topology (MORBCO [11]). From their experi-
mental results, these bacterial-based multi-objective optimization algorithms are no less
powerful than other swarm intelligence in multi-objective optimization.

Even so, the potential of BFO in MOPs has not been completely realized and it
faces several problems like relatively low accuracy, complicated computation. Based on
these, the BIBFO has been designed to have a comprehensive learning strategy and an
improving process of the reproduction, elimination and dispersal. In addition, to improve
the search diversity of the BFO inMOPs and tomake the solution closer to the real Pareto
front (PF),we presents a leader selection strategy with the basis of Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) [15].

The rest of this paper is organized as follows: Sect. 2 briefly describes the background
ofMOPs and conventional BFO. The extendedBIBFO is introduced in Sect. 3. In Sect. 4,
the experiments on well-known benchmarks are conducted, followed by an analysis of
results obtained. Section 5 presents the conclusions and future works.

2 Related Background

2.1 Multi-objective Optimization

Multi-objective Optimization Problem (MOP) is abstracted from real life. Mathemati-
cally, a MOP can be defined as:

Maximize/Minimize F(x) = (f1(x), f2(x), f3(x), . . . , fm(x))
Subject to: gi(x) ≤ 0, i = 1, 2, 3, . . . , q

(1)

where x ∈ �n is a n dimensions decision variable including m objectives constrained
by q constraint conditions g(x). In fact, it is difficult to obtain the optimal effect on
each objective. A solution may be optimal in one objective, but may not be superior in
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other objectives, which determines that the MOP is pursuing a compromise solution set
instead of a certain optimal solution.

2.2 Pareto Optimality

As mentioned above, the goal of the MOP is to find out a relatively satisfactory solution
set. Pareto optimality is just such a solution set that represents a balancing result among
different objectives. The multi-objective optimization algorithm just tries to approach
and cover the true Pareto optimality set. Before using algorithms to solve MOPs, we
must understand several concepts below.

Dominance: Suppose the optimization problem is a minimization problem. A vector
�u = (u1, u2, u3, . . . , un) is said to dominate �v = (v1, v2, v3, . . . , vn) if and only if
ui ≤ vi, ∀i ∈ {1, 2, 3, . . . , n} ∧ uj < vj, ∃j ∈ {1, 2, 3, . . . , n}, denoted by �u� �v. When
�u is not dominated by any other vectors, so �u is called a non-dominance solution, also
known as a Pareto optimality.

Pareto optimality: For a MOP, a feasible solution x ∈ �n is called Pareto optimality if
and only if � x̃ ∈ �n such that F(x̃)�F(x).

Pareto Front: For a MOP, a solution set contained the whole Pareto optimality solution
is called a Pareto front (PF), which is usually an equilibrium surface.

2.3 Bacterial Foraging Optimization

Passino [12] firstly proposed BFO in 2002, which is a novel Swarm Intelligence (SI)
optimization algorithm simulating bacteria colony foraging behavior. Compared with
the behavior of a single bacterium, the bacteria colony can produce swarming effect
that helps the whole community gather effectively in areas with high nutrition. More
information about BFO can refer to [12].

3 Bi-objective Bacterial Foraging Optimization

In this section, the conventional BFO is extended to a bi-objective optimization based
on Pareto dominance and the external archive methods. In the proposed BIBFO, novel
leader selection, swarm strategy for reproduction and elimination are introduced to fit
the bi-objective optimization problem. The DBSCAN is adopted to select a global leader
from external archive for chemotaxis in comprehensive learning, which is expected to
direct evolution. Unlike the original BFO, the reproduction and elimination-dispersal
are performed based on the external archive instead of the evolutionary group. Both
reproduction and elimination are based on elitism expected to speed up convergence
rate. The overall framework is shown in Fig. 1.
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Fig. 1. The overall framework of BIBFO

3.1 Leader Selection Strategy

The Pareto front of bi-objective problems is usually a group of discrete points in a plane.
As the number of non-dominance solutions increases, the distribution and density of
the Pareto front also change. To enhance the uniformity of Pareto front, it is necessary
to explore more latent solutions in some empty space of current Pareto front, which
filled the gap and store more even-distributed Pareto optimal solutions. DBSCAN is a
typical clustering method based on density distance, by which it can identify the data
set distribution and determine different class label [15]. Meanwhile, it does not need to
know the clustering number ahead of time and have good clustering ability for irregular
sample distribution. Therefore, to improve the capability to search empty solution space,
the DBSCAN is applied in the selection of a global optimal solution from the external
archive in current iteration for comprehensive learning strategy.

Wang et al. applied a comprehensive strategy in bacterial colony optimization, which
blend an operator learning from bacteria colony optimal solution in current iteration has
shown great ability in global search and convergence speed [16]. The comprehensive
learning mechanism is calculated as follows:

θ ti = θ t−1
i + C(i) ∗

[
f1 ∗

(
leader t − θ t−1

i

)
+ f2 ∗

(
θbest i − θ t−1

i

)]
(2)

where θ ti is the position of ith bacterium in tth iteration, the f1 and f2 are two weight
parameters, and θbest i denotes the history optimumof ith bacterium. leadert is considered
as a leader in the direction of evolution.

For MOPs, it is important to note that the goal is to find out as many uniformly
distributed Pareto optimality as possible. To search for a more even-distributed non-
dominance solution set, current non-dominance solutions are clustered by the DBSCAN
to several classes. In two adjacent categories withmaximumgap, a bacterium that closest
to the other category is selected to calculate the leader of current iteration. A virtual
bacterium is introduced as a leader to direct evolution, it can be calculated as follows:

leadert = 1

2
∗(
Positiont1 + Positiont2

)
(3)
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where Positiont1,2 is the bacterium selected from the 1st or the 2nd category in tth
chemotaxis iteration.

3.2 Swarm Strategy

For fully improving the search ability, an adaptive chemotaxis step size is applied in
the proposed BIBFO. The core idea is that the initialized bacterium needs a stronger
exploration ability in the early stage of searching and more exploitation competence
in the late search process [17]. Therefore, the bigger step size is given to initialized
bacterium, the more significant the linear decline is with the increase of chemotaxis
iteration. The formula is as follows:

C(i) = Cmin +
(

iteration max − iteration t

iteration max

)
∗ (Cmax − Cmin) (4)

where Cmin and Cmax represent the minimal and the maximal chemotaxis step size
predefined at the start of chemotaxis respectively, iteration max is the maximal number
of iterations, iterationt represents the tth iteration.

To retain more excellent bacteria, the reproduction and elimination process were
modification based on elitism idea. According to dominance rule, the bacteria of search
group will be replaced by the non-dominated ones in external archive when meet the
conditions for reproduction, that is, some non-dominance solutions will perform search
function after reproduction.

The modified elimination process means that the bacteria will be replaced by the
neighborhood of a randomly-chosen non-dominated solution in current iteration with a
predefined probability.

3.3 External Archive Control

Colello [7] firstly applied an adaptive external archive to store the non-dominance solu-
tion inmulti-objective particle swarm optimization. As the search progresses, an increas-
ing number of non-dominance solution is found out while the external archive size is
limited. Thus, it is necessary to apply some strategies to control the external archive
to obtain high diversity. In the proposed BIBFO, the crowding distance method [4] is
applied to identify the density of the non-dominance solution distribution. The strategy
is that the bacteria that are in the low-density area have a better chance of being preserved
than bacteria that are in a higher one. After calculating the crowding distance of each
bacterium, the bacteria were sort in an order according to their crowding distance and
the bacterium with the highest crowding distance will be deleted.

Aim to achieve the more uniformly-distributed Preto Front, the proposed BIBFO
will not allow the dominated solutions with the same cost enter into the external archive.
To be specific, there are serval bacteria may consume the same cost value due to the
SI property that the search members will learn from the best one. For a Pareto method,
the solutions with the same cost value are redundant and may decrease the diversity of
final Pareto set. In order to avoid these adverse effects, only one in the solutions with
the same cost value will be selected to preserve in external archive. The pseudo code of
BIBFO is shown in the Table 1.
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Table 1. The pseudo-code of BIBFO

BIBFO
1 Initialize: npop, MaxIts, Ped, Cmin, Cmax, , , Ns, Minpts, ,etc.
2 For its = 1: the maximum number of chemotaxis MaxIts
3 For each bacterium
4 Updating position with chemotaxis operator using (2)
5 Updating the bacterium history best
6 End For
7 Updating the external archive, do
8 Adding non-dominance bacteria into the external archive
9 Controlling the external archive with crowding distance method
10 Updating the global optimum leader with DBSCAN clustering algorithm
11 If meet the reproduction condition, do
12 Reproduce operation
13 If meet elimination and dispersal condition, do
14 Eliminate operation
15 its ← its + 1
16 End For
17 Output Pareto front

4 Experiments and Results

4.1 Problems and Algorithm Settings

Six well-known benchmarks including Zitzler studies (ZDT1 ~ 3 [18]), Schaffer
(SCH1[19]), Fonseca (FON [20]) and Kursawe (KUR [21]), are chosen to test the pro-
posed BIBFO, and all of them are bi-objective problems with no constraints. To verify
that BIBFO improves the performance of traditional BFO extended to MOPs, 3 multi-
objective optimization algorithms based on bacteria colony are selected for comparing
experiments, includingMORBCO [11], MCMBFO [14], MOBCO [11]. The parameters
of the comparing algorithms were consistent with the cited literatures.

To evaluate the performance of a multi-objective optimization algorithm, the gener-
ation distance (GD) and the diversity (�) are introduced in this paper. GD is a distance-
based measurement, which estimates the distance between the actual Pareto front and
the current Pareto optimality set [22]. Diversity (�), is a metric reflecting the extent of
the obtained solution set [4].

As for the proposed BIBFO, the parameters are as follows: npop= 100,Cmin = 0.05,
Cmax = 1.2, MaxIts = 300, f1 = 3, f2 = 1, Ped = 0.5, Ns = 5. As the DBSCAN, the
ε representing the neighbor threshold and Minpts describing the minimum number of
samples in a class, are set 0.02 and 1 respectively. All of these comparing algorithms, the
population size and the external archive size are 100, the maximum number of iterations
is set as 1000. The tests were conducted 30 times independently. All of experiments were
conducted in MATALAB R2018b, AMD Ryzen 7 4800H, 2.90 GHz under Windows 10
system.
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4.2 Results and Analysis

The comparison results are shown in Table 2. It shows the performance scores of the
test algorithms on the generation distance and diversity of each benchmark. The best
results obtained by algorithms have been highlighted in bold. It can be concluded that the
average performance of BIBFO do better than the other compared algorithms in terms
of these benchmarks.

Table 2. Comparison of performance metrics on benchmarks

distance (GD) Diversity (�)

Best Worst Mean Std. Best Worst Mean Std.

ZDT1 BIBFO 3.47E−04 7.83E−04 4.89E−04 1.13E−04 1.56E−01 2.76E−01 2.08E−01 2.92E−02

MORBCO 1.37E−03 7.00E−03 3.60E−03 1.30E−03 4.75E−01 8.30E−01 6.26E−01 7.77E−02

MCMBFO 7.90E−03 9.00E−03 8.40E−03 3.86E−04 6.09E−01 6.96E−01 6.54E−01 3.33E−02

MOBCO 1.22E−01 5.55E−01 2.72E−01 9.91E−02 4.18E−01 9.24E−01 6.88E−01 1.18E−01

ZDT2 BIBFO 4.00E−04 8.51E−04 5.39E−04 1.10E−04 1.52E−01 3.17E−01 2.63E−01 3.70E−02

MORBCO 1.05E−03 9.74E−03 3.86E−03 2.30E−03 5.94E−01 8.48E−01 6.80E−01 6.90E−02

MCMBFO 8.80E−03 1.40E−02 1.18E−02 1.90E−03 6.06E−01 6.41E−01 6.21E−01 1.37E−02

MOBCO 1.41E−02 5.68E−02 3.11E−02 1.03E−02 5.51E−01 8.39E−01 6.84E−01 7.03E−02

ZDT3 BIBFO 7.15E−04 1.17E−03 9.40E−04 1.20E−04 3.33E−01 6.53E−01 4.72E−01 8.48E−02

MORBCO 3.45E−03 1.58E−02 6.70E−03 3.01E−03 5.60E−01 9.60E−01 7.32E−01 8.85E−02

MCMBFO 6.30E−03 7.10E−03 6.70E−03 2.99E−04 5.58E−01 6.62E−01 6.23E−01 4.40E−02

MOBCO 7.63E−02 2.53E−01 1.50E−01 4.77E−02 4.85E−01 8.36E−01 6.49E−01 8.74E−02

SCH1 BIBFO 7.58E−04 1.08E−03 9.34E−04 7.21E−05 1.59E−01 2.29E−01 1.92E−01 1.68E−02

MORBCO 5.07E−03 8.46E−03 6.61E−03 9.11E−04 5.02E−01 6.32E−01 5.66E−01 3.56E−02

MCMBFO 5.80E−03 7.20E−03 6.40E−03 5.75E−04 4.97E−01 6.40E−01 5.37E−01 4.16E−02

MOBCO 5.13E−03 1.04E−02 7.00E−03 1.14E−03 5.03E−01 6.42E−01 5.64E−01 3.67E−02

FON BIBFO 2.92E−04 4.94E−04 3.89E−04 6.65E−05 1.60E−01 3.13E−01 2.22E−01 3.98E−02

MORBCO 1.31E−03 2.54E−03 1.98E−03 2.98E−04 5.40E−01 6.84E−01 5.98E−01 3.66E−02

MCMBFO 3.30E−03 3.90E−03 3.60E−03 5.80E−04 5.32E−01 5.87E−01 5.62E−01 3.78E−02

MOBCO 3.00E−03 4.17E−03 3.53E−03 2.98E−04 4.97E−01 6.86E−01 5.85E−01 4.31E−02

KUR BIBFO 7.36E−03 2.69E−02 1.23E−02 4.47E−03 7.02E−01 9.59E−01 8.48E−01 6.13E−02

MORBCO 1.74E−02 4.91E−02 2.73E−02 7.45E−03 5.14E−01 7.72E−01 6.48E−01 6.51E−02

MCMBFO 2.38E−02 3.24E−02 2.89E−02 3.70E−03 6.67E−01 8.56E−01 7.61E−01 6.87E−02

MOBCO 2.95E−02 6.39E−02 4.23E−02 8.43E−03 5.20E−01 6.66E−01 5.99E−01 3.35E−02

As we have seen from Table 2, whether it is diversity or generation distance, the
performance metrics of BIBFO are much better than other algorithms, which can well
reflect that the distance between the true Pareto front and the Pareto optimal set obtained
by BIBFO is closer. Besides, the stability of BIBFO is also far superior to comparison
algorithms. To our knowledge, these results indicate that the proposed BIBFO further
improve the capability of BFO to tackle MOPs.

It is noted that the MOBCO is the weakest performance in any problems. On the
contrary, the MORBCO, which introduced a ring topology for bacterial communication
based on MOBCO, improved the performance to a certain extent. The MOBCO almost
defeated the MCMBFO incorporated multi-swarm cooperative operation among six
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benchmarks. It can be concluded that effective communication strategy and collaboration
strategy can greatly improve the performance of raw algorithm.

Fig. 2. The Pareto front obtained by BIBFO
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Due to the space limitation, only the optimal Pareto fronts gained by BIBFO were
displayed as Fig. 2. It can be observed that most the optimal Pareto fronts are close to
the true Pareto front. For specific problem, the decision dimensions of SCH1, FON, and
KUR are only 1 or 3, and the search range is relatively small. SCH1 and FON almost
cover the true Pareto front fully in each comparing algorithm. However, note that the
proposed algorithm performed poorly on the KUR function. The reason is that the true
Pareto front of the KUR function is discontinuous, which makes BIBFO choose a wrong
leader using the DBSCAN clustering method.

ZDT1 ~ 3 are relatively complicated, there are 30 dimensions in decision variable,
the search space is relatively large. From the experimental results, the BIBFO can also
achieve the expected results onZDT1~3andoutperformsother algorithms.However, the
performance of ZDT3 is slightly poor comparing to ZDT1 and ZDT2 for the partitioned
Pareto front distribution.

5 Conclusions and Feature Work

In this paper,weproposed abacterial foragingoptimization algorithmwithmulti-strategy
for bi-objective optimization. To be specific, leader selection operation using DBSCAN
incorporated into comprehensive learning chemotaxis, helps the BIBFO clarify the
evolution direction and thus speed up the convergence. Besides, the swarm strategy,
including linear decreasing chemotaxis step size, modified reproduction and elimina-
tion based on elitism, plays the key role on enhancing the search capability. Comparing
the other bacterial-based multi-objective algorithm, the modified external archive strat-
egy of BIBFO further excavated the role of the external archive and improved the storage
efficiency of non-dominated solutions.

Then the compared experimentswere conducted andproved that the proposedBIBFO
algorithm performs well on diversity and generation distance metrics of several bi-
objective benchmarks, which achieved the expected improvement effect. Results proved
that using BFOwithmulti-strategy are effective in enhancing the performance of solving
bi-objective problems.

Even so, BIBFO itself has its limitations. Compared with other swarm intelligence
algorithms, a big computation task cannot be ignored and it has multiple controllable
parameters that need to be adjusted according to different problems. In future work,
we will continue to improve the structure of the bacterial-based multi-objective algo-
rithm and enhance the effectiveness of multi-strategy to solve more complex MOPs and
applications.
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Abstract. DNAmolecular technology has graduallymatured and has beenwidely
used in the design of nanomaterials and chemical oscillators. In order to ensure
the correct setting of DNAmolecular oscillator, it is necessary to thoroughly study
the dynamic behavior of system. This paper studies the dynamics system of DNA
molecular oscillator based on DNA strand displacement. Modeling the reaction
process transforms the reaction process into a specific mathematical model. The
research results show that the influence of time delay is not considered in an
ideal state. Stability near the equilibrium point of system is determined by initial
reaction substrate concentration and reaction rate. Considering the time delay of
separation of DNA double-stranded molecules in the reaction process, the time
delay parameter is added to the system model. As the time delay increases, the
system changes from a stable state to an unstable state andHopf bifurcation occurs.
At the same time, the study found that both Hopf bifurcation direction and the
periodic solution are closely related to the time delay parameter. The result of
numerical simulation proves the correctness of our conclusion.

Keywords: DNA molecular oscillator · Time delay · DNA strand displacement ·
Hopf bifurcation · Hopf bifurcation direction

1 Introduction

In recent years, the complex dynamic characteristics of inorganic oscillators [1, 2] have
been known for a long time, but since they cannot be reprogrammed arbitrarily and
achieved by a set of standard guidelines, new design ideas need to be sought. Because of
the unique spontaneity [3], parallelism [4], programmability [5] and dynamic cascade of
DNA strand displacement technology [6–8], it is widely used in various nanostructures
[9, 10] device design and logic circuit [11] construction and DNA molecular oscillator
[12, 13] design. Therefore, it is possible to select DNA strand displacement technology
as a new idea of molecular oscillator design. The essence of DNA strand displacement
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reaction is the break of DNA double-strand molecule, in which a certain single-stranded
DNA molecule combines with a new “invader” with complementary base pairs through
foothold exchange. Different DNAmolecules have different interaction forces. Invading
strand DNA molecules with strong structural strength replace single-stranded DNA
molecules with weak structural strength in the original double-stranded DNAmolecules.

In order to better understand reaction process, it is necessary to establish a nonlinear
system model based on chemical reaction equation. In the past research, biochemical
modeling methods have been proposed [14, 15]. However, these models have shortcom-
ings. They do not consider inevitable time delay effects in reality. A large number of
studies have shown that time delay parameter is an important parameter for the gradu-
ated reaction kinetics. The state change of system depends not only on the current state
of system, but also on the state of system in the past period of time. The state change
of system is closely related to time delay parameter [16]. Bifurcation [17] is an impor-
tant research field of biochemical reaction dynamics. The phenomenon that topological
structure of each variable changes suddenly with the change of control parameters in a
dynamic system is bifurcation. Hopf bifurcation has greater research value. There are
many new methods [18] for analyzing the stability and Hopf bifurcation characteristics
of time-delay biochemical systems.

In the process of designing DNA molecular oscillators, there are many reasons that
may cause the results to not meet expectations. Therefore, this article will focus on
analyzing the system model. Through the method of chemical reaction modeling, a
molecular oscillator system model based on DNA strand replacement is established.
According to some previous studies on DNA strand displacement reaction, it can be seen
that it takes a certain time for the DNA duplex to separate and combine with the invading
single strand. In order to describe systemmodel more accurately, the time delay of DNA
double-strand separation is introduced, and a nonlinear time-delay system model is
constructed to study the stability of system. At the same time, Hopf bifurcation direction
and bifurcation periodic solution of the model are analyzed. It is of great significance
for the design of DNA molecular oscillator model and the follow-up research in related
fields.

The main contributions of this article are as follows: (1) In order to understand
the reaction process, a mathematical model based on the dynamics of DNA molecular
oscillator was established. (2) In the light of actual situation, the reaction mechanism of
DNA strand displacement is optimized to add time delay parameter to systemmodel. (3)
Through theoretical analysis and image simulation to study the stability of the system
and the Hopf bifurcation phenomenon, so as to help researchers better understand the
law of reaction.

2 Model Establishment

The reaction process of DNAmolecular oscillator system based on DNA strand replace-
ment is shown inFig. 1.Among them,FluxCAp,ProduceCApAq andRepA are substrates for
the reaction, and RepA is a fluorescent label chain for emitting fluorescent signals. When
FluxCAp is added to the reaction vessel as an input strand, it reacts with ProduceCApAq to
form intermediates Ap and ProduceintCApAq. Finally, RepA and the intermediate product
Ap undergo a secondary cascade reaction to produce two final output chains.
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Fig. 1. DNA molecular oscillator system based on DNA strand displacement

To simplifywriting, the entire reactionprocess is describedby the following equation.
⎧
⎨

⎩

A + B
K1←→
K−1

C + D

D + E
K2−→F + G

(1)

According to the conservation of mass, initial concentration of reactant is equal to the
sum of remaining concentration of reactant and concentration of product. Therefore, the
following relationships can be obtained.

⎧
⎪⎪⎨

⎪⎪⎩

A0 = A(t) + C(t)
A0 = A(t) + D(t) + F(t)
B0 = B(t) + C(t)
E0 = E(t) + F(t)

(2)

where A0, B0 and E0 represent initial concentration of reaction substrate FluxCAp,
ProduceCApAq and RepA respectively before the reaction starts.

Substituting the above quantitative relationship into the initial system, the following
low-latitude system equation can be obtained.

{
Ȧ(t) = −k1A(t)[B0 − A0 + A(t)] + k−1[A0 − A(t)][A0 − A(t) − F(t)]
Ḟ(t) = k2[A0 − A(t) − F(t)][E0 − F(t)] (3)

3 Positive Boundedness of Solution

In this part, from the perspective of practical problems, the boundedness of solution will
be proved.

Before reaction starts, the initial concentration of A(t),F(t) is A0 > 0,F0 = 0.
A(t) represents the initially added reactant, F(t) represents the concentration of product.
During the reaction, assume t = t1 > 0, A(t1) = 0 can be obtained from system (3).
The reciprocal of A(t1) is A′(t1) = k−1A0[A0 − F(t)] > 0, which shows that A(t) < 0
for t ∈ (t1 − δ, t1). But A0 > 0, δ is an arbitrarily small positive number. There is at
least a t2 ∈ (0, t1) ensures A(t2) = 0. This contradicts to the hypothesis. So A(t) > 0.
Select the function W (t) = A(t) + F(t), which is derived as:
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W ′(t) = A′(t) + F ′(t)
= k−1A

2
0 + k2A0E0 − [k1(B0 − A0) + k−1A0 + k2E0]A(t)

− [k−1A0 + k2(A0 + E0)]F(t) + (k−1 + k2)A(t)F(t) + (k−1 − k1)A
2(t) + k2F

2(t)

< M − qN (4)

where q = min{k1(B0 − A0) + k−1A0 + k2E0, k−1A0 + k2(A0 + E0)}.
Therefore 0 < A(t) < M /q+ δ, 0 ≤ F(t) < M /q+ δ are obtained from above. All

of the solutions of nonlinear system (4) are positively bounded.

4 Dynamic Analysis of Systems Without Time Delay

In this section, the dynamic of system under ideal conditions with no time delay
parameters will be studied.

First, by making all partial differential equations equal to zero.

−k1A(t)[B0 − A0 + A(t)] + k−1[A0 − A(t)][A0 − A(t) − F(t)] = 0
k2[A0 − A(t) − F(t)][E0 − F(t)] = 0

(5)

The equilibrium points of system (5) are as follows

E1 = (0,A0),E2 = (A0 − B0,B0),E3 =
(

−b + √
b2 − 4ac

2a
,E0

)

where a = k−1 − k1, b = k1(A0 − B0) − k−1(2A0 − E0), c = k−1A0(A0 − E0).
The local stability of the above three equilibriumpointswill nowbe studied.Linearize

the system at equilibrium point E = (A,F), the following characteristic equation can
be obtained.

∣
∣
∣
∣
λ + k1(B0 − A0 + 2A) + k−1(A0 − 2A − F) k−1(A0 − A)

k2(E0 − F) λ + k2(A0 − A − 2F + E0)

∣
∣
∣
∣ = 0 (6)

At equilibrium point E1 = (0,A0), the characteristic Eq. (6) becomes

λ2 + k1(B0 − A0) + k2(−A0 + E0)λ − k−1A0k2(E0 − A0) = 0 (7)

According to Routh-Hurwitz Criteria, the necessary and sufficient conditions for the
local asymptotic stability of the equilibrium point E1 are as follows:

{
k1(B0 − A0) + k2(−A0 + E0) > 0
−k−1A0k2(E0 − A0) > 0

(8)

In the same way, the necessary and sufficient conditions for stability at equilibrium
points E2, E3 are as follows

{
k1(A0 − B0) − k−1A0 + k2(E0 − B0) > 0
k−1B0k2(E0 − B0) > 0

(9)
⎧
⎨

⎩

k1(B0 − A0 + 2−b +
√

b2−4ac
2a ) + k−1(A0 − 2− b +

√
b2−4ac

2a − E0) > 0

−k2(A0 − −b +
√

b2−4ac
2a ) > 0

(10)



Stability and Hopf Bifurcation Analysis 541

5 Dynamic Analysis of Systems with Time Delay

In fact, it takes some time to complete DNA strand displacement reaction. Taking into
account the time delay of the separation of DNA double-stranded molecules, a time
delay parameter is added to the system model. The improved model is as follows:

⎧
⎨

⎩

Ȧ(t) = −k1A(t − τ)[B0 − A0 + A(t − τ)]
+k−1[A0 − A(t − τ)][A0 − A(t − τ) − F(t)]

Ḟ(t) = k2[A0 − A(t − τ) − F(t)][E0 − F(t)]
(11)

Research the equilibrium point E∗ = (A,F). Let A∗(t) = A(t) − A∗,F∗(t) =
F(t)−F∗ be the disturbance variable, and linearize the system (11) to get the following
form:
{
Ȧ∗(t) = [−k1(B0 − A0 + 2A) − k−1(A0 − 2A − F)]A∗(t − τ) − k−1(A0 − A)F∗(t)
Ḟ∗(t) = −k2(E0 − F)A∗(t − τ) − k2(A2 − A − 2F + E0)F∗(t)

(12)

Characteristic equation for system (12) is as following

|λe − J | = λ2 − d1λ + (a1λ − a1d1 + b1c1)e
−λτ = 0 (13)

When τ 	= 0 the change of τ value will cause corresponding change of characteristic
root of equation, which will cause the stability change of system model near the equilib-
rium point. Suppose there is a τ0 that makes the characteristic Eq. (13) of system have a
pair of pure imaginary roots, denoted as λ = iω(ω > 0), substituting the characteristic
Eq. (13), we can get

{
(a1d1 − b1c1) cosωτ − a1ω sinωτ = −ω2

a1ω cosωτ + (a1d1 − b1c1) sinωτ = −d1ω
(14)

In the light of cos2 θ + sin2 θ = 1, it can be solved.

f (ω) = e3ω
6 + e2ω

4 + e1ω
2 + e0 = 0 (15)

In linewith IntermediateValueTheorem,we can see that because lim
x→+∞ f (z) = +∞,

if h7 < 0, then there at least one point z0 ∈ (0,+∞) exists to make f (z0) = 0 hold.

Condition (1) Eq. (13) has at least one positive root, then Eq. (13) has a positive follow
ω, so that Eq. (11) has a pair of pure imaginary roots ±iω satisfying the following
equation.

τ0 = 1

ω0
arccos θ

−b1c1ω2

a21ω
2 + (a1d1 − b1c1))2

(16)

Derivation of Eq. (13) with respect to τ , one obtains

(
dλ

dτ
)−1 = − 2d1λ − d1 − ae−λτ

(a1λ − a1d1 + b1c1)λe−λτ
+ τ

λ
(17)
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Substitute λ = iω into the above formula, it derives that

(
dλ

dτ
)−1

∣
∣
τ=τ0 = P + Qi

M + Ni
+ iτ0

ω0
(18)

where

P = a1 cos ω0τ, ·Q = 2ω0d1 + a1 sin ω0τ, ·M = −a1ω
2
0 cos ωτ − (a1d1 − b1c1)ω0 sin ωτ

N = a1ω
2
0 sin ωτ − (a1d1 − b1c1)ω0 cos ωτ

Condition (2) If PM + QN 	= 0, then Re
{
( dλ
dτ

)−1
∣
∣
τ=τ0

}
= PM+QN

M 2+N 2 	= 0 holds.

If conditions (1) and (2) are established, the following conclusions can be drawn.

Theorem 1

(1) When τ ∈ (0, τ0), the system (11) is locally asymptotically stable.
(2) When τ ≥ τ0, the system (11) loses its steady state at the equilibrium point and

Hopf bifurcation occurs. The system switches between a stable equilibrium state
and a limit cycle, where τ0 is the critical parameter.

6 Hopf Bifurcation Direction

This section will use the central flow pattern and normal form theorem to study the
bifurcation direction of Hopf bifurcation and the periodic nature of bifurcation periodic
solutions. For calculation convenience, let τ = τ0 + μ,μ ∈ R, and normalize the time
delay t = (t/τ). Transform system (11) into a functional differential equation.

ẋ(t) = Lμ(xt) + f (μ, xt),Lμ(φ) = (τ0 + μ)[B1φ(0) + B2φ(−1)] (19)

By Riesz Representation Theorem, there exists a function η(θ, μ) of bounded
variation for θ ∈ [−1, 0], such that

Lμφ =
∫ 0

−1
dη(θ, μ)φ(θ) (20)

In practical applications, choosing the following equation.

η(θ, μ) = (τ0 + μ)B1δ(θ) − (τ0 + μ)B2δ(θ + 1) (21)

For ϕ ∈ [−1, 0], the define of A(μ)φ and R(μ)φ are:

A(μ)φ =
{

dφ(θ)
dθ

, θ ∈ [−1, 0)
∫ 0
−1 dη(θ, μ)φ(θ), θ = 0

,R(μ)φ =
{
0, θ ∈ [−1, 0)
f (μ, φ), θ = 0

(22)
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Then, define a bilinear inner product, for φ ∈ C1
([−1, 0],R2

)
, ψ ∈

C1
(
[0, 1], (R2

)∗)
.

〈ψ(s), φ(θ)〉 = ψ(0)Tφ(0) −
∫ 0

θ=−1

∫ θ

ξ=0
ψ

T
(ξ − θ)dη(θ)φ(ξ)dξ (23)

where η(θ) = η(θ, 0), and satisfied 〈ψ(s),A(0)φ(θ)〉 = 〈A∗(0)ψ(s), φ(θ)〉.
Through calculation we can know

D = [1 + γ γ ∗ + τ0e
iω0τ0(A + Cγ ∗)]−1 (24)

Next, calculate the coordinates, which describes the center manifold C0 at μ = 0.
Let xt be the solution of (24), when μ = 0, define

z(t) = 〈
q∗, xt

〉
,W (t, θ) = xt − 2Re{z(t)q(θ)} (25)

On the center manifold C0, W (t, θ) can be represented as

W (t, θ) = W (z(t), z(t), θ) = W20(θ)
z2

2
+ W11(θ)zz + W02(θ)

z2

2
+ · · · (26)

where z and z∗ are local coordinates for the center manifold C0 in the direction vectors
q and q∗. For the solution xt ∈ C0 and μ = 0, it derives that

ż(t) = iτ0w0z + q∗T (0)f0(z, z) = iτ0w0z + g(z, z) (27)

Through simple calculation, the following coefficient expressions that determine the
properties of Hopf bifurcation can be obtained.

⎧
⎨

⎩

c1(0) = i
2w0τ0

(
g11g20 − 2|g11|2 − |g02|2

3

)
+ g21

2 , β2 = 2Re{c1(0)}
μ2 = − Re{c1(0)}

Re{λ′(τ0)} , T2 = − Im{c1(0)}+μ2 Im{λ′(τ0)}
w0τ0

(28)

Theorem 2

(1) The sign of μ2 determines the direction of Hopf bifurcation. If μ2 > 0, Hopf
bifurcation is supercritical. If μ2 < 0, Hopf bifurcation is subcritical.

(2) The sign of β2 determines stability of periodic solution. If β2 < 0, periodic solution
of bifurcation is stable; If β2>0, periodic solution of bifurcation is unstable.

(3) If T2 > 0, the period of the limit cycle is increasing. If T2 < 0, the period of the
limit cycle decreases.
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7 Numerical Simulation

In this Section, the results of numerical simulation will verify correctness of previous
theoretical analysis. Parameters of the system (4) is taken from [14], A0 = 0.22× 10−7,
B0 = 0.44 × 10−7, E0 = 1 × 10−7, k1 = 1.2 × 106, k−1 = 2.2 × 105, k2 = 7.4 × 105.
After calculation, the critical value of the bifurcation control parameter is τ0= 27.716.

When τ = 22 < τ0, it can be obtained from the system state trajectory diagram in
Fig. 2 that the system is locally stable at the equilibrium point. When τ = τ0 = 27.716,
the control parameter reaches the critical value, and the system state switches between
stable equilibrium point and limit cycle. It can be seen from Fig. 3 that after shock, the
system finally converged to one point. When τ = 29 > τ0, time delay reaches critical
value. From the system state trajectory diagram in Fig. 4, it can be seen that the system
loses stability at equilibrium point and Hopf bifurcation occurs.

By calculating (33), the following results can be obtained:

μ2= 1.252 × e+23, β2= −1.479 × e+15, T2= −4.027 × e+20

Fig. 2. System trajectory diagram and state variable diagram for time-delay τ = 22 < τ0

Fig. 3. System trajectory diagram and state variable diagram for time-delay τ = τ0 = 27.716

Fig. 4. System trajectory diagram and state variable diagram for time-delay τ = 29 > τ0
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It can be seen from the calculation result of (28) that μ2 > 0 β2 < 0 and T2 < 0. In
the light of Theorem 2, the bifurcation of systemmodel (11) is a supercritical bifurcation,
the bifurcation phenomenon should occurwhen the control parameter exceeds the critical
value. In connection with the state trajectory diagrams of the system in Fig. 2 and Fig. 4,
the Hopf bifurcation occurs at τ ≥ τ0. This confirms our point of view. β2 < 0 indicates
that the periodic solution is stable, and the stable period of the state variable curve in the
above figure verifies that the theory is correct. T2 < 0 means that the periodic motion is
reduced. It can be clearly seen from state variable diagram in Fig. 4 that the oscillation
amplitude of each variable of system gradually decreases.

8 Conclusion

The dynamic characteristics of DNA molecular oscillator system based on DNA strand
displacement reaction is the focus of this article. Research results show that under ideal
conditions without considering the influence of time delay on this system. When the
system reaches an equilibrium state, the stability of system is closely related to the initial
concentration of reactants and the reaction speed. By studying a more realistic system
modelwith time delay, it can be seen that the time delay ofDNAdouble-strand separation
cannot be ignored, and its changewill often cause the stability of systemmodel to change
or even lose stability andoccurHopf bifurcation.Then, usingparadigm theory and central
manifold theorem, the direction of Hopf bifurcation and the stability of bifurcation
periodic solution are studied in detail. This is conducive to a more comprehensive grasp
of the dynamic characteristics of the systemmodel. In the future, system stability control
and Hopf bifurcation control will become important research directions.
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Abstract. As one of the basic arithmetic gates of DNA circuits, the DNA subtrac-
tion gate plays an important role in the design and optimization of circuits. A non-
linear system with stochastic perturbations and delays is constructed to accurately
describe the reaction process of DNA subtraction gates and comprehensively ana-
lyze the system dynamics. At the same time, enzyme recognition sites are added
to the original basis of the DNA subtraction gate to increase the reaction rate.
According to the law of conservation of quality, the dimensionality reduction of
the systemmodel with stochastic perturbation and time delay is performed, which
greatly reduces the computational complexity. The properties of the solution of a
DNA subtraction gate system are discussed, and the Lyapunov analysis proves that
the model solution is global and unique. The properties of the solutions indicate
that the constructed DNA subtraction gate system with stochastic perturbations
and time delays is of practical significance. Through systematic ergodic analysis,
it is found that the DNA subtraction gate system is distributed smoothly, which
provides a theoretical basis for the realization of the DNA subtraction function.
The results of numerical simulation show that the DNA subtraction gate can be
implemented successfully under the influence of stochastic disturbance and time
delay.

Keywords: DNA subtraction gate · Time delay · Stochastic perturbation ·
Stationary distribution · Ergodicity

1 Introduction

DNA strand displacement technology has been used to construct a variety of molecular
circuits [1–5] and has beenwidely applied in fields ofmolecular computing such as intel-
ligent drug delivery, molecular diagnosis, and treatmentmanagement. ADNAmolecular
circuit is designed according to the principle of DNA strand displacement, describing
the input signal of the basic unit door using a DNA molecule to realize operation at that
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level [6–8]. The DNA subtraction gate, as a basic arithmetic operation gate, is the basic
unit gate for building DNA circuits that execute specific instructions [9]. To realize the
optimal design of a DNA subtraction gate, it is necessary to reasonably sequence the
bases and master the dynamic law of the reaction process. When studying the dynamics
of the system, it is crucial to accurately construct the complete nonlinear system model.

However, there are few studies on the dynamic analysis of DNA molecular circuits.
Anshula et al. proposed to use three types of building blocks (propagators, connectors,
and solution blocks) to construct a DNA-based calculator. Performing addition and
subtraction operations through algorithmic self-assembly provides a potential platform
for constructing various types of DNA algorithm crystals (such as flip-flops, encoders,
and multiplexers) [10].

Considering the influence of random noise in the environment, constructing a DNA
subtraction gate model with stochastic disturbance is more consistent with the real sit-
uation of the reaction. Scholars have recently considered the state change of double-
well oscillators under the influence of white noise and sinusoidal excitation [11]. Thus,
stochastic perturbation is a crucial reference factor for analyzing the dynamic behavior
of a nonlinear system model. Stochastic disturbance and time delay interact in a subtle
and complex way in a DNA subtraction gate, and the time delay is used as a vital param-
eter in establishing a mathematical model to better study its dynamic characteristics.
This article studies the dynamic behavior changes of a DNA subtraction gate caused by
a time delay under stochastic disturbance.

The DNA subtraction gate is the cornerstone of a large-scale cascaded circuit. The
analysis of its dynamic behavior aids in the optimal design of a logic circuit. Based on
the DNA subtraction gate reaction process and considering the influence of stochastic
disturbance and time delay, a stochastic delay differential system is established in this
article. The stochastic disturbance is environmental white noise, and the properties of
the solution under the influence of white noise and time delay are explored. In addition,
Lyapunov analysis proves that the solution of the system is positive and global, which
verifies that the constructed model is realistic. Through dynamic behavior analysis, it is
concluded that the DNA subtraction gate system is ergodic even at low noise intensity.
Numerical simulation confirms our conclusions and indicates that the DNA subtraction
gate reaction system can be well used.

2 Preparation

We modified the DNA strand in a DNA strand displacement reaction design subtraction
gate [12] by adding an enzyme recognition site. This is because the enzyme can quickly
catalyze the reaction of the substance and increase the reaction rate of the subtraction
gate. The reaction flowchart is shown in Fig. 1. Considering the material transformation
after adding the enzyme, the concentration change of substance A in this process is
expressed by the Michaelis-Menten equation. In the DNA subtraction gate reaction
process, A, B, E and G are reactants; C, D are intermediate products; F1, F2, H1 and
H2 are products of the reaction; and ki(i = −1, 1, 2, 3) is the rate of reaction.

The entire reaction process is expressed as

A + B
k1←→
k−1

C + D
k2−→ F1 + F2, G + C

k3−→ H1 + H2 (1)
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Fig. 1. DNA subtraction gate reaction process. C∗ is the intermediate in the first step

Based on model (1), the equation of the reaction system is constructed as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ȧ(t) = k−1C(t)D(t) − k1A(t)B(t)
Ḃ(t) = k−1C(t)D(t) − k1A(t)B(t)
Ċ(t) = k1A(t)B(t) − k−1C(t)D(t) − k3C(t)G(t)
Ḋ(t) = k1A(t)B(t) − k−1C(t)D(t) − k2D(t)E(t)
Ė(t) = −k2E(t)D(t), Ḟ1(t) = k2E(t)D(t)
Ḟ2(t) = k2E(t)D(t), Ġ(t) = −k3H1(t)H2(t)
Ḣ1(t) = k3C(t)G(t), Ḣ2(t) = k3C(t)G(t)

(2)

From the law of conservation of quality in the chemical reaction process, the above
system is expressed as

⎧
⎨

⎩

A(t) = k−1C(t)D(t) − k1A(t)B(t)
Ċ(t) = k1A(t)B(t) − k−1C(t)D(t) − k3C(t)G(t)
Ė(t) = −k2E(t)D(t)

(3)

At present, the DNA subtraction gate model is a deterministic system, and construct-
ing a mathematical model that can fully describe the nature of the system is the focus of
this article. The enzyme recognition site is added to the original DNA strand to increase
the reaction rate. In order to more accurately simulate the reaction process of the DNA
subtraction gate, a DNA subtraction gate model with stochastic disturbance and time
delay is established, which is recorded as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ȧ(t) = k−1C(t)[A0 − E0 − A(t) + E(t)] − k1A(t)[B0 − A0 + A(t)]
−vmaxA(t)/(Km + A(t)) + σ1A(t)dB1(t)

Ċ(t) = k1A(t)[B0 − A0 + A(t)] − k−1C(t)[A0 − E0 − A(t) + E(t)]
−k3C(t − τ)[H0 − A0 + A(t) + C(t)] + σ2C(t)dB2(t)

Ė(t) = −k2E(t)[A0 − E0 − A(t) + E(t)] + σ3E(t)dB3(t)

(4)
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In the above system, vmax represents the maximum reaction rate, and Km is a charac-
teristic constant of the enzyme, which is relatively constant. And B1(t), B2(t), B3(t) are
Brownian motions defined by independent standards in the complete probability space
(�, F , P), and σ 2

1 > 0, σ 2
2 > 0, σ 2

3 > 0 are intensities of white noise. Let complete
probability space (�,F , {Ft}t≥0,P) with filtration {Ft}t≥0 approving the usual condi-
tions, i.e., it is right continuous, and unless otherwise stated, F0 contains all P-empty
sets. Let

R
n+ = {

A ∈ R
n : Ai > 0 for all 1 ≤ i ≤ n

}
(5)

The initial value A(t0) = A0 ∈ R
n, and B(t) = (B1(t), . . . ,Bm(t))T , t ≥ 0

denotes m-dimensional standard Brownian motion defined on the above probability
space.

3 Existence and Uniqueness of the Positive Solution

For any initial value, in order to get the only global positive solutions, the system (4)
will not explode in a limited time. The requirement of the locally Lipschitz condition
coefficient and linear growth condition [13], this project is nonlinear, coefficient (4) is
apparently not keep linear growth condition, so explore system solution in a limited
time. To solve this problem, Lyapunov analysis is used to prove that the solution of the
system is positive and global [14].

Theorem 1 For the given initial value {(A(t),C(t),E(t)) : −τ ≤ t ≤ 0 ∈
C([−τ, 0]);R3+}, the unique solution (A(t),C(t),E(t)) is defined for all t ≥ −τ , and
the solution still exists in R

3+ with probability 1, i.e., (A(t),C(t),E(t)) ∈ R
3+ for t ≥ 0

almost surely.

Proof Since the system is locally Lipschitz continuous for any initial value{
(A(t),C(t),E(t)) : −τ ≤ t ≤ 0 ∈ C([−τ, 0]);R3+

}
, DNA subtraction gate systems

with stochastic disturbance and time delay are defined to have a unique local positive
solution (A(t),C(t),E(t)) at t ∈ [−τ, τe), where τe is the explosion time. If τe = ∞ a.s.,
then the solution to the system is global. Let us make n0 ≥ 0 big enough to reach
A(t),C(t),E(t) within the interval [1/n0, n0]. For each positive integer n ≥ n0, define
the stopping time:

τn = inf{t ∈ [0, τe) : min{A(t),C(t),E(t)} ≤ 1/n or max {A(t),C(t),E(t)} ≥ n}.
(6)

Throughout this article, we set inf φ = ∞, and as usual, φ denotes the empty set.
According to the above conditions, τn is increasing as n → ∞. Set τ∞ = lim

n→∞ τn, where

τ∞ ≤ τe a.s. Suppose τ∞ = ∞,a.s. holds. Then (A(0),C(0),E(0)) ∈ R
3+ for all t ≥ 0

and τ∞ = ∞. This means that to complete the proof, all we require showing is that
τ∞ = ∞, a.s. There is an integer n1 ≥ n0 such that P{τn ≤ T } > ε, for all n ≥ n1.
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Define a C2 function V (A,C,E) : R3+ → R
3
+ by

V = (A − 1 − lnA) + (C − 1 - lnC) + (E − 1 − lnE) + 2k3
∫ t
t−τ

C2(s)ds

+k3
∫ 0
t

∣
∣ 1
2A

2(s)(k3 + k3) + C2(s)(2k−1 + 1
2k3)

∣
∣ds

(7)

Calculate the differential operator of the above formula and simplify it to get

LV ≤ k1A(t) + k1(B0 − A0) + k−1C(t) + vmax

Km + A(t)
− k−1A(t) + k−1E(t) − 1

2
k2E

2

− k3C(t − τ)[H0 − A0 + A(t) + C(t)] + k−1(A0 − E0) + k3(H0 − A0)C(t − τ)

−k3C
2(t − τ) − k2(A0 − E0)E(t) + σ3(E − 1)dB3(t) + k2(A0 − E0) + σ1(A − 1)dB1(t)

+ σ2(C − 1)dB2(t) + k2E(t) − k2A(t) ≤ K (8)

where K is a positive constant. Integrate both sides of the inequality and take the
expectation EV ≤ V (A(0),C(0),E(0)) + E

∫ τn∧T
0 Kdt ≤ V (x(0), y(0)) + KT .

Define �n = {τn ≤ T }, n ≤ n1. Then, by (4), P(�n) ≥ ε. Note that for every
ω ∈ �n, there exists at least one A(τn, ω),E(τn, ω), or C(τn, ω) that equals either n or
1/n; V (A(τn),C(τn),E(τn)) are no less than 1/n − 1 − log 1/n = 1/n − 1 + log n or
n − 1 − logn. Consequently, V (A(τn),C(τn),E(τn)) ≥ (n - 1 - logn)∧ ( 1n − 1+ log n).
It then follows from (9) that

V (A(0),C(0),E(0)) + KT ≥ E[1�n(ω)V (A(τn),C(τn),E(τn))]
≥ ε[(n - 1 - logn) ∧ (1/n − 1 + log n)], (9)

Where 1�n(ω) is the indicator function of �n. Letting n → ∞ leads to the contra-
diction that ∞ > V (A(0),C(0),E(0)) + KT = ∞. Hence, there is τ∞ = ∞ a.s. This
completes the proof.

4 Stationary Distribution and Ergodicity

Ergodicity is a hallmark of dynamic analysis of DNA subtraction gate systems. Ergodic-
ity is a unique stationary distribution, and it can be predicted that the system will remain
stable over time.

Let A(t) be a homogeneous Markov process with stochastic differentiation in El

(Euclidean l space) such that dA(t) = b(A)dt +
k∑

r=1
gr(A)dBr(t). The diffusion matrix

is �(A) = (λij(A), λij(A)) =
k∑

r=1
gir(A)gjr(A).

Lemma [15]. Suppose there is a bounded domain U ⊂ El with regular boundaries 


and the following properties:

(a.1) In the domain U and some vicinity thereof, the least eigenvalue of the diffusion
matrix �(A) is bounded away from zero
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(a.2) If A ∈ El\U is authentic, then the average time τ for the path from A to the set U
is limited, and supA∈K EAτ < ∞ for every compact subset K ⊂ El

Then the Markov process A(t) has a stationary distribution μ(·). Additionally, let
f (·) be a function integrable with respect to the measure μ. For all A ∈ El

PA

{

lim
T→∞ 1/T

∫ T

0
f (A(t))dt =

∫

El
f (A)μ(dA)

}

= 1. (10)

Remark 1. It is proved that there exists a stationary distributionμ(·) of Eq. (4), andR3+ is
large enough for our whole space. To verify (a.1), proof is required that for any bounded
domainD, there is a positive numberM such that

∑k
i,j=1 λij(A)ξiξj ≥ M |ξ |2,A ∈ D, ξ ∈

R
k. To validate (a.2), it is sufficient to show that there exists a neighborhood U and a

nonnegativeC2 -functionV (A(t),C(t),E(t)) such thatLV is non-positive for anyEl\U .

Definition. For any 0 < T < ∞,P

{

sup
0≤t≤T

|X (t)| = ∞
}

= 0,AMarkov processA(t) is

regular. If there is a bounded domainU such thatA ∈ El\U , then the regular processA(t)
with nonsingular diffusion matrix described by (4) is called recursive (i.e., the smallest
eigenvalue of �(x) is far from zero in each bounded domain in El): P{τA < ∞} = 1,
where τx = inf{t > 0 : X (0) = x,X (t) ∈ U } is the striking time of U for A(t).

Theorem 2. Suppose Theorem 1 is satisfied. For any initial value (A(0),C(0),E(0)) ∈
R
3+, there is a stationary distribution μ(·) for nonlinear model (4) and it is ergodic.

Proof In order to prove the theorem, we first prove that (a.1) and (a.2) hold. There
exists a positive constant M = min

{
σ 2
1 A

2, σ 2
2C

2, σ 2
3 E

2, (A,C,E) ∈ U
}

> 0 such that
3∑

i,j=1
λij(A,C,E)ξiξj = σ 2

1 A
2ξ21 + σ 2

2C
2ξ22 + σ 2

3 E
2ξ23 ≥ K |ξ |2 for all U , ξ ∈ R

3. The

equation provides favorable conditions to satisfy condition (a.1). After that, to verify
(a.2) is essential. We construct a nonnegative C2 function V (A(t),C(t),E(t)) and a
closed set U ∈ R

3+ such that sup(A,C,E)∈R2+\U LV (A,C,E) < 0. This assures that (a.2)

is satisfied. Define a C2 function h(A,C,E),

h(A,C,E) = l1A + l2C + E − l3E + 1

E
+ 1

A
− lnA − lnC − lnE, (A,C,E) ∈ R

3+
(11)

Let l1 = 1
A0

, l2 = k1−k2A0
A0(2k1+k−1)

, l3 = 1
2+ k−1l2

2k2
. Hereh(A,C,E) has a uniqueminimum

point (A,C,E)min = (
(1 + √

1 + 4l1)/2l1, 1/l2, (1 + √
1 + 4(1 − l3))/2(1 − l3)

)
,

and lim
k→∞

inf
(A,C,E)∈R3+\Dk

h(A,C,E) = +∞, where Dk = (1/k, k)× (1/k, k)× (1/k, k).

Define a C2− positive function of the form V (A,C,E) = h(A,C,E) − h(A,C,E)min.
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Then, H = 2k1(B0 − A0) + k−1(A0 − E0) + 2k2(A0 − E0) + k2 + k1 +
1
2

(
σ 2
1 + σ 2

2 + σ 2
3

)
.

LV ≤ H − (l1k1(B0 − A0) − l2k1(B0 − A0) − k1 + k−1 + k2)A − k−1(A0 − E0)C

A
− k2A

E

− [k−1(l2 − l1)(A0 − E0) − k−1]C − (k2(1 − l3)(A0 − E0) − k2 − k−1)E − k−1CE

A2
+ H , (12)

whereα = l1k1(B0 − A0)−l2k1(B0 − A0)−k1+k−1+k2, β = k−1(l2 − l1)(A0 − E0)−
k−1, the parameter χ is χ = k2(1 − l3)(A0 − E0) − k2 − k−1.

Define a closed set, Uε1,ε2,,s3 = {ε1 ≤ A ≤ 1/ε1, ε2 ≤ C ≤ 1/ε2, ε3 ≤ E ≤ 1/ε3}.
In addition, ε1, ε3 is a higher-order infinitesimal of ε2. Thus, ε1 = ε2, ε2 = ε1/2,

ε3 = ε3, and ε is sufficiently small that

H − α1/ε2 < −1,H − βε− 1
2 < −1,H − χ1/ε3 < −1,

H − k−1(A0 − E0)ε
− 3

2 < −1,H − k21/ε < −1,H − k−1ε
− 1

2 < −1. (13)

Set R
3+\Uε1,ε2,ε3 = D1 ∪ D2 ∪ D3 ∪ D4 ∪ D5 ∪ D6. For any (A,C,E) ∈

R
3+\U , denote D1 = {A > 1/ε1},D2 = {C > 1/ε2}, D3 = {E > 1/ε3},D4 =

{ε2 ≤ C ≤ 1/ε2, 0 < A < ε1}, D5 = {ε1 ≤ A ≤ 1/ε1, 0 < E < ε3}, D6 =
{0 < A < ε1, ε2 ≤ C ≤ 1/ε2, ε3 ≤ E ≤ 1/ε3}.

If (A,C,E) ∈ D1, LV ≤ H − αA ≤ H − αε−2; When D2, LV ≤ H − βC ≤
H − βε−1/2; And so on, the other four situations are similar, all available LV ≤ −1.
The proof is completed.

5 Numerical Simulations

The rationality of the theory is verified by numerical simulation. Since the nonlinear
stochastic differential system is too complex to be solved accurately, theMilsteinDiscrete
method [16] is used to find an approximate solution.

Example 1. Take the initial values A0 = 4×10−5,E0 = 5×10−5,B0 = 3×10−5, and
setG0 = 2×10−5, and the rate is set to k1 = 4×104, k2 = 0.9×105, k3 = 1.0×105,
vmax = 2 × 10−6,Km = 2 × 10−4, τ = 0.2, σ3 = 0.3, and σ1 = 0.25, σ2 = 0.2. The
system equilibrium point isP1

(
0, 2 × 10−5, 1 × 10−5

)
. Thus, as Theorem 2 states, there

is a stable distribution of DNA subtraction gates (see histogram on right side of Fig. 2).
Through the sample trajectory of each substance, it can be concluded that the DNA
subtraction gate model with stochastic disturbance and time delay has a solution, and
the model is stable. The rationality of the theoretical results is verified. Red represents
the solution of the perturbed system (4), blue represents the solution of the deterministic
system (3), and the subgraph on the right is the density function of the stable distribution
of the corresponding Brownian motion intensity.

Example 2. To illustrate the influence of Brownian motion and time delay on the DNA
subtraction gate, all parameters remain unchanged except the time parameter, which is



554 H. Li et al.

0 100 200 300 400 500
t

0

2

4
10-5

Stochastic
Deterministic

1 2 3 4
10-5

0

10

104

0 100 200 300 500
t

0

2

10-5

Stochastic
Deterministic

0.5 1 1.5 2 2.5 3
10-5

0

1

2
105

0 100 200 300 400 500
t

0

5

E(t)

10 -5

Stochastic
Deterministic

1 2 3 4 5
10 -5

0

5

10
104

F(t) 

A(t) 

Fig. 2. Solution of stochastic system and its histogram.

Fig. 3. The density function of C(t). As the time delay increases, the reaction process is delayed.

set to τ = 0.5, 3.5, 5.5. It can be seen from Fig. 3 that with the passage of time, the
impact of the system disturbance is delayed accordingly.

The sample trajectory of the image shows that the DNA subtraction gate model with
stochastic disturbance and time delay has a stable distribution, and can be implemented
smoothly under certain noise conditions.

6 Conclusions

We studied the dynamics of a DNA subtraction gate under the influence of stochastic
perturbation and time delay. Firstly, the original strand that realizes the function of the
DNA subtraction gate was improved. Based on the subtraction gate reaction, a nonlinear
system equation with stochastic perturbation and time delay was constructed. To ensure
that the system conforms to the actual situation, the existence of a globally unique
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positive solution was discussed. Secondly, Markov semigroup theory was used to prove
that DNA subtraction gates are ergodic, i.e., the system has a stable distribution. Through
theoretical analysis, it was found that the DNA subtraction gate system shows a stable
state under the influence of stochastic disturbance and time delay. Finally, Numerical
simulation results showed that nonlinear system equations with stochastic disturbances
and time delays can be used to describe the dynamic characteristics of a DNA subtraction
gate.
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Abstract. In this paper, a model of nonlinear dynamic system with Lévy jumps
based on cargo sorting DNA robot is studied. Firstly, nonlinear biochemical reac-
tion system based on cargo sorting DNA robot model is established. Considering
the influence of external disturbances on the system, nonlinear biochemical reac-
tion systemwith Lévy jump is built and its dimensionality is reduced. Secondly, in
order to prove that the built system conforms to the actual meaning, the existence
and uniqueness of the system solution is verified. Next, the sufficient conditions
for the completion of cargo pick-up of cargo sorting DNA robot and the continued
sufficiency are introduced, and the progress of cargo sorting DNA robot under
different noise intensities is analyzed. Then, it is proved that the positive recursion
of the reaction can better describe and show the persistence of the system. Finally,
numerical simulations verify the correctness of the theoretical results. The results
show that the end of cargo pick-up with DNA robots for cargo sorting is closely
related to the intensity of noise.

Keywords: Cargo sorting DNA robot · Nonlinear system model · Lévy jump ·
Lyapunov function · Positive recursion

1 Introduction

In recent years, DNA nanotechnology has produced a variety of functional nanostruc-
tures, among which the programmability of DNA nanostructures makes it possible to
provide conditions for nanorobots. Nanorobots can be used in biomedicine, military
fields, etc., which have very good application prospects, and have become a hot spot
in today’s research. Nanorobots realize robot operations by programming data into the
robot’s environment. In [1], the working principles of various DNA nanomachines are
described. Molecular robots to synthesize ion channels and DNA logic gates are intro-
duced in [2]. In [3], a programmable and autonomous molecular robot driven by DNA
hybridization are developed. Kabir et al. [4] discuss the latest development of swarm
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molecular robots, especially emphasize the effective use of biology and nanotechnology
in swarm molecular robots, and introduce the importance of regulating the interaction
between molecular robots in regulating their swarming. The latest developments in
liposome-based molecular robots are introduced in [5]. Chang et al. [6] design a sort-
ing and transporting robot and apply it to electrochemical biosensors to realize multiple
detection of micro-ribonucleic acid through alkaline enzyme cutting that drives the robot
to walk. Thubagere et al. [7] study cargo sorting DNA robot. DNA robots are also used in
many fields of medicine. Taylor et al. [8] construct a DNA-based closed-loop device to
manage diabetes molecular robots. Therefore, DNA nanotechnology is becoming more
andmore popular among researchers, and it also plays an important role in various fields.

In nature, most systems are nonlinear. In order to better analyze them, it can estab-
lish an appropriate mathematical model to express it more intuitively. Therefore, it can
establish nonlinear system model [9, 10], and perform sensitivity analysis [11], stability
analysis [12, 13], parameter estimation [14] and so on. Real life is full of randomness,
and random disturbance is inevitable. Many scholars study infectious disease systems
and population systems affected by Lévy noise. Lévy jump is often used in infectious
disease models [15, 16], proving that the influence of Lévy noise can lead to the extinc-
tion of diseases. In [17], Lévy jump is added to the symbiosis model, and the sufficient
conditions for the stability of the system’s distribution are analyzed. In [18], Lévy jump
is introduced into the predator system, and the sufficient conditions for the species’
continued survival and extinction are analyzed. Gao et al. [19] add Lévy jumps to the
multi-molecule biochemical reaction model, and analyze the conditions for the end
and duration of the system reaction. Gaussian white noise is only an idealization of
various random noises in reality, which can only describe small disturbances near the
mean value, and cannot simulate large-scale random disturbances, while Lévy noise
can describe large-scale random disturbances. In biochemical reaction system, there are
few studies with Lévy noise. Therefore, adding disturbances such as Lévy jumps in the
system can better understand the nature of the system.

Since the temperaturewill change during cargo pick-up process of cargo sortingDNA
robot, resulting in a large random disturbance, this phenomenon needs to be described by
a stochastic differential equation driven by Lévy noise. Focusing on the above problems,
this article discusses nonlinear biochemical reaction systemmodelwith Lévy jumpbased
on cargo sorting DNA robot. The main contributions of this research are as follows. For
the first time, Lévy noise is introduced into DNA strand replacement reaction of cargo
sorting DNA robot. The influence of noise intensity on the progress of cargo sorting
DNA robot during cargo pick-up process is studied.

The rest of this article is organized as follows: In Sect. 2, nonlinear biochemical
reaction model based on cargo sorting DNA robot with Lévy jump is established. In
Sect. 3, the existence and uniqueness of the positive solution of the system are analyzed.
In Sect. 4, the sufficient conditions for the end and the continuation of cargo picking
process of cargo sortingDNA robot are analyzed, and the robot’s progress under different
noise intensities is analyzed. In Sect. 5, the positive recursion to better describe the
continuity of the system is analyzed. In Sect. 6, numerical simulations are carried out to
verify the above conclusions. Finally, conclusions are drawn in Sect. 7.
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2 Modeling of Nonlinear Biochemical Reaction System with Lévy
Jump Based on Cargo Sorting DNA Robot

2.1 Modeling of Nonlinear DNA Robot Reaction System

In this section, a mathematical model of nonlinear biochemical reaction system based on
cargo sorting DNA robot will be established. The schematic diagram of cargo picking
process of cargo sorting DNA robot [7] is shown in Fig. 1.

Fig. 1. Schematic diagram of cargo picking process of cargo sorting DNA robot.

In order to further study the impact of cargo sorting DNA robot on the robot’s travel
during cargo picking process, nonlinear biochemical reaction model based on cargo
sorting DNA robot is built. According to Fig. 1, the net reaction equation of cargo
loading process can be obtained as

⎧
⎨

⎩

x + a
k1�
k−1

b + c

b + d →k2 y + e,
(1)

where x represents robot (inhibited), a represents robot trigger, b represents robot
(active), c represents waste, c represents cargo1, y represents robot carrying cargo1, e
represents inert, and k1, k−1 and k2 represent the reaction rate. According to Eq. (1) and
the mathematical modeling method, nonlinear model can be built as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = k−1b(t)c(t) − k1x(t)a(t)
ȧ(t) = k−1b(t)b(t) − k1x(t)a(t)
ḃ(t) = k1x(t)a(t) − k−1b(t)c(t) − k2b(t)d(t)
ċ(t) = k1x(t)a(t) − k−1b(t)c(t)
ḋ(t) = −k2b(t)d(t)
ẏ(t) = k2b(t)d(t)
ė(t) = k2b(t)d(t)

(2)

where x(t), a(t), b(t), c(t), d(t), y(t) and e(t) respectively represent the concentration
of x, a, y, b, c, d , and e at time t.

Based on Eq. (1), according to the law of conservation of mass, the relationship
between the initial concentration of the reactant the product can be obtained as

⎧
⎨

⎩

x0 = x(t) + c(t) = x(t) + b(t) + y(t)
a0 = a(t) + c(t)
d0 = d(t) + y(t)

(3)
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where x0, a0, d0 represent the initial concentration of reactants x, a and d , respectively.
According to Eq. (2) and Eq. (3), the following nonlinear biochemical reaction system
model can be obtained

{
ẋ(t) = α0 + α1x(t) + α2y(t) + α3x2(t) + k−1x(t)y(t)
ẏ(t) = β0 + β1x(t) + β2y(t) + k2y2(t) + k2x(t)y(t)

(4)

whereα0 = k−1x20,α1 = −2k−1x0−k1(a0 − x0),α2=−x0,α3 = k1+k−1,β0 = k2x0d0,
β1 = − k2d0, β2 = −k2(x0 + d0).

2.2 Modeling of Nonlinear DNA Robot Reaction System with Lévy Jump

During operation, DNA robots for cargo sorting may experience sudden and severe
disturbances during cargo loading, such as pressure shocks, temperature changes, and so
on. These factorswill cause large-scale randomdisturbances in cargo sortingDNA robot,
and the resulting phenomenon cannot be accurately described byEq. (4). Therefore, Lévy
jump is added to themodel, so that themodel canmore accurately describe themovement
of the robot in cargo pickup. The following nonlinear biochemical reaction model with
Lévy jump based on cargo sorting DNA robot is built.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx = (
α0 + α1x(t−) + α2y(t−) + α3x2(t−) + k−1x(t−)y(t−)

)
dt

−x(t−)y(t−)
(
σdB(t) + ∫

Y
γ (u)Ñ (dt, du)

)

dy = (
β0 + β1x(t−) + β2y(t−) + k2y2(t−) + k2x(t−)y(t−)

)
dt

+x(t−)y(t−)
(
σdB(t) + ∫

Y
γ (u)Ñ (dt, du)

)
,

(5)

whereB(t) is the standard one-dimensional Brownianmotion, σ 2 > 0 are the intensity of
white noise, Ñ is the compensated randommeasure defined by Ñ (dt, du) = N (dt, du)−
λ(du)dt, N is the Poisson counting measure, and λ is the characteristic measure of
N, which is defined on the finite measurable subset Y of (0,+∞), λ(Y) < ∞, γ (u) :
Y×� → R are bounded continuous functions, and |γ (u)|<l, l>0 are constants. Assume
that B and N are independent.

Assumption 1. |−αγ (u)/k| ≤ δ < 1 for any u ∈ Y, where α =
max{α1 + β1, α2 + β2}, k = max{α3, k2, 0.5(k−1 + k2)}.

In addition, 〈f (t)〉 is the mean value of the function f (t) on [0,∞), that is 〈f (t)〉 =
t−1

∫ t
0 f (s)ds.

3 The Existence and Uniqueness of Positive Solutions

Theorem 1. If Assumption 1 holds, model (5) will have a unique solution at t ≥ 0
for any given initial value (x(0), y(0)) ∈ R

2+, and the solution will be kept in R
2+ with

probability 1, that is, (x(0), y(0)) ∈ R
2+ is almost surely (a.s.) for all t ≥ 0.
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Proof. Since the coefficients of model (5) satisfy the local Lipschitz condition, for any
given initial value (x(0), y(0)) ∈ R

2+, there is a unique local solution (x(0), y(0)) at
t ∈ [0, τe), where τe represents the blasting time. Let m0 ≥ 1 be large enough so that

all (x(0), y(0)) are in the interval
[

1
m0

,m0

]
. For each integer of m ≥ m0, define.

τm = inf

{

t ∈ [0, τe] : min{x(t), y(t)} ≤ 1

m
ormax{x(t), y(t)} ≥ m

}

.

Let τ∞ = lim
m→+∞ τm, thus τ∞ ≤ τe a.s. Define a non-negative C2 function V :

R
2+ → R+ as follows: V (x, y) = (x − 1 − ln x) + (y − 1 − ln y).

So we can get LV (x, y) ≤ α0 − α1 + β0 − β2 + α2

k + σ 2α2

2k2
+ δ2

(1−δ)2
λ(Y) := C,

where C is a constant. Then we can obtain

EV (x(τm ∧ T ), y(τm ∧ T )) ≤ V (x(0), y(0)) + CT . (6)

Set �m = {τm ≤ T } for m ≥ m1, we have P{�m} ≥ ε. It can be seen from (6),
V (x(0), y(0)) + CT ≥ ε

[
(m − 1 − lnm) ∧ ( 1

m − 1 + lnm
)]

, Here m → ∞ leads to
the contradiction ∞ > V (x(0), y(0)) + CT = ∞, so we must have τm = ∞ a.s. This
completes the proof.

4 Sufficient Conditions for the End and Continuation
of the Reaction

4.1 Sufficient Conditions for the End of the Reaction

Theorem 2. Under Assumption 1, let (x(t), y(t)) be the solution of model (5) with any
given initial value (x(t), y(t)) ∈ �∗. If one of the following two conditions holds.

(a)σ ′2 > − k
2(k2+β2)

, or (b)σ ′2 ≤ − k2
α
和 k2α

k(β2+k2)
+ σ ′2α2

2k2(β2+k2)
< 1, then

lim sup
t→∞

ln y(t)
t ≤ k

2σ ′2 + β2 + k2 a.s. if (a) holds,

lim sup
t→∞

ln y(t)
t ≤ (β2 + k2)

[
k2α

k(β2+k2)
− 1 + σ ′2α2

2k2(β2+k2)

]
< 0 a.s. if (b) holds,

where σ ′2 = σ 2 + ∫

Y

γ 2(u)
(1+δ)2

λ(du), which means the reaction will end exponentially

probability one.

Proof. From model (5), we have
〈
x
(
t−

)〉 = α0+β0
α1+β1

+ α2+β2
α1+β1

〈
y
(
t−

)〉 + ϕ(t), in which

ϕ(t) = 1
α1+β1

[
x(t)−x(0)

t + y(t)−y(0)
t

]
satisfies lim

t→∞ ϕ(t) = 0. And then,

ln y(t) − ln y(0)

t
≤ β2 + k2 + k2

〈
x
(
t−

)〉 − σ ′2

2

〈
x
(
t−

)〉2 + M1(t)

t
+ M2(t)

t

:= f (z) + M1(t)

t
+ M2(t)

t
,

(7)
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whereM1(t) = σ
∫ t
0 x

(
s−

)
ds,M2(t)= ∫ t

0

∫

Y

[
ln

(
1 + γ (u)x

(
s−

))]
Ñ (ds, du) are all mar-

tingale terms and f : (
0, −α

k

) → R is defined by

f (z) = −σ ′2

2

(

z − k

σ ′2

)2

+ k

2σ ′2 + β2 + k2, z = 〈
x
(
t−

)〉 ∈
(

0,
−α

k

)

. (8)

Case 1: when σ ′2 > − k
2(k2+β2)

, by (8), we can see that

lim sup
t→∞

ln y(t)

t
≤ k

2σ ′2 + β2 + k2 < 0 a.s. (9)

Case 2: when σ ′2 ≤ − k2
α

and k2α
k(β2+k2)

+ σ ′2α2

2k2(β2+k2)
< 1, from Eq. (7), it’s easy to

see that lim sup
t→∞

ln y(t)
t ≤ (β2 + k2)

[
k2α

k(β2+k2)
− 1 + σ ′2α2

2k2(β2+k2)

]
< 0 a.s.

In summary, lim
t→∞ y(t) = 0 a.s. This completes the proof.

4.2 Sufficient Conditions for Continuous Response

Definition 1. If lim inf
t→∞

∫ t
0 y(s)ds > 0 a.s. holds, then the system (5) is persistent.

Assumption 2. R∗
0 := R0 + σ ′′2α2

2k2k2
> 1, where σ ′′2 = σ 2 + ∫

Y

γ 2(u)
(1−δ)2

λ(du).

Theorem 3. Let Assumption 1 and 2 hold, for any given initial value (x(0), y(0)) ∈ �∗,
the solution (x(t), y(t)) of system (5) has the following property:

lim inf
t→∞

〈
y
(
t−

)〉 ≥ α1+β1

α2+β2

[−(k2+β2)

k2
− σ ′′2α2

2k2k2

]

− α0+β0

α2+β2
> 0.

Proof. By Eq. (7) and Eq. (8), we can get

ln y(t)−ln y(0)
t ≥ β2 + k2

[
1 + α0+β0

α1+β1
− α2+β2

α1+β1

〈
y(t−)

〉 + ϕ(t)
]
− σ ′′2α2

2k2
+ M1(t)

t + M2(t)
t .

Since −∞ < ln y(t) < ln
(−α

k

)
, we can get

lim inf
t→∞

〈
y
(
t−

)〉 ≥ α1+β1

α2+β2

[−(k2+β2)

k2
− σ ′′2α2

2k2k2

]

− α0+β0

α2+β2
.

Due to R∗
0 > 1, lim inf

t→∞
〈
y
(
t−

)〉
> 0 can be obtained. This completes the proof.

5 Positive Recursion of Reaction

Since positive recursion can better describe and show the persistence of system (5) and
give us a deeper understanding of how environmental noise affects the steady state of
persistence. In this section, we will find a domain D ∈ �∗, which is positive recurrent
for the process (x(t), y(t)).
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Theorem 4. Let (x(t), y(t)) be the solution of system (5) with any initial value
(x(0), y(0)) ∈ �∗. Under Assumption 1 and 2, solution (x(t), y(t)) is positively recursive
in domain D, where D = {(x, y) ∈ �∗ : x ≥ ε, y ≥ ε}, where ε is a sufficiently small
normal number.

Proof. According to Theorem 1, for any initial value (x(0), y(0)) ∈ �∗, the solution of
(5) is positive definite. Define a nonnegative C2-function V : �∗ → R+ as follows.

V (x, y) = U (− ln x − ln y) − ln x + 2U ln
(
−α

k

)
+ ln

(
−α

k

)
,

where U > 0 satisfies −Uλ − α1 + 0.5σ ′′2y2 ≤ −2, where λ = −k2(R∗
0 − 1) > 0.

Let V (x, y) = UV 1+V 2, using Itô’s formula for − ln x and − ln y to get.

L(− ln x) ≤ −α0
x − α1 + σ 2

2 y2 − ∫

Y

y2

2(1−δ)2
λ(du), L(− ln y) ≤ −β2 + σ ′′2

2
α2

k2
.

So we get LV ≤ U
(
−α1 − β2 + σ 2

2 y2 − ∫

Y

y2

2(1−δ)2
λ(du)

)
−Uλ− α0

x −α1+ σ ′′2
2 y2.

Define a bounded closed set D = {(x, y) ∈ �∗ : x ≥ ε, y ≥ ε}, where ε is a small
enough normal number.

Let (x(0), y(0)) ∈ �∗, and then using Itô’s formula, one can see that

E[V (x(τD), y(τD))] − V (x(0), y(0)) = E
∫ τD

0
LV (x(t), y(t))dt ≤ −E(τD).

Due to the positive definiteness of V , E(τD) ≤ V (x(0), y(0)). This completes the
proof.

6 Numerical Simulation

In order to verify the conclusions obtained in this paper, the numerical simulation of the
Levy jumpof the system (5) is given next.Assuming the unit of time isminutes, the unit of
reactant concentration ismol/L·min, and the initial value (x(0), y(0)) =(2.5×10−6, 0)
is taken.Other parameters are as follows. x0 = 2×10−6, a0 = 2.5×10−6, d0 = 2×10−6,
k1 = 1.5 × 104, k−1 = 1 × 104, k2 = 2 × 104, Y = (0,+∞), λ(Y) = 1.

Case 1. Choose white noise intensity σ = 0.85 and jumping noise intensity γ (u) =
0.5,then Assumption 1 and σ ′2 = 1.7225 > −0.625 = −0.5k/(k2 + β2) are satisfied.
Therefore, the condition (a) in Theorem 2 is satisfied, and the reaction ends with a
probability 1 index. The simulation result is shown in Fig. 2 (a).
Case 2. Choose white noise intensity σ = 0.7, jumping noise intensity γ (u) = 0.2, and
set δ = 0.4. Meets Assumption 1, σ ′2 = 0.8501 ≤ 7.1429 × 109 = −k2/α and

k2α

k(β2 + k2)
+ σ ′2α2

2k2(β2 + k2)
= −1.75 × 10−6 < 1.

Therefore, the condition (b) in Theorem 2 is satisfied, and the reaction ends with a
probability 1 index. The simulation result is shown in Fig. 2 (b).
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Fig. 2. The state variable response diagram of system (5), in which the horizontal axis represents
time and the vertical axis represents concentration.

Case 1 and case 2 show that when the above conditions are met, Lévy jumpwill force
cargo sorting DNA robot to end cargo loading process. At this time, all the reactants
in the system will be consumed, causing DNA robot to stop running in advance. This
shows that when the above conditions are met, the operation of the DNA robot will end
early due to the influence of noise, which will lead to the failure of the experiment.

Case 3. Choose white noise intensity σ = 0.4, jumping noise intensity γ (u) = 0.15,
and set δ = 0.97. Meets Assumption 1 and R∗

0 = 2.4233 > 1. Therefore, according to
Theorem 3, it can be known that cargo picking process of cargo sorting DNA robot will
continue and the solution (x(t), y(t)) of system (5) is positive recurrent with respect to
domain D in�∗. The simulation result is shown in Fig. 2 (c). At this time, the reactants in
the system still remain, and DNA robot will continue to run in the system. This indicates
that the DNA robot will continue to run during this process, so that all the goods will be
picked up.

7 Conclusions

In this paper, nonlinear biochemical reaction system with Lévy jump based on cargo
sorting DNA robot is studied. The existence and uniqueness of the positive solution of
the system is analyzed. Next, it analyzes the sufficient conditions for the end of cargo
sorting DNA robot under the influence of Lévy jump and the sufficient conditions for the
reaction to continue. The positive recursion of the reaction is studied to better describe
and show the persistence of the system. Finally, the conclusion is verified by numerical
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simulation. The results show that the end and continuation of cargo picking reaction of
cargo sorting DNA robot is closely related to the intensity of Lévy noise, and Lévy jump
has a significant impact on the nature of biochemical reaction system.
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Abstract. DNA specific fragments are required in DNA computing. The frag-
ments are usually obtained through DNA catalytic reactions. For achieving accu-
rate regulation of DNA catalytic reaction network, toehold has been added into
it. Due to the inevitable transcriptions and translations of DNA strands, the out-
come of DNA catalytic reaction network using toehold may be affected by these
operational delays. Based on this, a nonlinear differential model of complex DNA
catalytic reaction network using toehold is proposed. Double time delays charac-
terize delays of twoDNAstrands transcription in the reactionprocess.By assigning
reactant concentrations and reaction rates, the stability of complex DNA catalytic
reaction network system with double time delays is analyzed. The Hopf bifurca-
tion at the equilibrium point is studied and the results of mathematical analysis are
obtained. Finally, the correctness of theoretical analysis is verified by numerical
simulation.

Keywords: DNA catalytic reaction network · Toehold · Double time delays ·
Stability analysis · Hopf bifurcation

1 Introduction

With the structure of DNA, DNA computing solves the problem by converting certain
inputs into outputs. Due to the nanoscale size and high information density of DNA
molecules, DNA computers can perform high-speed parallel calculations. Back in 1994,
Adleman [1] usedDNAmolecules to solve theHamilton Path problem, thereby revealing
the computational power of DNAmolecules.With the discovery of toehold [2], the speed
of DNA reaction is accelerated, which will also accelerate the development of DNA
computing. The researchers also use DNA strands to build logic gates [3–5] to carry out
logical calculations, further promoting the development of DNA computing. Wang et al.
[6] proposed a new DNA algorithm based on the Adleman-Lipton model, which solved
the problem of vehicle routes in congested road sections. the practicability of DNA
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parallel algorithm was proved. Tian [7] proposed a DNA algorithm to solve the shop
scheduling problem, which was proved to be superior to other heuristic algorithms by
its computational complexity. The application of DNA cannot be separated from DNA
strands and DNA strand reactions. Because there are too many uncertain factors in DNA
reaction, it is easy to lead to the delay of DNA catalytic reaction, which affects the speed
and result of DNA computing. If dynamic knowledge can be used to accurately analyze
the delayed DNA catalytic reaction, it can provide a theoretical basis for the realization
of the control reaction and ensure the sustainable development of DNA computing.

Time delay has always been the main research direction of dynamic [8–12]. In recent
years, the study of time delay in biochemical reaction dynamics has also developed
rapidly [13–17]. Du et al. [18] studied the dynamic system of an improved Leslie-Gower
predator-prey system with double delay and diffusion. The stability of the system under
the influence of double delay parameters at positive equilibrium was analyzed. The
existence of Hopf bifurcations and double Hopf bifurcations are studied. The complex
dynamic properties near positive equilibrium were also obtained. In medical research,
an agestructured SEIRS model with time delay was analyzed [19] The agestructured
SEIRS system was simplified to a nonlinear autonomous system with time delay. The
existence of the equilibrium point of the model was studied and the local stability of
the model at the equilibrium point was received. However, time delay analysis is still
rare in DNA catalytic reaction network and the systems analyzed are still simple. If
time-delayed dynamics can be used to study DNA catalytic reaction network, it will be
more conducive to the overall development of DNA reaction dynamics.

Based on the above considerations, A three-dimensional mathematical model for the
complex DNA catalytic reaction network is established for the first time according to the
relationship between reactant concentration and rate constant. Law of conservation of
mass of elements is used to reduce thedimensions of themathematicalmodel, a simplified
mathematical model is finally obtained. In addition, double time delay generated by
transcription and translation were substituted into the mathematical model of complex
DNA catalytic reaction network for the first time to improve the accuracy. Then, by using
Central Manifold Theorem, Routh Criterion, Euler Theorem, and Sheng Jin formula, the
system states under the influence of different delay parameters are calculated. The Hopf
bifurcation of the time-delay system at the equilibrium point is analyzed. Finally, the
simulation results show that the process and results of DNA catalytic reaction network
using toehold are affected by time delays.

The main contributions of this study are as follows:

(1) The differential equation of DNA catalytic reaction network is established, which
transformed the complex biochemical reaction process into a multi-dimensional
mathematical model for the first time.

(2) Time delays caused by the transcription ofDNA strands are added into the dynamics
model of DNA catalytic reaction network firstly. The dynamics characteristics of
complex system are analyzed. The Hopf bifurcation of DNA catalytic reaction
network with double time delays at the equilibrium point is obtained.

(3) The dynamics model of DNA catalytic reaction network with double time delays is
simulated numerically. The results show that the size of the time-delay parameters
does affect the system state of catalytic reaction network.
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The rest of this paper is organized as follows: In Sect. 2, a mathematical model
of DNA catalytic reaction network is established. Double time delays are added into
the model to obtain a nonlinear time-delay model. In Sect. 3, the system states under
the influence of different time delays are discussed. The theoretical analysis results are
obtained. In Sect. 4, the system state diagrams and reaction trajectory diagrams under
the influence of different time delays are received by using MATLAB functions and
related data parameters, which verifies the authenticity of theoretical analysis.

2 Modelling and Analysis of Complex DNA Catalytic Reaction
Network System

The following DNA catalytic reaction network is taken as an example (Fig. 1):

Fig. 1. DNA catalytic reaction network

The chemical reaction equation is
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X (m, n) + S
k{m,n}
�

k{n,m}
Y + L(m, n)

Z + L(m, n)
k{n,m}
�

k{m,n}
X (m, n) + W

Y + R
krep−→Q

(1)

For convenience, the following symbols are used to refer to the concentrations.
A(t), B(t), C(t), D(t), E(t), F(t), G(t), H (t), k1, k2, k3 denote the concentrations of
X (m, n), S,Y , L(m, n), Z, W , R, Q, k{m, n}, k{n,m}, krep at time t, respectively.

The Eq. (1) is rewritten as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A(t) + B(t)
k1�
k2

C(t) + D(t)

E(t) + D(t)
k2�
k1

A(t) + F(t)

C(t) + G(t)
k3−→H (t)

(2)
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2.1 System Modelling of DNA Catalytic Reaction Network Using Toehold

According to the relationship between reaction rate and time, Eq. (2) can be transformed
into

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ȧ(t) = k2C(t)D(t) + k2E(t)D(t) − k1A(t)B(t) − k1A(t)F(t)

Ḃ(t) = k2C(t)D(t) − k1A(t)B(t)

Ċ(t) = k1A(t)B(t) − k2C(t)D(t) − k3C(t)G(t)

Ḋ(t) = k1A(t)B(t) + k1A(t)F(t) − k2C(t)D(t) − k2D(t)E(t)

Ė(t) = k1A(t)F(t) − k2D(t)E(t)

Ḟ(t) = k2D(t)E(t) − k1A(t)F(t)

Ġ(t) = −k3C(t)G(t)

Ḣ (t) = k3C(t)G(t)

(3)

The dimension of system (3) needs to be reduced because of too many parameters in
it. Using the conservation law of elements in the biochemical reaction process to reduce
the dimension, the calculation process can be simplified. The difficulty of calculation
can be reduced and the accuracy isn’t affected.

Let A0,B0,E0,G0 signify initial concentrations of X (m, n), S,Z,R, respectively. If
F the concentration of X (m, n) in the solution is A(t) at time t, the concentration sum
of F and Y is A0 − A(t) according to Eq. (1). The concentration sum of L(m, n) andW
is A0 − A(t) too. By analogy, the sum of concentration of Y and F is B0 − B(t), and
the concentration sum of L(m, n) andW is also B0 − B(t). Since reactant Z reacts only
to form W and the reverse reacts to form Z , the concentration of W is E0 − E(t). And
similarly, R only goes into Q, so the concentration of is G0 − G(t).

System (3) can be transformed into a three-dimensional model containing only three
parameters. The simplified DNA catalytic reaction network model is
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ȧ(t) = k2(A0 − A(t) − H (t))(E(t) − A(t) + A0 − E0)

− k1A(t)(E0 − E(t) + A(t) + B0 − A0) + k2E(t)(E(t) − A(t) + A0 − E0)

Ė(t) = k1A(t)(E0 − E(t)) − k2E(t)(E(t) − A(t) + A0 − E0)

Ḣ (t) = k3(A0 − A(t) − H (t))(G0 − H (t))

(4)

2.2 Double Time Delays System Modelling of DNA Catalytic Reaction Network

The established model (4) has been able to simply characterize the complex DNA cat-
alytic reaction network. However, due to the transcription and translation processes
inherent in the DNA catalytic reaction network, the reaction process will have a certain
time delay. In order to more accurately describe the process of complex DNA catalytic
reaction network, It’s the first time that the two-time delay parameters are added to the
three-dimensional mathematical model of complex DNA catalytic reaction network.

As mentioned above, objective regulators are added in system (4) artificially. Time
delays τ1 and τ2 denote time delays of two transcription and translation in the reaction,



Stability and Hopf Bifurcation Analysis of Complex DNA 571

respectively. On the premise of respecting objective facts, the biochemical reaction
dynamic model with double time delays is obtained:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ȧ(t) = k2(A0 − A(t − τ1) − H (t))(E(t − τ2) − A(t − τ1) + A0 − E0)

− k1A(t − τ1)(E0 − E(t − τ2)) + k2E(t − τ2)(E(t − τ2) − A(t − τ1) + A0 − E0)

− k1A(t − τ1)(A(t − τ1) + B0 − A0)

Ė(t) = k1A(t − τ1)(E0 − E(t − τ2)) − k2E(t − τ2)(E(t − τ2) − A(t − τ1) + A0 − E0)

Ḣ (t) = k3(A0 − A(t − τ1) − H (t))(G0 − H (t))
(5)

2.3 Model Simplification

The equilibrium point of system (5) can be obtained when all the equations of system
(5) are equal to 0. Considering the following conditions:

1) If A0 − A(t) − H (t) = 0, That is, C(t) = 0 and Ė(t) = 0,so A(t)B(t) = 0 in
Ȧ(t). If A(t) = 0 and D(t)E(t) = 0 in Ė(t), the equilibrium point E0 = (0, 0,A0) if
E(t) = 0 and the equilibrium point is E1 = (0,E0 − A0,A0) if D(t) = 0 according to
Eq. (5). If B(t) = 0, so A(t) = A0 − B0. It can be received from the data given in paper
that A0 < B0, so A(t) is negative. In biochemical reaction, the concentration of reactants
must not be negative, so the calculated equilibrium points have no practical significance
and will not be considered.

2) If G0 − H (t) = 0, so H (t) = G0. k2C(t)D(t) − k1A(t)B(t) = 0 and
k1A(t)F(t) − k2D(t)E(t) = 0 because of Ė(t) = 0 at this time. Due to the lack of
additional information, the equilibrium point of system (5) cannot be calculated when
H (t) = G0.

As mentioned above, E1 = (0,E0 − A0,E0) is chosen to analyze the dynamic state
of system (5). E1 is moved to the origin and system (6) after linearizing the above system
is obtained as

⎧
⎪⎨

⎪⎩

Ȧ∗(t) = a0A
∗(t − τ1) + a1E

∗(t − τ2)

Ė∗(t) = a2A
∗(t − τ1) + a1E

∗(t − τ2)

Ḣ∗(t) = a3A
∗(t − τ1) + a3H

∗(t)
(6)

in which a0 = k2(E0 − A0) − k1B0, a1 = −k2(E0 − A0), a2 = k1A0 + k2(E0 − A0),
a3 = k3(A0 − G0). The characteristic equation of system (6) can be gotten as

|λE − J |=(λ − a3)[λ2 − (a0e
−λτ1 + a1e

−λτ2) + (a0a1 − a1a2)e
−λ(τ1+τ2)] (7)

3 Stability Analysis and Hopf Bifurcation of Complex DNA
Catalytic Reaction Network System

The complex system (5) contains two uncertain time delays, namely τ1 and τ2. τ1 and
τ2 represent the time delays generated by the two DNA translations in the reaction,
respectively. Next, double delays will be divided into three categories. The complex
DNA catalytic reaction network system will be analyzed in detail in five cases.
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Case 1: τ1 = τ2 = 0.

When τ1 = τ2 = 0,there is no external influencing factor in the two reactions ofDNA
catalytic reaction network, which leads to the time delay of DNA strand displacement
in the reaction network. In this case, system (5) is not affected by time delays.

Theorem 1. In dynamics, the sufficient and necessary condition for system stability is
that all coefficients of the characteristic equation of the system have the same sign and
all elements of the first column of Routh table are positive. Through calculation, it is
known that all elements of the first column of Routh table are positive. System (5) is
stable when τ1 = τ2 = 0.

Proof. The characteristic equation of system (5) is.

|λE − J | = λ3 − (a0 + a1 + a2)λ
2 + (a0a1 − a1a2 + a0a3 + a1a3)λ − a1a3(a0 − a2)

(8)

Setting �0 = −(a0 + a1 + a2),

�1=
∣
∣
∣
∣
−(a0 + a1 + a2) −a1a3(a0 − a2)

1 (a0a1 − a1a2 + a0a3 + a1a3)

∣
∣
∣
∣.

According to the Routh Criterion, the Routh table of the above equation is

λ3 1 a0a1 − a1a2 + a0a3 + a1a3
λ2 −(a0 + a1 + a2) −a1a3(a0 − a2)
λ1 ϒ 0
λ0 −a1a3(a0 − a2)

(9)

where ϒ = a0a1 − a1a2 + a0a3 + a1a3 − a1a3(a0−a2)
(a0+a1+a2)

.
By the values of parameters, −(a0 +a1 +a2) > 0, ϒ > 0 and −a1a3(a0 −a2) > 0.

Case 2: τ1 = 0, τ2 �= 0.

DNA helicase relies on ATP to unlock the double helix structure of DNA and RNA
polymerase are used to generate messenger RNA to complete DNA transcription. In this
case, due to the insufficient supply of ATP, the activity of DNA helicase near Z is low,
which delays the process of DNA transcription. In this case, the system state of DNA
catalytic reaction network system under the influence of τ2 is mainly analysis.

Theorem 2. The first reaction in DNA catalytic reaction network proceeded normally,
while the second reaction is delayed when τ1 = 0, τ2 �= 0. When τ2 < τ20, the system is
asymptotically stable at the equilibrium point E1.When τ2 > τ20, the system is unstable.
When τ2 = τ20, Hopf bifurcation appears in the system.

τ2 = τ20 = 1

ω20
cos−1 E11E13 + E12E14

E2
11 + E2

12

(10)

Proof. When τ1 = 0, The characteristic equation of the system (5) is as

(λ − a3)(λ
2 − (a0 + a1e

−λτ2)λ + (a0a1 − a1a2)e
−λτ2) = 0 (11)
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±iω(ω > 0) is assumed to be a pair of pure imaginary roots of Eq. (11).
The following equation can be received through simple mathematical operation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cosωτ2 = E11E13 + E12E14

E2
11 + E2

12

sinωτ2 = E12E13 − E11E14

E2
11 + E2

12

(12)

in which E11 = a1ω(a0+a3−a2), E12 = a1(a0a3−a2a3−ω2), E13 = ω3−a0a3ω,
E14 = (a0 + a3)ω2.

Adding the two expressions in the above equation by square. It can be gotten as

aX 3 + bX 2 + cX + d = 0 (13)

where X = ω2, a = 1, b = a20 + a23 − a21, c = a20a
2
3 + 2a21a3(a0 − a2) − a21(a0 +

a3 − a2)2, d = −a21a
2
3(a0 − a2)2.

According to Sheng Jin Formula, if d < 0, Eq. (13) has at least one positive root. If
d ≥ 0, Eq. (13) has at least one positive root X ∗, the root X ∗ > 0 makes f

′
(X ∗) = 0

and f
′′
(X ∗) ≥ 0. It is easily can be gotten that Eq. (13) has a unique positive root ω2

20.
The corresponding critical point τ2n is

τ2n = 1

ω20
cos−1 E11E13 + E12E14

E2
11 + E2

12

+ 2nπ

ω20
, n = 0, 1, 2, ...... (14)

Supposing λ(τ2n) = ±iω0 are the roots of Eq. (11), the transversal condition can be
obtained as

Re

{[
dλ

dτ

]−1

τ=τ2n

}

= Re

{
A0 + B0i

C0 + D0i

}

= A0C0 + B0D0

C2
0 + D2

0

> 0 (15)

where

A0 = (−3ω2 + a0a3) cosω0τ2n + (a0 + a1 + 2a3)ω sinω0τ2n + a1(a0 − a2 + a3),
B0 = [(−3ω2

0 + a0a3) sinω0τ2n − (a0 + a1 + 2a3)ω0 cosω0τ2n − 2a1ω0],
C0 = a1ω2

0, D0 = a1(a0 − a2)ω0.

Thus p
′
(τ2n) > 0. This completes the proof.

Case 3: τ2 = 0, τ1 > 0.

In this case, a small amount of the inhibitor is involved in the reaction due to improper
manipulation. Inhibitors act on the RNA polymerase on X {m, n} resulting in partial
alteration or loss of RNA polymerase activity. Only part of the RNA polymerase works
properly, delaying the process of DNA transcription. The first reaction has a time delay
in transcription while the second reaction does not in Eq. (1). The effect of τ1 on the
state of DNA catalytic reaction network system is examined.



574 W. Chen et al.

Theorem 3. In this situation, the system (5) is asymptotically balanced when τ1 < τ10.
When τ1 = τ10, the system is in Hopf bifurcation. When τ1 > τ10, the system falls into
an unstable state.

τ10 = 1

ω10
cos−1 E21E23 + E22E24

E2
21 + E2

22

(16)

where E21 = (a0a1 + a0a3 − a1a2)ω, E22 = (a0ω2 − a0a1a3 + a1a2a3), E23 =
ω3 − a1a3ω, E24 = −(a1 + a3)ω2.

Proof. The proof is similar to Theorem 2.

Case 4: τ1 > 0, τ2 ∈ (0, τ20), τ20 is a fixed value.

Due to the dual effects of inhibitor incorporation and ATP deficiency, time delays
both exist in DNA catalytic reaction network using toehold when τ1 > 0, τ2 ∈ (0, τ20).
Supposing τ2 is a fixed value in (0, τ20)while τ1 is uncertain. The effects of two nonzero
delays on three-dimensional DNA catalytic reaction network are considered in this case.
The properties of system states under the influence of indefinite τ1 are mainly analyzed.

Theorem 4. If �0 > 0,�1 > 0, system (5) is asymptotically stable at equilibrium
point E1 when τ2 ∈ (0, τ20). System (6) is unstable when τ2 > τ20. Hopf bifurcation
occurs when τ2 = τ20.

Proof. The characteristic equation of system (5) is

(λ − a3)[λ2 − (a0e
−λτ1 + a1e

−λτ2) + (a0a1 − a1a2)e
−λ(τ1+τ2)] = 0 (17)

τ2 is a fixed value in (0, τ20). τ1 is seen as a parameter. Supposing ±iω(ω > 0) is
roots of Eq. (17), The real and imaginary parts are separated.

It can be gained as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cosωτ1 = E31E33 + E32E34

E2
31 + E3

32

sinωτ1 = E32E33 − E31E34

E2
31 + E2

32

(18)

in which
E31 = (a0 − a2)a1ω cosωτ2 + a0a3ω + (a0 − a2)a1a3 sinωτ2,
E32 = (a0 − a2)a1a3 cosωτ2 − a0ω2 − (a0 − a2)a1ω sinωτ2,
E33 = ω3 + a1ω2 sinωτ2 − a1a3ω cosωτ2, E34 = a3ω2 + a1ω2 cosωτ2 +

a1a3ω sinωτ2.
It can be gotten through the special properties of trigonometric functions:

ω6 + (a21 + a23 − a20)ω
4 + [a21a23 − a21(a0 − a2)

2 − a20a
2
3]ω2 − a21a

2
3(a0 − a2)

2

+2a1(ω
5 + a23ω

3 − a0(a0 − a2)ω
3 − a0a

2
3(a0 − a2)ω) sinωτ2 = 0 (19)

The above equation can be rewritten as

�3W
3 + �2W

2 + �1W + �0 + 	0 sinωτ2 = 0 (20)
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Let ω
(1)
1 , ω(2)

1 , ω(3)
1 and ω

(4)
1 be four roots of Eq. (20). There is a ωi

1(i = 1, 2, 3, 4)

corresponding each τ
(j)
1i .

τ
(j)
1i = 1

ωi
1

cos−1

(
E31E33 + E32E34

E2
31 + E2

32

+ 2jπ

)

ω1=ω
j
1

, i = 1, 2, 3, 4; j = 0, 1, 2, ....

(21)

Supposing τ
′
10 = min{τ (j)

1i |i = 1, 2, 3, 4; j = 0, 1, 2, ...}, ω′
10 is the root of Eq. (20)

when τ10 = τ
′
10. When λ = iωi

10 is root of Eq. (17), it can be received as

Re

(
dλ

dτ1

)−1

λ=iω
′
10

= Re

(
A1 + B1i

C1 + D1i

)

= A1C1 + B1D1

C2
1 + D2

1

> 0 (22)

where

A1 = −3ω2 − a0ω(2 − ω2) sinωτ
′
1n − a1ω(2 − a3τ1) sinωτ2 + a0a3(1 + ω2) cosωτ

′
1n

+ a1(a3 − ω2τ2) cosωτ2 + a1a3(a0 − a2)τ
′
1n cosω(τ

′
1n + τ2) − a1(a0 − a2)ωτ

′
1n sinω(τ

′
1n + τ2)

B1 = −a3ω − a0ω(2 + ω2) cosωτ
′
1n − a1ω(2 + a3τ

′
1n) cosωτ2 − a0a3(1 + ω2) sinωτ

′
1n

+ a1(ω
2τ2 − a3) sinωτ2 − a1(a0 − a2)ωτ

′
1n cosω(τ

′
1n + τ2) − a1a3(a0 − a2)τ

′
1n sinω(τ

′
1n + τ2)

C1 = −a1(a0 − a2)ω
2 cosω(τ

′
1n + τ2) − a1a3(a0 − a2)ω sinω(τ

′
1n + τ2)

+ a0ω
3 sinωτ

′
1n − a2a3ω

2 cosωτ
′
1n

D1 = a1(a0 − a2)ω
2 sinω(τ

′
1n + τ2) − a1a3(a0 − a2)ω cosω(τ

′
1n + τ2)

+ a0ω
3 cosωτ

′
1n + a2a3ω

2 sinωτ
′
1n

The transversality condition holds when A1C1 + B1D1 �= 0. This completes the
proof.

Case 5: τ2 > 0, τ1 ∈ (0, τ10), τ1 is a fixed value

When τ2 > 0, τ1 ∈ (0, τ10), two delays exist in DNA catalytic reaction network
because of inhibitor incorporation and ATP deficiency. It is assumed that the first delay
τ1 is fixed. τ2 is treated as a parameter. The effects of different values of the second
reaction time delay τ2 on the dynamics of the system are investigated.

Theorem 5. If�0 > 0,�1 > 0, system (5) is asymptotically stable at equilibrium point
E0 when τ1 ∈ (0, τ10). When τ1 > τ10, system (5) is in oscillating. Hopf bifurcation
occurs when τ1 = τ10. When τ1 < τ10, system (5) is in a stable state.

Proof. The proof method refers to Theorem 4, and the proof process is similar.

Remark 1. Routh Criterion is an important method to judge the stability of higher order
linear systems. In order to avoid solving complex characteristic equation, the stability
of the system can be judged by algebraic operation of the coefficient of characteristic
equation. When the first column of the Routh table is all positive, the system is stable. In
this paper, the system equation without time delay is solved and analyzed, which greatly
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reduces the difficulty of calculation. Euler’s Formula trans-forms exponential function
into trigonometric functionwith complex number. Combinedwith relevant knowledge of
trigonometric function, through simplemathematical operation, the relationship between
and time delay is gotten. Sheng Jin Formula is mainly used to solve cubic equations. In
the above part, the complex higher-order function is transformed into a cubic equation
by transforming the unknown quantity. The required solution intuitively and concisely
is obtained through the relevant formulas of Sheng Jin Formula.

4 Numerical Simulation

System (5) of DNA catalytic reaction network with two delays will be simulated in
this part. The system trajectory diagram and state variable diagram under the action of
different double-delay parameter combinations are received in this part. By analyzing
the trend of trajectory diagrams, the actual situation of reaction can also be intuitively
verified.

Specific parameters are set as follows through the paper [20], A0 = 1 nm, B0 =
10 nm, E0 = 100 nm, G0 = 30 nm. k1 = 1 ∗ 10−2 nM/s, k2 = 4 ∗ 10−4 nM/s, k3 = 9 ∗
10−3 nM/s. It can be received fromEq. (10) andEq. (16) that τ10 = 17.36 s, τ20= 22.00 s.
τ

′
10 = 17.36 s, τ

′
20 = 21.25 s.

Case1
When τ1 = τ2 = 0, it is obviously that system (5) is stable from system trajectory diagram
and state variable diagram (see Fig. 2). DNA catalytic reaction network reacts normally
without delays. The results of images are consistent with Theorem 1.

(a)                                                                               (b) 

Fig. 2. System trajectory diagram and State variable diagram when τ1=τ2=0.

Case2

TheDNA catalytic reaction network is only affected by τ2.When τ2=19 < τ20, Fig. 3(a)
and Fig. 3(d) are in a certain fluctuation and eventually stabilizes. It is known from
Fig. 3(a) that the reaction converges at the equilibrium point E1.But it takes more time
to complete the reaction. When τ2 = τ20 = 22,the system is in a special state between
a stable state and an unstable one. From Fig. 3(e), the curve is vibrating regularly. But
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(a)                                               (b)                                              (c) 

(d)                                              (e)                                              (f) 

Fig. 3. System trajectory diagrams and State variable diagrams when τ1 = 0, τ2 = 19, 22, 22.7.

the curve does not converge at the equilibrium point E1 in Fig. 3(b). The system should
be experiencing Hopf bifurcation. From Fig. 3(f), it is shown clearly that the curves
of state variables do not stabilize at last and fluctuate more and more violently. Also,
the trajectories of the system in Fig. 3 (c) do not converge at the equilibrium point E1.
Judging from these, the system is unstablewhen τ2 = 22.7 > τ20. DNAcatalytic reaction
network using toehold does not work properly. Figure 3 is unified with mathematical
calculation.

Case3
It is clearly known from Fig. 4(a) and Fig. 4(d) that the curve of system trajectory
converges to a point, namely the equilibrium point E1. The state variable curves become
stable eventually, but the system takesmore time to be stable. FromFig. 4(b) andFig. 4(e),
the system is in the critical state between a stable state and an unstable one. Hopf
bifurcation occurs when τ1 = τ10. From Fig. 4(c) and Fig. 4(f), not only the system
trajectory is unable converge to the equilibrium point E1, but also the state variable
diagram is not asymptotic to a value. It can be received that the system is in an unstable
statewhen τ1 = 19 > τ10. TheDNAcatalytic reaction network using toehold goeswrong
and the reaction fails.

Case4
When τ1 = 2, τ2 = 18 < τ

′
20 = 21.25, the system is affected by τ1 and τ2. FromFig. 5(a),

the curve converges to a point eventually. The oscillation in Fig. 5(d) gradually levels off.
It can be seen clearly that system (5) is asymptotically stable when τ1 < τ

′
10. Required

DNA fragments can also be received from the reaction. Figure 5(b) and Fig. 5(e) shows
that system (5) is in an intermediate state between an unstable state and a stable one.
Hopf bifurcation appears in the system (5) when τ1 = 2, τ2 = τ

′
20 = 21.25 because
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  (a)                                              (b)                                             (c) 

 (d)                                              (e)                                              (f) 

Fig. 4. System trajectory diagrams and State variable diagramswhen τ2 = 0, τ1 = 15, 17.36, 19.

the state of this DNA catalytic reaction network delayed system changes. When τ1 =
2, τ2 = 23 >τ

′
20 = 21.25, the system is unstable and cannot converge to a point from

Fig. 5(c) and Fig. 5(f). DNA catalytic reaction network fails finally.

(a)   (b)                                              (c) 

 (d)  (e)  (f)

Fig. 5. System trajectory diagrams and State variable diagrams when τ1 = 2, τ2 = 18, 21.25, 23.

Case 5

When τ1 = 14 <τ
′
10 = 16.3, τ2 = 5, the system (5) is affected by two delays τ1 and

τ2. The influence of τ1 on DNA catalytic reaction network is mainly analyzed. From
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(a)  (b)    (c)

 (d) (e)  (f)

Fig. 6. System trajectory diagrams and State variable diagrams when τ1 = 14, 16.3, 17, τ2 = 5.

Fig. 6(a) and Fig. 6(d), the system (5) is asymptotically stable at the equilibrium point
E1. The system oscillates in a regular way from Fig. 6(e) and the system trajectory does
not converge from Fig. 12(b). When τ1 = τ

′
10 = 16.3, τ2 = 5, Hopf bifurcation arises

in the system. When τ1 = 17 >τ
′
10 = 16.3, τ2 = 5, the system is unstable. The system

trajectory cannot converge to the equilibrium point E1 from Fig. 6(c).

Remark 2. Through the simulation images above, the correctness of the mathematical
analysis is verified. It is proved that the state of the biochemical system is influenced by
time delays. When time delays are greater than critical values, the normal operation of
DNA catalytic reaction network is seriously affected. Eventually, DNA catalytic reaction
fails. When the values of delays are less than the thresholds, the delays do not make a
huge impact on the reaction state, and the reaction is still normal. The critical values of
delays are likely to be the limit of the change in the state of the system. In other words,
Hopf bifurcation occurs at the critical value of the system.

5 Conclusion

The properties of complex DNA catalytic reaction network have been studied in this
paper. The three-dimensional biochemical reaction dynamic model of DNA catalytic
reaction network using toehold is established. To reflect the actual situation of DNA
catalytic reaction network reaction using toehold more accurately and realistically, a
new three-dimensional mathematical model with two delays is formed based on the
original system for the first time. The central manifold theorem is used to linearize the
system and the simplified model is obtained. By classifying the time delay, the system is
analyzed in detail, and the stability of complex time delay system near the equilibrium
point and the analysis results of Hopf bifurcation are gained. Finally, the state variable
response diagrams and system trajectory diagrams of DNA catalytic reaction network



580 W. Chen et al.

under the influence of different time delay parameters are drawn. The values of the time
delays affect the system state and reaction results of DNA catalytic reaction network
system.
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